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Abstract

With the rapid development of urbanization and public trans-
portation system, the number of traffic accidents have signifi-
cantly increased globally over the past decades and become a
big problem for human society. Facing these possible and un-
expected traffic accidents, understanding what causes traffic
accident and early alarms for some possible ones will play a
critical role on planning effective traffic management. How-
ever, due to the lack of supported sensing data, research is
very limited on the field of updating traffic accident risk in
real-time. Therefore, in this paper, we collect big and hetero-
geneous data (7 months traffic accident data and 1.6 million
users’ GPS records) to understand how human mobility will
affect traffic accident risk. By mining these data, we develop
a deep model of Stack denoise Autoencoder to learn hierar-
chical feature representation of human mobility. And these
features are used for efficient prediction of traffic accident
risk level. Once the model has been trained, our model can
simulate corresponding traffic accident risk map with given
real-time input of human mobility. The experimental results
demonstrate the efficiency of our model and suggest that traf-
fic accident risk can be significantly more predictable through
human mobility.

Introduction

The rapid development of modern cities has resulted in the
availability of transportation systems in a wide range and
will continue to develop. The boom of transportation vehi-
cles causes a series of problems which need to be effectively
and promptly solved by governments. Some of them have
been alleviated, such as the traffic jam. The real-time traffic
volume data and vehicle navigation system based on GPS
will enable the drivers to check the traffic information and
select a less congested route to avoid traffic jams. While
another problem, traffic accident, is not readily contained.
World report on road traffic injury prevention, published by
World Health Organization in 2004, mentioned that, of all
the systems with which people have to deal every day, road
traffic systems are the most complex and the most danger-
ous. Globally, an estimated 1.2 million people are killed in
road crashes each year and 50 million are injured. With such
an enormous suffering from traffic accidents, understanding
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Figure 1: Can we analyze traffic accident like traffic jam
through human mobility data? By mining big and hetero-
geneous data, we aim to understand and develop a general
model to estimate traffic accident risk. With the input of real-
time GPS data, our model can simulate traffic accident risk
on a large scale.

what causes traffic accident is crucial to creating a safer road
environment.

There are many factors that will lead to a traffic accident,
like driver behavior, weather and road condition. Despite
some studies have been focusing on the correspondence be-
tween traffic accident and these factors, it is greatly difficult
to reveal dynamic change of accident risk with these fac-
tors. To be more specific, driver behavior varies from person
to person, which is hard to observe in real-time and on a
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Figure 2: Deep models for traffic accident inference. We extract hierarchical feature representation of meshed human mobility
data from Stack denoise Autoencoder (SAAE), for a more efficient and precise prediction of risk levels in supervised learning.

large scale. In addition, weather condition usually can not
be precisely depicted in the traffic accident scene. Further-
more, road condition is comparatively too stable to show the
risk change in a dynamic perspective.

Our problem is, can we estimate traffic accident risk just
as traffic jam through real-time location data? We know that
commercial and entertainment areas always have higher risk
of suffering traffic accidents in most cases, which can be re-
lated to the land use, or ultimately, the human activities. The
reason is that these areas always have higher human density
and larger population flow. Recently, people’s mobile phone
data, or GPS trajectories have emerged and increased explo-
sively. This “Big Data” of explosive increasing human mo-
bile sensing data enable us to analyze traffic accident from
a new perspective. Imagine that an application for traffic ac-
cidents risk estimation is developed, which disseminates the
information to drivers and they can easily acquire an acci-
dent risk map on the smart phone or other mobile devices
like a traffic jam map, then they will be able to avoid traffic
accidents more easily.

Based on these expectations, in this paper, we collected
big and heterogeneous data to understand how human mo-
bility will affect traffic accident risk (as shown in Figure 1).
Human mobility predetermines traffic accident, for crashes
occur between moving vehicles and moving people. How-
ever, by mining these data, we find that traffic accident is
also affected by other complex factors which makes it less
predictable under given human mobility condition. Hence,
we infer the risk of suffering a traffic accident instead of
whether traffic accident will happen or not. We preprocess
our traffic accident data and human mobility data, making
them more suitable for our task and model training. Then
we construct a deep learning architecture and model it with
defined human mobility and risk level. Our model utilizes
Stack denoise Autoencoder (SdAE) to learn hierarchical fea-
ture representation of human mobility. This is more efficient
than original human mobility data in supervised learning of
predicting risk level. Finally, with the input of real-time hu-
man mobility data, our model simulates large-scale traffic
accident risk on a large scale and highlights regions with
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high risk.
The main contributions of this paper can be summarized
as follows:

e To the best of our knowledge, this paper is the first attempt
to estimate traffic accident risk in a city or national scale.

e We construct a deep learning architecture, and the training
data is big and heterogeneous (7 months traffic accident
data and 1.6 million users’ GPS records).

e Our simulation of traffic accident risk is effective, and can
be applied to many traffic safety projects in real world.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces our big and heterogeneous data source used
in this paper. Section 3 illustrates our deep learning approach
for traffic accident risk prediction. Section 4 shows the ex-
periment and its evaluation. Section 5 introduces some stud-
ies related to the present research. Section 6 gives some con-
clusions of this paper and discusses the limitation and future
work.

