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Abstract

We introduce a class of extensive form games where
players might not be able to foresee the possible con-
sequences of their decisions and form a model of their
opponents which they exploit to achieve a more prof-
itable outcome. We improve upon existing models of
games with limited foresight, endowing players with the
ability of higher order reasoning and proposing a novel
solution concept to address intuitions coming from real
game play. We analyse the resulting equilibria, devising
an effective procedure to compute them.

Introduction

While game theory is a predominant paradigm in Artificial
Intelligence, the tools it provides to analyse real game play
still abstract away from many essential features. One of them
is the fact that in a wide range of extensive games of per-
fect information (e.g., Chess), humans (and supercomput-
ers) are generally not able to fully assess the consequence
of their own decisions and need to resort to a judgment call
before making a move. As acclaimed game theorist Ariel
Rubinstein puts it, “modeling games with limited foresight
remains a great challenge” and the game-theoretic frame-
works developed thus far fall short of capturing the spirit
of limited-foresight reasoning” (Rubinstein 2004, p.134).

On the contrary, the Al approach to game-playing builds
upon the assumption that complex extensive games like
Chess or Go are theoretically games of perfect information,
but this is only marginally relevant for practical purposes,
and the backwards induction solution is of little help in pre-
dicting how such games are actually played in practice - a
point also raised in Joseph Halpern’s AAMAS 2011 invited
talk "Beyond Nash Equilibrium: Solution Concepts for the
21st Century” (Halpern 2008). Decisions are instead taken
using heuristic search (e.g., monte-carlo tree search) under
various constraints, such as time or memory (Russell and
Wefald 1991) (Russel and Norvig 2012).

The problem. Search methods are a framework to handle
limited foresight and are widely used for decision-making
in real game-play, but a game-theoretic analysis of their
equilibrium behaviour is still missing. In particular, we lack
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the tools to analyse what will happen in complex exten-
sive games of perfect information where players are not able
to resort to backwards induction reasoning but to possibly
faulty and incomplete heuristic. What is more, the enormous
effort to construct players with “opponent modelling” in the
Al community (e.g., (Schadd er al. 2007) (Donkers et al.
2001)) still lacks solid game-theoretic foundations.

Our contribution. We introduce games in which play-
ers might not be able to foresee the consequence of their
strategic decisions all the way up to the terminal nodes and
evaluate intermediate nodes according to a concrete heuris-
tic search method. On top of that they can reason about other
players’ limited foresight and evaluation criteria: they are
endowed with higher-order beliefs about what their oppo-
nents can perceive of the game and how they evaluate it,
beliefs about what their opponents believe the others can
see and how the evaluate it, and so forth. To analyse these
games, we propose a new solution concept which combines
higher-order reasoning about players’ limited foresight and
evaluation criteria. The guiding principle for players’ be-
haviour is that each of them chooses a strategy in the game
she sees that is a best response to the belief about what the
other players can see and how they evaluate it. We show
constructively (Algorithms 1-4) that this solution concept
always exists (Theorem 8) and is a strict generalization of
other known ones, e.g., backwards induction. As we will
observe, the unbounded chain of beliefs underlying our ra-
tionality constraints can be finitely represented and - rather
surprisingly - effectively resolved (Proposition 12).

Related literature. In recent years an innovative tradi-
tion has emerged in game theory, aiming at capturing sit-
uations in which players are unaware of parts of the game
they are playing and might even think to be playing a dif-
ferent game from the real one. Halpern and Régo (Halpern
and Régo 20006), for instance, study models of unawareness
of elements of the game played (e.g., other players). Fein-
berg (Feinberg 2012) approaches similar problems from a
syntactic perspective. Simultaneously, the interplay between
belief and awareness in interactive situations is analysed in
a series of papers by Heifetz, Meier and Schipper (Heifetz
et al. 2006), (Heifetz et al. 2013a), (Heifetz et al. 2013b).

It should be noted that even though all these frameworks
abstractly allow to talk about unawareness of some terminal
histories in a game, none of them comes equipped with a



solution concept capturing limited foresight reasoning.

