
Blind, Greedy, and Random: Algorithms for
Matching and Clustering Using Only Ordinal Information

Elliot Anshelevich
Department of Computer Science
Rensselaer Polytechnic Institute

eanshel@cs.rpi.edu

Shreyas Sekar
Department of Computer Science
Rensselaer Polytechnic Institute

sekars@rpi.edu

Abstract

We study the Maximum Weighted Matching problem in a par-
tial information setting where the agents’ utilities for being
matched to other agents are hidden and the mechanism only
has access to ordinal preference information. Our model is
motivated by the fact that in many settings, agents cannot ex-
press the numerical values of their utility for different out-
comes, but are still able to rank the outcomes in their order of
preference. Specifically, we study problems where the ground
truth exists in the form of a weighted graph, and look to de-
sign algorithms that approximate the true optimum matching
using only the preference orderings for each agent (induced
by the hidden weights) as input. If no restrictions are placed
on the weights, then one cannot hope to do better than the
simple greedy algorithm, which yields a half optimal match-
ing. Perhaps surprisingly, we show that by imposing a little
structure on the weights, we can improve upon the trivial al-
gorithm significantly: we design a 1.6-approximation algo-
rithm for instances where the hidden weights obey the metric
inequality. Our algorithm is obtained using a simple but pow-
erful framework that allows us to combine greedy and random
techniques in unconventional ways. These results are the first
non-trivial ordinal approximation algorithms for such prob-
lems, and indicate that we can design robust matchings even
when we are agnostic to the precise agent utilities.

1 Introduction

Consider the Maximum Weighted Matching (MWM) prob-
lem, where the input is an undirected complete graph G =
(N , E) and the weight of an edge w(i, j) represents the
utility of matching agent i with agent j. The objective is
to form a matching (collection of disjoint edges) that maxi-
mizes the total utility of the agents. The problem of match-
ing agents and/or items is at the heart of a variety of di-
verse applications and it is no surprise that this problem and
its variants have received extensive consideration in the al-
gorithmic literature (Lovász and Plummer 2009). Perhaps,
more importantly, maximum weighted matching is one of
the few non-trivial combinatorial optimization problems that
can be solved optimally in poly-time (Edmonds 1965). In
comparison, we study the MWM problem in a partial infor-
mation setting where the lack of precise knowledge regard-
ing agents’ utilities acts as a barrier against computing opti-
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mal matchings, efficiently or otherwise. Furthermore, for the
majority of this work, we assume that the edge weights obey
the triangle inequality, since in many important applications
it is natural to expect that the weights have some geomet-
ric structure. Such structure occurs, for instance, when the
agents are points in a metric space and the weight of an edge
is the distance between the two endpoints.

Partial Information - Ordinal Preferences A crucial
question in algorithm and mechanism design is: “How much
information about the agent utilities does the algorithm de-
signer possess?”. The starting point for the rest of our paper
is the observation that in many natural settings, it is unrea-
sonable to expect the mechanism to know the exact weights
of the edges in G (Boutilier et al. 2015; Chakrabarty and
Swamy 2014). For example, when pairing up students for a
class project, it may be difficult to precisely quantify the syn-
ergy level for every pair of students; ordinal questions such
as ‘who is better suited to partner with student x: y or z?’
may be easier to answer. Such a situation would also arise
when the graph represents a social network of agents, as the
agents themselves may not be able to express ‘exactly how
much each friendship is worth’, but would likely be able to
form an ordering of their friends from best to worst.

Motivated by this, we consider a model where for every
agent i ∈ N , we only have access to a preference ordering
among the agents in N − {i} so that if w(i, j) > w(i, k),
then i : j > k, i.e. i prefers j to k. The common approach
in Learning Theory while dealing with such ordinal settings
is to estimate the ‘true ground state’ based on some proba-
bilistic assumptions on the underlying utilities (Oh and Shah
2014; Soufiani, Parkes, and Xia 2012). In this paper we take
a different approach, and instead focus on the more demand-
ing objective of designing robust algorithms, i.e., algorithms
that provide good performance guarantees no matter what
the underlying weights are.