Big and Heterogeneous Data

In this research, we have collected big and heterogeneous
data, and their characteristics can be summarized as follows:

e Traffic accident data: we have collected about 300 thou-
sand records of traffic accidents throughout Japan from
January 1, 2013 to July 31, 2013. Each record has at-
tributes including occurrence location and hourly occur-
rence time, severity level, etc. Severity can be graded as
three levels, that is, slight injury (level 1), heavy injury
(level 2) and fatal (level 3).

e Human mobility data: we have collected GPS record of
approximately 1.6 million anonymous users throughout
Japan from January 1, 2013 to July 31, 2013. By default,
the position information on the users’ mobile phones is
returned every 5 minutes. However, data collection is
affected by several factors, such as failure of signal or
power, which would lead to the incompletion of user’s
GPS records. Still, it means people are in active when a



50 100 150 200 250 300 400 450 500 550 600 650 700 750 800 900 950 1000

© o N e o A W N =

Figure 3: Frequency matrix between human mobility and
traffic accident risk level. Horizontal axis is density of hu-
man mobility, and vertical axis is traffic accident risk level.
Deeper blue indicates higher frequencies.

GPS record is uploaded. This is more useful in accident
analysis, for the reason that when people keep staying in-
door, it is much less possible that traffic accident happen.
This speciality make us do not need to consider day time
and night separately.

Deep Models for Inference

To infer traffic accident, a direct way is to predict whether
it will happen or not. However, by performing some empir-
ical analysis on traffic accident data, we have found that it
is difficult to forecast the occurrence deterministically under
given conditions since traffic accidents are caused by com-
plex factors. Some of these factors such as driver’s maneu-
ver and distraction cannot be observed in advance. There-
fore, we have decided to diagnose the risk of traffic acci-
dents. Based on the thought of detecting traffic accident hot
spots, risk of traffic accident can be reflected by frequency
and severity. Hence, we define risk level as the sum of sever-
ity in each traffic accident record. For example, risk level is
3 if three slight injury accidents have happened or one fa-
tal accident has happened in a region. Regions with highest
risk level can be regarded as hot spots which we concern the
most.

Traffic accidents are usually more possible to happen with
more movement of people, like walking, biking or driving,
which can be reflected by the density of GPS records and
collectively known as human mobility. Hence, in this sec-
tion, we aim to model and understand how human mobility
will affect traffic accident risk, and use trained model to pre-
dict traffic accident risk with real-time data. The procedure
of our approach is depicted in Figure 2. First we do some
preprocess on our dataset, then use stack denoise autoen-
coder to infer traffic accident risk based on human mobility
data.

Preliminary

Before we begin to analyze how to do traffic accident in-
ference with location and time information, a proper data
structure is needed. When analyzing such spatial and tem-
poral data, the use of matrix is widely accepted as the first
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choice. Therefore, to conveniently process traffic accident
data and human mobility data, in the first place, datasets are
discretized based on these spatial and temporal information.
For temporal dimension, in order to match the time interval
of traffic accident data, we select one hour as the time in-
terval and divided one day into 24-slices. For spatial dimen-
sion, we mesh location into Ad;gcand Ady,,. To guarantee
each region is an approximate 500mx500m square, which
is a proper area for traffic accident analysis, we experimen-
tally select Adj,: = 0.004 and Ad;,,, = 0.005 on a map of
Tokyo. Therefore, we have a time index ¢ and region index
r for each element in the constructed matrix.

After we have obtained grid data, if traffic accident hap-
pened n times in region r at time ¢, we define risk level g,

as:
n
grit = § Sv',,r,t
1=1

where S; ;. ;+ is the severity of 4 -th traffic accident.

For human mobility, if we just use one hour interval to
represent it, the time span will not coincide with risk level.
Fortunately, although human mobility changes every hour,
it still follows a stationary pattern except some special days.
Therefore, we define d,. ; as the mean density of GPS records
in region r at the same hour ¢ of different days, and utilize it
to represent human mobility.

By calculating our datasets, we get a frequency matrix
between g, and d,; as shown in figure 3. With this fre-
quency matrix, we can simply find a mapping between hu-
man mobility and risk level. Such mapping can be learned
by training a Decision Tree model (Quinlan 1987), which
is a flowchart-like structure and decides risk level based on
which interval human mobility fall into. However, as human
mobility is complex, such simple model cannot give a sat-
isfactory prediction. Performance can be further improved
by using deep learning method, because it can learn a more
effective feature representation.