A framework that comes closest, perhaps, to this is Games
with Short Sight (Grossi and Turrini 2012), a well-behaved
collection of games with awareness, in which players of an
extensive game make choices without knowing the conse-
quences of their actions and base their decisions on a (pos-
sibly incorrect) evaluation of intermediate game positions.

Games with Short Sight (GSSs) have been studied in re-
lation with a solution concept called sight-compatible back-
wards induction: as players might not be able to calculate all
possible moves up to the terminal nodes, they play rationally
in a local sense, executing moves that are backwards induc-
tion moves in their own sight, therefore safely assuming their
opponents see as much of the game as they do.

However, sight-compatible backwards induction pre-
cludes any sort of opponent modelling, as players are not al-
lowed to have a non-trivial belief about what their opponents
perceive. Thus, the tools developed in (Grossi and Turrini
2012) to analyse GSSs only allow players to play approx-
imately or inaccurately, they don’t allow players to exploit
their opponents’ believed weaknesses. Besides, GSSs do not
employ concrete search methods and player’s evaluation cri-
teria are taken as given. Essentially, they come equipped
with a preference relation over all histories of the game.

We will avoid strong rationality requirements of this kind,
by introducing a significantly higher level of complexity
in players’ reasoning - notably their ability of forming an
“opponent model” - which, it turns out, still remains com-
putationally manageable. Also players’ preference relations
will not be taken as given, but derived from concrete search
methods.

An important research line in Al that has similarities with
our approach is interactive POMDPs (Gmytrasiewicz and
Doshi 2005), which is able to incorporate higher-order epis-
temic notions in multi-agent decision making, with focus on
learning and value/policy iteration. These graph-like models
are generally highly complex - in fact the whole approach
is known to suffer from severe complexity problems when it
comes to equilibrium analysis and approximation methods
have been devised to (partially) address them (Doshi and
Gmytrasiewicz 2009),(Sonu and Doshi 2015). Instead, we
present a full-blown game-theoretic model of limited fore-
sight that allows for higher-order epistemic notions and yet
keeps equilibrium computation within polynomial time.

Paper Structure. Section Games with limited foresight
recalls useful formal notation and definitions from the liter-
ature upon which we build and introduces the mathematical
structures we will be working on, Monte-Carlo Tree Games.
Section Rational beliefs and limited foresight studies the
higher-order extension thereof, Epistemic Monte-Carlo Tree
Games. Specifically, we go on and define a new solution
concept which takes this higher-order dimension into ac-
count and we then show the existence of the new equilib-
ria through an efficient (P-TIME) algorithm. Section Con-
clusion and potential developments summarises our findings
and points to new research avenues.
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Games with limited foresight

We start out with the definition of extensive games, on top
of which we build the models of limited foresight.

Extensive Games An extensive game form (Osborne and
Rubinstein 1994) is a tuple

(N7H7t72i70)

where [1] N is a finite non-empty set of players. [2] H is a
non-empty prefix-closed set of sequences, called histories,
drawn from a set A of actions. A history (ak)k:L._?K eH
is called terminal history if it is infinite or if there is no
a®*1 such that (a*)—1, k41 € H. The set of terminal
histories is denoted Z. A history £ is instead called quasi-
terminal if for each a € A, if (h,a) € H, then (h, a) is ter-
minal. If h € H is a prefix (resp., strict prefix) of b’ € H we
write h<h/ (resp., h<th’). With Ay, = {a € A | (h,a) € H}
we denote the set of actions following the history h. The
restriction of H* C H to h € H, ie., {(h,h') € H |
(h,h') € H'} is denoted H'|,. [3]t : H\ Z — Nisa
turn function, which assigns a player to each non-terminal
history, i.e., the player who moves at that history. [4] X;
is a non-empty set of strategies. A strategy of player i is
function o; : {h € H\Z | t(h) = i} — A, which as-
signs an action in Ay, to each non-terminal history for which
t(h) = 4. [5] o is the outcome function. For each strat-
egy profile o = [],.x(0:), the outcome o(c) of X is the
terminal history that results when each player ¢ follows the
precepts of ;.