Despite the large body of literature on computing match-
ings in settings with preference orderings, there has been
much less work on quantifying the quality of these match-
ings. As is common in much of social choice theory, the im-
plicit assumption in this literature is that the underlying utili-
ties cannot be measured or do not even exist, and hence there
is no clear way to define the quality of a matching (Abra-
ham et al. 2007; Bhalgat, Chakrabarty, and Khanna 2011;
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Gusfield and Irving 1989). In such papers, the focus there-
fore is on computing matchings that satisfy normative prop-
erties such as stability or optimize a measure of efficiency
that depends only on the preference orders, e.g., average
rank. On the other hand, the literature on approximation al-
gorithms usually follows the utilitarian approach (Harsanyi
1976) of assigning a numerical quality to every solution; the
presence of input weights is taken for granted. Our work
combines the best of both worlds: we do not assume the
availability of numerical information (only its latent exis-
tence), and yet our approximation algorithms must compete
with algorithms that know the true input weights.

Model For the rest of this paper, we assume that the input
is a set N of points or agents with |N | = N , and a strict
preference ordering Pi for each i ∈ N over the agents in
N − {i} . We assume that the input preference orderings
are derived from a set of underlying hidden edge weights
(w(x, y) for x, y ∈ N ). Unless mentioned otherwise, we
assume that the edge weights satisfy the triangle inequality,
i.e., for x, y, z ∈ N , w(x, y) ≤ w(x, z) + w(y, z). These
weights are considered to represent the ground truth, which
is not known to the algorithm. We say that the preferences P
are induced by weights w if ∀x, y, z ∈ N , if x prefers y to z,
then w(x, y) ≥ w(x, z). Our framework captures a number
of well-motivated settings; we highlight two of them below.

1. Forming Diverse Teams Our setting and objectives align
with the research on diversity maximization algorithms, a
topic that has gained significant traction, particularly with
respect to forming diverse teams that capture distinct per-
spectives (Indyk et al. 2014; Marcolino, Jiang, and Tambe
2013). In these problems, each agent corresponds to a
point in a metric space: this point represents the agents’s
beliefs, skills, or opinions. Given this background, our
problem essentially reduces to selecting diverse teams (of
size two) based on different diversity goals, since points
that are far apart (w(x, y) is large) contribute more to the
objective. For instance, one can imagine a teacher pairing
up her students who possess differing skill sets or opin-
ions for a class project, which is captured by the maxi-
mum weighted matching problem. In section 4, we tackle
the problem of forming diverse teams of arbitrary sizes by
extending our model to encompass clustering.

2. Friendship Networks In structural balance theory (Davis
1977), the statement that a friend of a friend is my friend is
folklore; this phenomenon is also exhibited by many real-
life social networks (Goodreau, Kitts, and Morris 2009).
More generally, we can say that a graph with continu-
ous weights has this property if w(x, y) ≥ α[w(x, z) +
w(y, z)] ∀x, y, z, for some suitably large α ≤ 1

2 (An-
shelevich and Sekar 2015). Friendship networks bear a
close relationship to our model; in particular every graph
that satisfies the friendship property for α ≥ 1

3 must have
metric weights, and thus falls within our framework.

In this paper our main goal is to form ordinal approxima-
tion algorithms for matching problems. Later, in section 4,
we discuss the problem of designing ordinal algorithms for
the problem of clustering agents into equal-sized partitions.

Generally speaking, an algorithm A is said to be ordinal if
it only takes preference orderings (P )i∈N as input (and not
the hidden numerical weights w). It is an α-approximation
algorithm if for all possible weights w, and the correspond-
ing induced preferences P , we have that OPT (w)

A(P ) ≤ α. Here
OPT (w) is the total value of the maximum weight solu-
tion with respect to w, and A(P ) is the value of the solution
returned by the algorithm for preferences (P )i∈N . In other
words, such algorithms produce solutions which are always
a factor α away from optimum, without actually knowing
what the weights w are. For randomized algorithms, A(P )
denotes the expected performance guarantee.