)

Risk Prediction with SAAE Model

People may move a long distance in one hour and human
mobility of adjacent regions should also be considered hav-
ing effect on traffic accident risk. Therefore, human mobility
matrix d,p, ,; with size (2m+1) x (2m+1) and centered on
region 7, should be used instead of single region. It makes
analysis of human mobility become a much more complex
problem. That’s why we intend to utilize Stacked denoise
Autoencoder (SdAE), which is a deep network that denoise
autoencoder is the basic block to extract hierarchical feature
representation.

Denoise Autoencoder: Bengio (Bengio 2009) has given
an overview of autoencoder. Consider a set of d,, ¢, an
autoencoder first maps them to a hidden representation y,
which is called encoder procedure and expressed by the fol-
lowing equation:

y = S(de,r,t + b) 2

where s is non-linear function and considered as logistic sig-
moid function in this paper, W is a weight matrix and b is
an bias vector. The latent representation y is then used to
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Figure 4: A deep architecture model example with SAAE
consisting of two denoise autoencoder layers and a logistic
regression layer as predictor.

reconstruct z which have the similar value as d,, .+, which
is called decoder procedure. In other words, given the code
y, we can get the prediction z of human mobility d,, ;¢
through an autoencoder. The reconstruction can be shown
as:

72— s(W'y + 1) 3)

where W’ is decoding weight matrix and b’ is decoding bias
vector. These model parameters can be optimized by mini-
mizing reconstruction error L(d,, ,¢,z) as:

0 = argmin L(dy, ¢, 2)

= argmin||d, .+ —2z|[> (@)
) 0

where 6 is denoted as model parameters.

Denoise autoencoder is based on autoencoder. The differ-
ence between them is that train samples are added into noise
in denoise antoencoder and forced it to learn representation
of samples without noise. Hence, the learned representation
is more robust and makes denoise antoencoder perform bet-
ter than normal autoencoder. GPS system is easily affected
by buildings and uploaded data always deviate from right
location with noise. Therefore, denoise autoencoder is more
suitable than autoencoder in our work. Some feature exam-
ples extracted from denoise autoencoder to represent d,,, , ¢
can be seen in Figure 2.

Stack denoise Autoencoder: Denoise autoencoders can
be stacked to form a deep network by feeding the latent
representation of the denoising autoencoder found on the
layer below as input to the current layer. BackPropagation
method is widely used in training traditional neural net-
works, which can also be applied to train the deep net-
work with the gradient-base optimization technique. Un-
fortunately, this approach has bad performance for lost oc-
curred in each layer and error cannot be correctly propa-
gated. Recently, a greedy layer-wise algorithm (Bengio et
al. 2006) has been proven its efficiency in training deep
networks. The first key point is unsupervised pre-training
through a bottom-up way. Each layer is trained as a denois-
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ing autoencoder by minimizing the error calculated as Equa-
tion (4) in reconstructing its input. Once the first k layers are
trained, it can go on training the k£ + 1 -th layer because the
code or latent representation is now computed from the layer
below.

Once all layers are pre-trained, we go onto the risk predic-
tion stage. To use the SAAE network for prediction, a stan-
dard predictor should be added on the top layer. In this paper,
we put a logistic regression layer on top of the network as
predictor. And the second key point of greedy layer-wise al-
gorithm, is fine-tuning the models parameters in a top-down
direction to obtain better results at the same time. The SAAE
plus the predictor comprise whole deep architecture model,
which is illustrated in Figure 4.

Model learning: As our target is using human mobility
to get a prediction g of risk level, we utilize labelled sample
set {(d™), gy, (AP, ¢, ..., (AU, gU))} to train SAAE
model. This is a supervised learning procedure and can be
stated as follows:

1) Train the first layer as an autoencoder by minimizing
reconstruction error (defined as Equation (4) in this paper)
of the raw input d.

2) Train the next layer as an autoencoder, taking the out-
put of former layer as the input.

3) Iterate step 2) for the desired number of layers.

4) Use the output of the last autoencoder layer as input to
a supervised layer and initialize its parameters randomly or
by supervised training.

5) Fine-tune the parameters of all layers using labelled
sample set {(d™®), M), (d®, ¢@), ..., (dD), g())} in a su-
pervised way.

Experiment

From our traffic accident data and human mobility data, we
randomly selected 80% of the data for the model training,
and used the remaining 20% data for testing and evalua-
tion. For SAAE architecture parameters, we chose the hidden
layer size from 1 to 4, and the number of hidden units from
{20, 40, 60, 80, 100}, finally we obtained the best architec-
ture consisting of three denoise autoencoder layers, and the
number of units in each layer is [40, 40, 40], respectively. In
this section, we present experimental results and evaluation
of model for traffic accident risk simulation.