An extensive game is a tuple & = (G, {u; }ien), where
G is an extensive game form, and u; : Z — R is a utility
function for each player ¢, mapping terminal histories to re-
als. We denote >—;C Z x Z the induced total preorder over
Z and BI(&) the set of backwards induction histories of ex-
tensive game &, computed with the standard procedure (Os-
borne and Rubinstein 1994, Proposition 99.2).

Sight Functions and Forked Extensions On top of the
extensive game structure, each player moving at the certain
point in the game is endowed with a set of histories that he
or she can see from then on.

Consider an extensive game £ = (G, {u;};en). A (short)
sight function for £ (Grossi and Turrini 2012) is a function

s: H\Z — 257\

associating to each non-terminal history h a finite non-empty
and prefix-closed subset of all the histories extending h, i.e.,
histories of the form (h,h’). We denote H[,= s(h) the
sight restriction on H induced by s at h, i.e., the set of his-
tories in player ¢(h)’s sight, and Z [}, their terminal ones. In-
tuitively, the sight function associates any choice point with
those histories that the player playing at that choice point
actively explores.

In (Grossi and Turrini 2012) the problem of evaluating
intermediate positions is resolved by assuming the existence
of an arbitrary preference relation over these nodes, which is
common knowledge among the players. What we do instead
is to introduce an extension of sight functions that models



the evaluation obtained by a concrete search procedure. The
idea is that in order to evaluate intermediate positions, each
player carries out a selection and a random exploration of
their continuations, all the way up to the terminal nodes. The
information obtained is used as an estimate of the value of
those positions. This is an encoding of a basic Monte-Carlo
Tree Search (Browne et al. 2012).

Let (&, s) be a tuple made by an extensive game £ and a
sight function s. Sight function s* is called a forked exten-
sion of sight function s if the following holds:

e s(h) C s*(h) i.e., the forked extension prolongs histories
in the sight it extends;

o s*(h)NZ = Z[;, for [* being the sight restriction calcu-
lated using s* as sight function, i.e., the forked extension
goes all the way up to some terminal nodes. '

A Monte-Carlo Tree Game (MTG) is a tuple S
(&,s,5%) where £ = (G, {u;}icn) is an extensive game,
s a sight function for £ and s* a forked extension of s. We
denote S[p= (G[n,{ui[n}icn) the sight restriction of S
induced by s at h, where G[}, is the game form G restricted
to H[, and the utility function u[p, : N x Z[p, — R is
constructed as follows. For each i € N, g € Z[},, we have:

= ui(z)

ui[n(g) avg

2€Z[},9<z

So the utility function at terminal histories in a sight is
computed by taking the average® of the histories contained
in its forked extension. Notice the following important point:
histories in the forked extension are truly treated as “ran-
dom” explorations, with no rationality assumptions whatso-
ever, in order to construct a preference relation over Z[y,.
Sight-restriction is applied to players, turn function, strate-
gies and outcome function in the obvious way. Summing up,
each structure (G, {u;[r}icn) is an extensive game, intu-
itively the part of the game that the player moving at h is
able to see, where the terminal histories are evaluated with a
monte-carlo heuristic.

The solution concept proposed in (Grossi and Turrini
2012) to analyse GSSs is sight-compatible backwards in-
duction: a choice of strategy, one per player, that is con-
sistent with the subgame perfect equilibrium of each sight-
restricted game. We can encode it as follows.

Definition 1 (Sight-compatible BI) Let S be a MTG. A
strategy profile o is a sight-compatible backwards induction
if at each h € H, there exists a terminal history z € Z[}

'A further natural constraint on forked sight functions is that of
monotonicity, i.e., players do not forget what they have calculated
in the past. Formally s is monotonic if, for each h,h’ such that
t(h) = t(h') and h <1 b/, we have that s*(h)|,» C s*(h'). Albeit
natural, this assumption is not needed to prove our results.

2 Averaging has the sole purpose of simplifying notation and
analysis, which carries over to any aggregator, with or without lot-
teries. Besides, it comes along with a few desirable properties, no-
tably the fact that forked extensions never miss dominated continu-
ations, i.e., moves that ensure a gain no matter what the opponents
do. For quantified restrictions on aggregators cfr. for instance (van
Benthem et al. 2011).
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such that ho(h) < z and z € BI(S[}). The set of sight-
compatible backwards induction outcomes of S is denoted
SCBI(S) C Z.