In the rest of the paper, we focus primarily on the Max-
imum Weighted Matching problem where the goal is to
compute a matching to maximize the total (unknown) weight
of the edges inside. In addition, we also consider the Max k-
matching (Mk-M) problem, where the goal is to compute a
maximum weight matching consisting of at most k edges.

Challenges and Techniques We describe the challenges
involved in designing ordinal algorithms for general prob-
lems through the lens of the Maximum Weighted Match-
ing problem. First, different sets of edge weights may give
rise to the same preference ordering and moreover, for each
of these weights, the optimum matching can be different.
Therefore, unlike for the full information setting, no algo-
rithm (deterministic or randomized) can compute the opti-
mum matching using only ordinal information. More gen-
erally, the restriction that only ordinal information is avail-
able precludes almost all of the well-known algorithms for
computing a matching. So, what kind of algorithms use
only preference orderings? One algorithm which can still be
implemented is a version of the extremely popular greedy
matching algorithm, in which we successively select pairs
of agents who choose each other as their top choice. An-
other trivial algorithm is to choose a matching at random:
this certainly does not require any numerical information!
It is not difficult to show that both these algorithms actu-
ally provide an ordinal 2-approximation for the maximum
weight matching. The main result of this paper, however,
is that by interleaving these basic greedy and random tech-
niques in non-trivial ways, it is actually possible to do much
better, and obtain a 1.6-approximation algorithm.

Our Contributions

Our main results are summarized in Table 1. As seen in the
table, our ordinal approximation factors are close to the best
possible given the information-theoretic constraints imposed
by our setting. Moreover, although we cannot solve the prob-
lem optimally, our approximation factors are still quite close
to 1 indicating that it is possible to find good solutions to
matching problems even without knowing any of the true
weights, using only preference information instead.

Our central result in this paper is an ordinal 1.6-
approximation algorithm for max-weight matching; this is
obtained by a careful interleaving of greedy and random
matchings. We also present a deterministic 2-approximation
algorithm for Max k-Matching. Note that Max k-Matching
for k = N

2 is the same as the MWM problem.
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Problem Lower Bound Our Results
Det. Rand. Det. Rand.

w/o Metric MWM 2 5
3 2 2

Mk-M ∞ ∞ - -

Metric MWM 1.5 1.25 2 1.6
Mk-M 2 2 2 2

Table 1: The approximation factors obtained by our deter-
ministic (Det.) and randomized (Rand.) ordinal approxima-
tion algorithms along with the information-theoretic lower
bounds for the Maximum Weighted Matching (MWM) and
the Max k-Matching (Mk-M) problems. The lower bounds
are intrinsic to the ordinal information setting that we con-
sider and indicate that no ordinal algorithm can obtain a bet-
ter approximation factor.

Although our main results are for instances where the hid-
den weights obey the metric inequality, we also briefly con-
sider ordinal approximation algorithms for general weights.
We show that the simple deterministic algorithm that greed-
ily picks edges yields a 2-approximation for the MWM prob-
lem even for general weights and is close to the best possi-
ble algorithm, deterministic or randomized. Finally, we also
consider a strict generalization of the Maximum Weighted
Matching problem called Max k-sum, where the goal is to
partition the agents into k equal sized clusters to maximize
the total weight inside the clusters. We present a general
black-box approach that uses matching algorithms for form-
ing clusterings, and use this result to obtain an ordinal 3.2-
approximation algorithm for Max k-sum.
Techniques: More generally, one of our main contributions
is a framework that allows the design of algorithms for prob-
lems where the (metric) weights are hidden. Our framework
builds on two simple techniques, greedy and random, and
establishes an interesting connection between graph density,
matchings, and greedy edges. We believe that this frame-
work may be useful for designing ordinal approximation al-
gorithms in the future.