Thus, a sight compatible backwards induction is a strat-
egy profile o that, at each history h, recommends an action
a that is among the actions initiating a backwards induction
history within the sight of the player moving at h. This, no-
tice, is different from the backwards induction solution of
the whole game, because players evaluation of intermediate
nodes might not be a correct assessment of the real outcomes
of the game. Grossi and Turrini show that the SCBI solution
always exists, even in infinite games.

Despite their effort in modelling more procedural as-
pects of game play, though, GSSs still lack non-trivial oppo-
nent modelling, i.e., players allowing for their opponents to
“miss” future game developments and evaluate game posi-
tions differently (or any higher-order iteration of this belief),
while adjusting their behaviour accordingly.

The rest of the paper is devoted to extending MTGs with
more realistic but highly more complex reasoning patterns,
generalising both GSSs and SCBI. This, it turns out, does not
prevent us from having appropriate well-behaved solution
concepts which generalise classical ones, such as backwards
induction.

Rational beliefs and limited foresight

We now introduce an extension of MTGs, where players
are allowed for the possibility of higher-order opponent-
modelling, i.e., to have an explicit belief about what other
players can see and how they evaluate it, a belief about
what other players believe other players can see and how
they evaluate and so forth, compatibly with players’ sight.
We study a solution concept for these games and relate it to
known ones from the literature.

Players’ sights and belief chains

Let us introduce the idea behind higher-order opponent
modelling in MTGs using an example. We will then move
on to define the notions formally.

Example 2 (An intuitive solution) Consider the game
shown in Figure 1. Three players, Ann, Bob and Charles,
move at histories marked A, B and C, respectively. The
circle surrounding history A indicates what Ann believes
she can see from history A, which we write b(A). This,
intuitively, coincides what Ann can actually see, i.e., it
equals s(A), Ann’s sight at history A. What should Ann do
in this situation? This depends on what Ann believes will
happen next. If Ann knew this, her choice would only be a
maximization problem: finding the action that, given what
will happen in the future, gets her the maximal outcome,
according to her evaluation from A - which we write =4, .
To find out what Charles will do, Ann considers her belief
about what Charles can see from C, which we indicate
with b(A)b(C). Note this may have nothing to do with
what Charles actually sees from C, i.e., b(C). In Figure
1, for instance, Ann believes that Charles can only see d
from C. The question of what Charles will do is then easily
answered, even without considering his preference relation



b

Figure 1: A belief structure (modulo evaluations)

=A4C . what Ann believes Charles wants from history C.

Charles, according to Ann, will certainly go to d. The next
question is: what will Bob do? This, again, will depend on
b(A)b(B), the portion of Ann’s sight that Ann believes Bob
can see from B and on 545 | the preferences Ann believes
Bob has at B. But, at least according to Ann, Bob can also
see that Charles can make moves. So, for Bob to decide
what to do, he must first find out what Charles will do -
b(A)b(B)b(C) - according to iﬁfg. This is also an easy
task, since e is the only option. The choice at b(A)b(B)b(C)
is then determined, but so is then the choice at b(A)b(B).
Now all that is left for Ann to do is to solve her maximization

problem, determining the choice at b(A).

Now we concentrate on turning the intuitions in the exam-
ple into formal definitions. To do so, we introduce the notion
of history-sequence. A history-sequence is a formal device
that allows to represent higher-order beliefs about other op-
ponents, consistently with a players’ sight.

Definition 3 (History-Sequences) Consider a MTG S =
(((N,H,t,%;,0),{u;}ien), s, $*). A history-sequence ¢ of
S is a sequence of histories of the form (hg, hi, ha, -+ | hy)
such that

o hj € H[p, forevery j € {1,2,---k}, i.e., histories fol-
lowing hg in the sequence are histories within the sight of
the player moving at hg,

e h; <A hjyy foreach jwith0 < j <k, i.e., each history is
a strict postfix of the ones with lower index;

The underlying idea behind this definition is to consider
the higher-order point of view of the player moving at hg.
Expressions of the form (hg, 1, ha, - - - , hy) encode the be-
lief that player moving at hgy holds about the belief that
player moving at h; holds about the belief that player mov-
ing at hy holds ... about what the player moving at hy can
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see and what the evaluation is of the corresponding terminal
histories. We use Q to denote the set of history-sequences of
S.