Related Work

Broadly speaking, the cornucopia of algorithms proposed
in the matching literature belong to one of two classes: (i)
Ordinal algorithms that ignore agent utilities, and focus on
(unquantifiable) axiomatic properties such as stability, and
(ii) Optimization algorithms where the numerical utilities
are fully specified. From our perspective, algorithms belong-
ing to the former class, with the exception of Greedy, do
not result in good approximations for the hidden optimum,
whereas the techniques used in the latter (e.g., Drake and
Hougardy; Duan and Pettie) depend heavily on improving
cycles and thus, are unsuitable for ordinal settings. A notable
exception to the above dichotomy is the class of optimiza-
tion problems studying ordinal measures of efficiency (Abra-
ham et al. 2007; Chakrabarty and Swamy 2014), for exam-
ple, the average rank of an agent’s partner in the match-
ing. Such settings often involve the definition of ‘new utility
functions’ based on given preferences, and thus are funda-
mentally different from our model where preexisting cardi-

nal utilities give rise to ordinal preferences.
The idea of preference orders induced by metric weights

(or a more general utility space) was first considered in
the work of Irving et al. (1987). Subsequent work has fo-
cused mostly on analyzing the greedy algorithm or on set-
tings where the agent utilities are explicitly known (Arkin
et al. 2009; Emek, Langner, and Wattenhofer 2015). Most
similar to our work is the recent paper by Filos-Ratsikas et
al. (2014), who prove that for one-sided matchings, no or-
dinal algorithm can provide an approximation factor better
than Θ(

√
N). In contrast, for two-sided matchings, there is

a simple (greedy) 2-approximation algorithm even when the
hidden weights do not obey the metric inequality.
Distortion in Social Choice Our work is partly inspired by
the growing body of research in social choice theory study-
ing settings where the voter preferences are induced by a set
of hidden utilities (Anshelevich, Bhardwaj, and Postl 2015;
Boutilier et al. 2015; Caragiannis and Procaccia 2011; Mar-
colino et al. 2014; Procaccia and Rosenschein 2006). The
voting protocols in these papers are essentially ordinal ap-
proximation algorithms, albeit for the very specific problem
of selecting the utility-maximizing candidate from a set of
alternatives.

Finally, other models of incomplete information have
been considered in the Matching literature, most notably
Online Algorithms (Kalyanasundaram and Pruhs 1993) and
truthful mechanism design (without money) for strategic
agents (Dughmi and Ghosh 2010; Procaccia and Tennen-
holtz 2013). Given the ubiquity of greedy and random al-
gorithms, it would be interesting to see whether such algo-
rithms developed for other partial information models can
be extended to our setting.

2 Framework for Ordinal Algorithms

In this section, we present our framework for developing
ordinal approximation algorithms and establish tight upper
and lower bounds on the performance of algorithms that se-
lect matching edges either greedily or uniformly at random.
As a simple consequence of this framework, we show that
the algorithms that sequentially pick all of the edges greed-
ily or uniformly at random both provide 2-approximations
to the maximum weight matching. In the following section,
we show how to improve this performance by picking some
edges greedily, and some randomly. Finally, we remark that
for the sake of convenience and brevity, we will often as-
sume that N is even, and sometimes that it is also divisible
by 3. As we discuss in the full version of this paper (An-
shelevich and Sekar 2015), our results still hold if this is not
the case, with only minor modifications.

Fundamental Subroutine: Greedy

We begin with Algorithm 1 that describes a simple greedy
procedure for outputting a matching: at each stage, the algo-
rithm picks one edge (x, y) such that the both x and y prefer
this edge to all of the other available edges. We now develop
some notation required to analyze this procedure.

Definition (Undominated Edges) Given a set E of edges,
(x, y) ∈ E is said to be an undominated edge if for all (x, a)
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and (y, b) in E, w(x, y) ≥ w(x, a) and w(x, y) ≥ w(y, b).

Algorithm 1: Greedy k-Matching Algorithm
input : Edge set E, preferences P (N ), k
output: Matching MG with k edges
while E is not empty (AND) |MG| < k do

pick an undominated edge e = (x, y) from E and
add it to MG;

remove all edges containing x or y from E;
end

Given a set E, let us use the notation E� to denote the set
of undominated edges in E. Finally, we say that an edge set
E is complete if ∃ some S ⊆ N such that E is the complete
graph on the nodes in S (minus the self-loops). We make the
following two observations regarding undominated edges

1. Every edge set E has at least one undominated edge. In
particular, any maximum weight edge in E is obviously
an undominated edge.