Building upon the notion of history-sequence, we can de-
fine what we call sight-compatible belief structures, associ-
ating each history-sequence with a set of histories and an
evaluation over the terminal ones in this set.

Definition 4 (Sight-compatible belief structures) Let .S be a
MTG. A sight-compatible belief structure B for S is a tu-
ple (B, Bp) such that By is a function By : Q — 2H,
associating to each history-sequence (hg, h1, ho, -+, hg) a
set of histories in s(hg) extending hy, and Bp is a function
Bp : Q — 27 associating to each history-sequence q a set
of terminal histories extending histories in By (q). B satis-
fies the following conditions:

e (Corr) Vq € Q with q = (hg, hy,ha,- -+ , hi), we have
that By (q) = H [ p,|n, Whenever t(hy) = t(ho), i.e., the
belief of a player about what he himself can see is correct.

e Monof By)Vq,q € Q,if 3’ € By(q) sit., q =
(q,h'), then By (q') € Bg(q)|n, ie., if a player be-
lieves someone is able to perceive a portion of the game,
then he is able to perceive that portion himself.

e (Monof Bp)V q, q € Q,if 3 € By(q) sit., q =
(q,h'), then Bp(q') € Bp(q)|s, i.e., if a player believes
someone is able to explore a position, then he is able to
perceive that exploration himself.

For q = (ho, h1, ha, -+ , hi), Bp(q) denotes the higher-
order beliefs (in the order given by q) about how player mov-
ing at hy, is evaluating the terminal histories in B (q) under
the unique forked extension of s whose terminal histories are

BP(Q)- EBP(q)

K2

per player.

denotes the induced preference relation, one

The conditions above, we argue, are most natural con-
straints on sight-compatible higher-order beliefs. For the
time being we do not commit ourselves to any other con-
straints on either Bp or By, but we acknowledge that dif-
ferent contexts may warrant further constraints on both.

Definition 5 (Epistemic Monte-Carlo Tree Games) An
Epistemic Monte-Carlo Tree Game (EMTG) is a tuple
S = (S,B) where S is a MTG and B a sight-compatible
belief structure for S.

An EMTG is obtained by assigning a sight-compatible
belief structure to a MTG. One should observe how sight-
compatible belief structures induce, at each history, a whole
collection of extensive games, one for each possible history-
sequence. For instance, the one resulting from Ann’s sight
and her evaluation, the one resulting from Ann’s belief about
Bob’s sight and his evaluation and so forth. Structures of the
form S (B(q) can now be naturally defined, as restrictions in-
duced by B(q) on S, adopting By (q) as sight-restriction,
and Bp(q) as evaluation function, with the induced prefer-
ence relation.

Analysing EMTGs

Example 2 has illustrated a natural notion of solution in an
epistemic MTG, where each player calculates a best action



in his or her sight restriction according to his or her evalu-
ation criteria, recursively computing both the sight and the
evaluation criteria of the other players. This is the idea be-
hind the solution concept we propose for EMTGs.

Definition 6 (Nested Beliefs Solution) Ler S = (S, B) be
an EMTG and let q (ho,h1,--- ,hg) be a history-
sequence. A strategy profile o [gq) is a Nested Beliefs Solu-
tion (NBS) of S[B(g) if

e ateach h' € H[g,, 4 that is neither terminal nor quasi-
terminal in H[g,, (g, there exists a terminal history z €
Z By (q.n) Such that h'o g, (g (k') < z and z is the out-
come of a Nested Beliefs Solution of S[gq,n');

e at each W' € H|[g, (g that is a quasi-terminal history
B
of H[g, (), we have that ho|g, g (h') it(;,()q)
Wo'lg,@q(h') for —any that
o' [Bu() (W) # 0B (@) (W)-

We denote NBS(S[g(q)) the set of NBS outcomes of
(S, q). The composition of such outcomes yields our game
solution.