2. Given an edge set E, one can efficiently find at least one
edge in E� using only the ordinal preference information.
This is done by either finding two agents x and y which
are each others’ first choices, or if such a pair does not
exist, one can find a cycle in the “most-preferred” rela-
tionship (i.e., x1’s first choice is x2, x2’s first choice is
x3, ..., xi’s first choice is x1), in which case all the edges
in this cycle are undominated.

In general, an edge set E may have multiple undominated
edges that are not part of a cycle. Our first lemma shows that
these different edges are comparable in weight.

Lemma 2.1. Given a complete edge set E, the weight of any
undominated edge is at least half as much as the weight of
any other edge in E, i.e., if e = (x, y) ∈ E�, then for any
(a, b) ∈ E, we have w(x, y) ≥ 1

2w(a, b). This is true even if
(a, b) is another undominated edge.

Proof. Since (x, y) is an undominated edge, and since E is
a complete edge set this means that w(x, y) ≥ w(x, a), and
w(x, y) ≥ w(x, b). Now, from the triangle inequality, we get
w(a, b) ≤ w(a, x) + w(b, x) ≤ 2w(x, y).

It is not difficult to see that when k = N
2 , the output of

Algorithm 1 coincides with that of the extremely popular
greedy algorithm that picks the maximum weight edge in
each iteration, and therefore, our algorithm yields an ordi-
nal 2-approximation for the MWM problem. Our next result
shows that the approximation factor holds even for Max k-
Matching, for any k: this is not a trivial result because at any
given stage there may be multiple undominated edges and
therefore for k < N

2 , the output of Algorithm 1 no longer
coincides with that of the well known greedy algorithm. In
fact, we show the following much stronger lemma,

Lemma 2.2. Given k = αN
2 , and k∗ = α∗N

2 , the perfor-
mance of the greedy k-matching with respect to the optimal
k∗-matching (i.e., OPT (k∗)

Greedy(k) ) is given by,

1. max (2, 2
α∗

α
) if α∗ + α < 1

2. max (2,
α∗ + 1

α
− 1) if α∗ + α ≥ 1

Thus, for example, when α∗ = 1, and α = 2
3 , we get the

factor of 0.5, i.e., in order to obtain a half-approximation to
the optimum perfect matching, it suffices to greedily choose
two-thirds as many edges as in the perfect matching.

Proof Sketch. The proof is based on an iterative charging
algorithm that allows us to cover the edges in the opti-
mum matching (M∗) using the edges in MG. There are
two types of edges in M∗: those that intersect with edges in
MG (Type I), and those that are disjoint (Type II). For Type
I edges, the standard greedy argument proceeds by show-
ing that for every (x, y) ∈ M∗, ∃(x, z) ∈ MG such that
w(x, z) ≥ w(x, y). Our algorithm is much more efficient;
we show how to cover the type I edges using the minimum
possible number of edges in MG. For a Type II edge (x, y),
it may so happen that ∀(a, b) ∈ MG, w(a, b) is only half
of w(x, y); this is problematic if there are a large number
of type II edges. We tackle this by establishing strict upper
bounds showing that the number of Type II edges cannot be
too large when α+ α∗ ≥ 1.

Plugging in k = k∗ in the above lemma immediately
gives us the following corollary.

Corollary 2.3. Algorithm 1 is a deterministic, ordinal 2-
approximation algorithm for the Max k-Matching problem
for all k, and therefore a 2-approximation algorithm for the
Maximum Weighted Matching problem.

Fundamental Subroutine: Random

An even simpler matching algorithm is simply to form a
matching completely at random; this does not even depend
on the input preferences. This is formally described in Algo-
rithm 2. In what follows, we show upper and lower bounds
on the performance of Algorithm 1 for different edges sets.

Algorithm 2: Random k-Matching Algorithm
input : Edge set E, k
output: Matching MR with k edges
while E is not empty (AND) |MR| < k do

pick an edge from E uniformly at random. Add this
edge e = (x, y) to MR;

remove all edges containing x or y from E;
end

Lemma 2.4. (Lower Bound)

1. Suppose G = (T,E) is a complete graph on the set of
nodes T ⊆ N with |T | = n. Then, the expected weight
of the random (perfect) matching returned by Algorithm 2
for the input E is E[w(MR)] ≥ 1

n

∑
(x,y)∈E w(x, y).

2. Suppose G = (T1, T2, E) is a complete bipartite graph
on the set of nodes T1, T2 ⊆ N with |T1| = |T2| = n.
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Then, the weight of the random (perfect) matching re-
turned by Algorithm 2 for the input E is E[w(MR)] =
1
n

∑
(x,y)∈E w(x, y).

Proof. We show both parts of the theorem using sim-
ple symmetry arguments. For the complete (non-bipartite)
graph, let M be the set of all perfect matchings in E. Then,
we argue that every matching M in M is equally likely to
occur. Therefore, the expected weight of MR is

E[w(MR)] =
1

|M|
∑

M∈M
w(M) =

∑

e=(x,y)∈E

pew(x, y),

(1)
where pe is the probability of edge e occurring in the

matching. Since the edges are chosen uniformly at random,
the probability that a given edge is present in MR is the same
for all edges in E. So ∀e, we have the following bound on pe,
which we can substitute in Equation 1 to get the first result.

pe =
|MR|
|E| =

n/2

n(n− 1)/2
=

1

n− 1
≥ 1

n
,

For the second case, where E is the set of edges in a com-
plete bipartite graph, it is not hard to see that once again
every edge e is present in the final matching with equal prob-
ability. Therefore, pe =

|MR|
|E| = n

n2 = 1
n .

Lemma 2.5. (Upper Bound) Let G = (T,E) be a complete
graph on the set of nodes T with |T | = n. Suppose that S is
some superset of T and let M be any perfect matching on S.
Then, the following is an upper bound on the weight of M ,

w(M) ≤ 2

n

∑

x∈T
y∈T

w(x, y) +
1

n

∑

x∈T
y∈S\T

w(x, y)

Proof. Fix an edge e = (x, y) ∈ M . Then, by the triangle
inequality, the following must hold for every node z ∈ T :
w(x, z) + w(y, z) ≥ w(x, y). Summing this up over all z ∈
T , we get

∑

z∈T

w(x, z) + w(y, z) ≥ nw(x, y) = n(we).

Once again, repeating the above process over all e ∈ M ,
and then all z ∈ T we have

nw(M) ≤ 2
∑

x∈T
y∈T

w(x, y) +
∑

x∈T
y∈S\T

w(x, y)

Each (x, y) ∈ E appears twice in the RHS: once when
we consider the edge in M containing x, and once when we
consider the edge with y.

We conclude by proving that picking edges uniformly at
random yields a 2-approximation for the MWM problem.

Claim 2.6. Algorithm 2 is an ordinal 2-approximation al-
gorithm for the Maximum Weighted Matching problem.

Proof. From Lemma 2.4, we know that in expectation, the
matching output by the algorithm when the input is N
has a weight of at least 1

N

∑
x∈N ,y∈N w(x, y). Substitu-

ing T = S = N in Lemma 2.5 and M = OPT (max-
weight matching) gives us the following upper bound on
the weight of OPT , w(OPT ) ≤ 2

N

∑
x∈N ,y∈N w(x, y) ≤

2E[w(MR)].

3 Ordinal Matching Algorithms

Here we present a better ordinal approximation than sim-
ply taking the random or greedy matching. The algorithm
first performs the greedy subroutine until it matches 2

3 of the
agents. Then it either creates a random matching on the un-
matched agents, or it creates a random matching between the
unmatched agents and a subset of agents which are already
matched. We show that one of these matchings is guaranteed
to be close to optimum in weight. Unfortunately since we
have no access to the weights themselves, we cannot simply
choose the best of these two matchings, and thus are forced
to randomly select one, giving us good performance in ex-
pectation. More formally, the algorithm is:

Algorithm 3: 1.6-Approximation Algorithm for Maxi-
mum Weight Matching

input : N , P (N )
output: Perfect Matching M
M0 := Output of (Greedy) Algorithm 1 for k = 2

3
N
2 ;

B := N \ {Nodes matched in M0};
First Algorithm;
M1 = M0 ∪ (Output of Algorithm 2 on B, k = N

6 );
Second Algorithm ;
M2 := N

6 edges from M0 chosen uniformly at random;
Let A be the set of nodes in M0 \M2;
Eab := edges of complete bipartite graph (A,B);
M2 = M2 ∪

{
Output of Alg 2 with input Eab, k = N

3

}
;

Final Output;
Return M1 with probability 1

2 , M2 with probability 1
2 .

Theorem 3.1. For every input ranking, Algorithm 3 returns
a 8

5 = 1.6-approximation to the maximum-weight matching.

Proof. First, we provide some high-level intuition on why
this algorithm results in a significant improvement over the
standard approaches. Observe that in order to obtain a half-
approximation to OPT , it is sufficient to greedily select
2
3 (N/2) edges. Now, let us denote by Top, the set of 2

3N
nodes that are matched greedily. The main idea behind the
second Algorithm is that if the first one performs poorly
(not that much better than half), then, all the ‘good edges’
must be going from Top to Bottom (B). In other words,∑

(x,y)∈Top×B w(x, y) must be large, and therefore, the ran-
domized algorithm for bipartite graphs should perform well.

We now prove the theorem formally. By linearity of ex-
pectation, E[w(M)] = 0.5(E[w(M1)] + E[w(M2)]). Now,
look at the first algorithm: from Lemma 2.2 (α = 2

3 , α∗ = 1)
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we know that w(M0) ≥ 1
2w(OPT ), and using Lemma 2.4

(n = N
3 ), the expected weight of the random matching

on the remaining nodes is 3
N

∑
(x,y)∈B w(x, y). Therefore,

E[w(M1)] ≥ OPT
2 + 3

N

∑
(x,y)∈B w(x, y).

Next, look at the second algorithm: half the edges from
M0 are added to M2 which in expectation has a weight
of at least 0.5w(M0) ≥ 1

4w(OPT ). Let MAB denote the
random matching going ‘across the cut’ from Top to B.
Since half the nodes of Top are chosen uniformly at ran-
dom, we can use linearity of expectation and the second
part of Lemma 2.4 applied to (Top,B, Top × B), and get
E[w(MAB)] ≥ 1

2

∑
(x,y)∈Top×B

3
Nw(x, y).

Since Top ∪ B = N , we can apply our upper bound re-
sult of Lemma 2.5 with T = B and S = N , and get the
following inequality after rearranging:

3

2N

∑

(x,y)∈Top×B

w(x, y) ≥ w(OPT )

2
− 3

N

∑

x∈B
y∈B

w(x, y).

In summary, our lower bound on E[M2] can be expressed
as 1

2E[w(M0)]+E[w(MAB)] ≥ 1
4w(OPT )+ 1

2w(OPT )−
3
N

∑
x∈B,y∈B w(x, y). The final bound comes from adding

this quantity to the bound on E[M1] and multiplying by half.

Lower Bound Example for Ordinal Matchings

Complementing our main result, we provide examples that
highlight the limitations of settings with ordinal information.
As mentioned in the Introduction, different sets of weights
can give rise to the same preferences, and therefore, we can-
not suitably approximate the optimum solution for every
possible weight. We now show that even for very simple in-
stances, there can be no deterministic 1.5-approximation al-
gorithm, and no randomized 1.25-approximation algorithm.

Example (3) Consider an instance with 4 nodes having the
following preferences: (i) a : b > c > d, (ii) b : a > d > c,
(iii) c : a > b > d, (iv) d : b > a > c. Since the matching
{(a, d), (b, c)} is weakly dominated, it suffices to consider
algorithms that consider only M1 = {(a, b), (c, d)}, and/or
M2 = {(a, c), (b, d)}.