Intuitively, a Nested Beliefs Solution of some game
S[B(q) is a best response to all Nested Belief Solutions at
deeper level, e.g., of each S[g(q,x/). Notice that because of
the properties of sight functions the depth iteration is bound
to reach a fixpoint. The composition of Nested Beliefs Solu-
tions constitutes a rational outcome of the game.

o' IBy(q) Such

Definition 7 (Sight-Compatible Epistemic Solution)

Let S = (S,B) be an EMTG. A strategy profile o is a
Sight-Compatible Epistemic Solution (SCES) if at each
h € H \ Z, there exists a terminal history z € Z[g,, ()
such that ho(h) < z and z € NBS(S[B1))-

We denote SCES the set of Sight-Compatible Epistemic
Solutions of S.

A SCES is the composition of best moves of players at
each history. Each such move is a best response to what the
current player believes other players will do and this belief
is supported by all higher-order beliefs, compatible with the
player’s sight, about what the opponents can perceive and
how they will evaluate it.

Computing rational solutions Algorithm Sol(S) below
takes as input an EMTG and returns a path obtained by
composing locally rational moves, compatible with players’
higher-order beliefs about sights and evaluation criteria of
their opponents. Algorithms 1 calls Algorithm 2, which in
turn calls Algorithms 3 and 4. For technical convenience,
we define VLP to be a dummy always dominated history.
The following theorem shows that every EMTG has a
Sight-Compatible Epistemic Solution. Its proof consists in
constructively building the desired strategy profile.

Theorem 8 (Existence Theorem) Let S = (S,B) be an
EMTG. There exists a strategy profile o that is a Sight-
Compatible Epistemic Solution for S = (S, B).

Proof Sketch: Let H be the set of histories in S. For every
h € H set o(h) := a for a < h* and h* be the outcome

634

Algorithm 1: Solution of S

1 Sol(S)
Input: An EMTG S = (5,B)
Output: A terminal history h of S

2 begin

3 h ¢

4 while h ¢ Z do

5 | h < (h,BSBI(S,h)); /* NBS at h */

6 Return h;

Algorithm 2: The current best move

1 BSBI(S, h)
Input: A game S = (5, B), and a history h
Output: NBS move a at h

2 begin

3 for each b/ € By (h) and h' # h do

4 L Continuations[h'] <— NBS(S, (h,h'));

/* Store NBS actions in an array,
5 Return BB(S, (h), Continuations);

one for each h' x/

returned by Algorithm 1 on input S[g(). That the Algo-
rithm returns a profile o(c) such that o satisfies the condi-
tions of Definition 6 at each history is a lengthy but relatively
straightforward check, which we omit for space reasons. O

Theorem 9 (Completeness Theorem) Ler S = (S, B) be
a finite EMTG and let o be a Sight-Compatible Epistemic
Solution for S = (S, B). There exists an execution of Algo-
rithm 1 returning o(o).

Proof Sketch: Let S = (5, B) be a finite EMTG and let o
be a Sight-Compatible Epistemic Solution for § = (.5, B).
Now choose an execution of Algorithm 1 that is compati-
ble with the action selection that, at each history sequence,
is made by o, which exists by construction. The finiteness
assumption ensures termination. O

The following observations illustrate the relation between
SCES and the other two relevant solution concepts in the
literature: SCBI (Grossi and Turrini 2012) and classical BI
(Osborne and Rubinstein 1994). They specify precise condi-
tions under which our solution concept collapses into these
two.

Proposition 10 Ler S = (S,B) be an EMTG. If for any
history-sequence q = (hg, hi, -+ , hy) and any history ' €
Bu(a), Bu(a,h') = By(q)lw, and Bp(a) = Bp(ho),
then SCES(S)=SCBI(S).

So, if the current player believes the following players’
sights and evaluation criteria, together with their beliefs
about other players’ sights and evaluation criteria, are co-
herent with his, then SCES is equivalent to SCBIL.

We know that the solution concept Bl is a special case of
SCBI, and therefore also of SCES.