Now, consider the following two sets of weights, both of
which induce the above preferences but whose optima are
M2 and M1 respectively: W1 : all weights are 1 except
w(c, d) = ε, and W2 := w(a, b) = 2, and all other weights
are 1. The best deterministic algorithm always chooses the
matching M2, but for the weights W2, this is only a 3

2 -
approximation to OPT. Consider any randomized algorithm
that chooses M1 with probability x, and M2 with probabil-
ity (1 − x). With a little algebra, we can verify that just for
W1, and W2, the optimum randomized algorithm has x = 2

5 ,
yielding an approximation factor of 1.25. �

For the Max k-Matching problem, our results are tight.
For small values of k, it is impossible for any ordinal
algorithm to provide a better than 2-approximation fac-
tor. To see why, consider an instance with 2N nodes
{a1, b1, a2, b2, . . . , aN , bN}. Every ai’s first choice is bi and

vice-versa, the other preferences can be arbitrary. Pick some
i uniformly at random and set w(ai, bi) = 2, and all the
other weights are equal to 1. For k = 1, it is easy to see that
no randomized algorithm can always pick the max-weight
edge and therefore, as N → ∞, we get a lower bound of 2.

4 Extensions

Ordinal Algorithms without Metric Weights

We very briefly discuss the general case where the hidden
weights do not obey the triangle inequality. From our dis-
cussion in Section 2, we infer that Algorithm 1 still yields
a 2-approximation to the MWM problem as its output coin-
cides with that of the classic greedy algorithm. No determin-
istic algorithm can provide a better approximation; consider
the same preference orderings as Example 3 and the follow-
ing two sets of weights: (i) w(c, d) = ε, other weights are
1, and (ii) w(a, b) = 1, other weights are ε. The only good
choice for case (ii) is the matching M1, which yields a 2-
approximation for case (i). In the full version (Anshelevich
and Sekar 2015), we provide a more sophisticated example
that shows that no randomized algorithm can have a per-
formance guarantee better than 5

3 . For Max k-matching, the
situation is much more bleak; using a similar example as
before, we can show that no algorithm, deterministic or ran-
domized can provide a reasonable approximation factor if k
is small.

Applications to Clustering

In this section, we highlight the efficacy of our framework
by showing that it can be applied to derive good algorithms
for the Max k-sum clustering problem, where the objective
is the partition the N nodes into k equal sized clusters in or-
der to maximize the weight of the edges inside the clusters.
When k = N

2 , this reduces to Max Weighted Matching. We
discuss how to utilize our previous results to develop good
ordinal approximation algorithms for this problem, a formal
treatment can be found in the full version of the paper (An-
shelevich and Sekar 2015).

Consider the following algorithm that takes as input a
matching M and outputs k clusters. “Arbitrarily divide M
into k equal sized sets (with N

2k edges in each) and form
clusters using the nodes in each of the sets”. Extending our
framework, we can show that if M is an α-approximation to
the optimum matching, then the weight of above clustering
is at most a factor 2α smaller than the optimum clustering.
Using our ordinal algorithms to obtain M , we immediately
get a deterministic 4-approximation and a randomized 3.2-
approximation algorithm for Max k-sum. Furthermore, our
framework for matching can be leveraged to obtain good
ordinal approximation algorithms for other distance maxi-
mization problems on graphs such as Densest Subgraph and
Max Traveling Salesman (Kosaraju, Park, and Stein 1994).

Conclusion

In this paper we study ordinal algorithms, i.e., algorithms
which are aware only of preference orderings instead of the
hidden weights or utilities which generate such orderings.
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Perhaps surprisingly, our results imply that for matching, or-
dinal approximation algorithms are close to optimal indicat-
ing that for settings where it is expensive, or impossible, to
obtain the true numerical weights or utilities, one can use
ordinal matching mechanisms without much loss in welfare.
For the MWM problem, it may also be possible to improve
the deterministic approximation factor to be better than 2:
although this seems to be a difficult problem which would
require novel techniques. Finally, a long-term goal is to de-
velop ordinal approximation algorithms for other optimiza-
tion problems on graphs and more importantly identify what
kinds of problems admit good ordinal algorithms.
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