Algorithm 3: Beliefs of moves of following players

Algorithm 4: Best Branch

1 NBS(S,q)
Input: A game S = (S, B), and a history sequence
q= (hOa hla h23 T 7h'k)
Output: An action a following hy,
begin
if hy, € Z’VBH(q) then
| Return ¢;
else
for each hk+1 S BH(q) and hk—i—l 7é hy do
L Continuations[hy1] < NBS(S, (q, hi+1));

N A B W N

/* Store NBS actions in an
array, one for each hgpy1 */

8 Return BB(S, q, Continuations);

Proposition 11 Ler S (S,B) be an EMTG. If, for
any history-sequence = (hg,h1,- -+, hg), we have that
Br(q) H|p, and that Bp(q) Py, then
SCES(S)=BI(S).

The above result says that SCES coincides with standard
backwards induction solution if, at each history, we have that
higher-order beliefs about sight and evaluation criteria are
coherent with the real subgame the current player faces and
the preference relation the current player holds.

Despite the crucial presence of higher-order beliefs about
sight-restricted games, we can show the following fairly sur-
prising complexity result.

Proposition 12 Given a finite EMTG S, the problem of
computing a SCES of S is P-TIME complete.

Proof sketch: For the upper bound, the key fact is that algo-
rithm Sol(S) runs in time O((nlogn)?), with n being the
cardinality of the set of histories of S. P-TIME hardness is a
consequence of (Szymanik 2013, Theorem 2), which shows
that BI is P-TIME hard, and Proposition 11.

As a side remark, using a similar argument and Proposi-
tion 11 we are able to show that computing SCBI solutions
is P-TIME complete.

Conclusions and potential developments

We proposed a model for decision-making among resource-
bounded players in extensive games, integrating an analyt-
ical perspective combining game theory with a procedural
perspective coming from Al. In particular we have studied
players with limited foresight which can reason about their
opponents, constructing beliefs about their limited abilities
for calculation and evaluation.

Our work has relations with epistemic game theory (Perea
2012). Concretely, we introduced explicit beliefs as unique
sub-trees consistent with a given history-sequence. We could
have used probabilities instead, assigning a distribution over
all sub-trees consistent with it, lifting expected utility ac-
cordingly. Our simpler choice is sufficient to define the de-
sired solution concept and keeps the complexity manage-
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1 BB(S, q, Continuations)/ = Compose chosen moves
(in array Continuations), thus get all
paths following hi and choose a best move
following hi */

Input: A game S, a history sequence q, an array
Continuations
Output: A best move following h, determined by
Continuations

2 begin

bestpath < VLP; /+ VLP is a dominated

history for all players =*/

for each (hi,a) € By (q) do /% a is any

action following hg, next we choose an

optimal one in Bg(q) */

w

~

5 TP < (hy,a);

6 while Continuations[TP) is defined in array
Continuations do

7 | TP < (TP, Continuations[TP));

8 if TP *1{3(’;8) bestpath then

9 bestpath < TP,

10 L bestmove < a;

11

Return bestmove;

able. This is a critical point for concrete implementation, cf.
(van Den Herik et al. 2005).

We have not investigated the connection between EMTGs
and the models in (Halpern and R&go 2006). We expect the
correspondence for GSSs (Grossi and Turrini 2012, Th.3)
can be lifted to EMTGs, using an iteration of the aware-
ness functions Aw to simulate the believed game at a his-
tory sequence. We stress, though, that the specific features
of EMTGs give them an independent conceptual and techni-
cal interest. The emphasis on limited foresight (as opposed
to perceiving a novel extensive game in (Halpern and Régo
2006)) makes them a natural candidate for addressing Ru-
binstein’s modelling challenge (Rubinstein 2004), while still
supporting an efficient algorithm to calculate the equilibria.

Finally, SCES is general enough to work for any search
procedure yielding a sight and an evaluation of non-terminal
histories with the addition of optional constraints due to the
search method used. On-line generation of sights and eval-
uations starting from more compact game-representations
can have impact on the overall complexity of the algorithm.
We leave this interesting point open for future investigation.
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