Simulation Results

To evaluate the performance of our model, here we select
human mobility data at different time, and figure 5 shows
the visualization of human mobility data and corresponding
results of our simulator.

In under figures of figure 5, inside the circles is the major
commercial and business area of Tokyo. We can see regions
which are highlighted as facing high traffic accident risk in
our simulation are intensive in this circle. Outside the circle,
high traffic accident risk regions distribute with regularities,
which we can see outline along arterial roads. In particular,
the roads connecting central Tokyo and the city of Yoko-
hama have higher risks in the southern part. Because of the
high land prices in Tokyo, many people who are working
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Figure 5: Visualization of simulation results. These figures show the example of input and our simulation results in selected time.
Upper figure(a)~(d) are the visualization of human mobility data, and under figure(e)~(h) are the corresponding simulation
results of traffic accident risk map. We can easily see the dynamic changes of traffic accident risk with human mobility data.

in the central business area of Tokyo are commuting from
the city of Yokohama. From simulation results of 9 a.m. and
6 p.m., which are the rush hours and many people drive to
work or drive home, we can notice that high traffic accident
risk is more intensive in this connection region than other
road network regions.

When time goes into the night, most people finish their
public activities and stay at home. From the simulation re-
sults of 0 a.m. and 9 p.m., we can see that inside the circle,
there are still many regions predicted as high traffic accident
risk. The reason for this is that people are enjoying nightlife
at pubs or nightclubs near the central district. Traffic acci-
dent risk dramatically decreases outside the circle, and we
can see more obviously that these high traffic accident risk
regions are along arterial roads. Interestingly, the accidents
risk of the arterial roads connecting central Tokyo and Yoko-
hama is low at 0 a.m because most people are at home at this
time. Conclusively, our simulation results coincide with the
characteristics of traffic accidents of Tokyo observed so far.

Performance Evaluation

Evaluation metrics: To evaluate the accuracy of the simula-
tion results, we calculated prediction error with three differ-
ent metrics, which are the mean absolute error (MAE), the
mean relative error (MRE), and the root-mean-square error
(RMSE). They are defined as:

I -
MAE = gz l9: — il
i=1

&)

342

1 gi — Gil
MRE = — ) = 2% 6)
1 n 2
RMSE = — i —3i)? 7
~ D> (9 —a) (7)

=1

Baseline models: Besides Decision Tree (DT) method
mentioned in Section 3, we also considered other two meth-
ods which are widely used in classification for comparison.
(1) Logistic Regression (LR): Logistic regression measures
the relationship between input and target by estimating prob-
abilities using a logistic function (Walker and Duncan 1967),
while multinomial logistic regression deals with situations
where the outcome can have three or more possible types.
(2) Support Vector Machine (SVM): An SVM model treats
samples as points in space, and maps samples into separate
categories with a clear gap as wide as possible. And new
samples are classified based on which side of the gap they
fall on (Cortes and Vapnik 1995).

Performance evaluation:We have compared the perfor-
mance of our model with the performance of the baselines,
and Table 1 shows their MAE, MRE and RMSE values. This
table indicates that our model performs better and the pre-
diction error is smaller in comparison to these competing
methods.



Table 1: Performance Evaluation

Algorithm MAE MRE RMSE
Our Model 0.96 0.39 1.00
DT 1.18 0.60 1.41
LR 1.21 0.40 1.41
SVM 1.40 0.43 1.73
Related Work fic accident risk on large scale and in real-time, which can

With the rise of urban computing in recent years, human mo-
bility data have been widely used in various fields, such as
human emergency mobility following disasters (Song et al.
2015; 2014), modeling population movements for very large
populations (Song et al. 2010), and understanding basic life
pattern of people flow (Fan, Song, and Shibasaki 2014). In
addition, some researchers are focusing on social networks
through human mobility (Eagle, Pentland, and Lazer 2009;
Zhu et al. 2015) and recommend location-based services
(Lian et al. 2014; Zhang et al. 2015). Some other interesting
works, which are similar as understanding traffic accident
risk from human mobility, are applied to traffic density pre-
diction (Castro, Zhang, and Li 2012), diagnose noise in New
York City (Zheng et al. 2014b), and infer gas consumption
and pollution emission (Shang et al. 2014). Zheng (Zheng et
al. 2014a) provided a comprehensive review on the concept,
recent researches and challenges of urban computing.

Since the concept of deep learning has been proposed
(Hinton, Osindero, and Teh 2006; Hinton and Salakhutdinov
20006), it has been widely used in image processing (Dean
et al. 2012), acoustics processing (Hinton et al. 2012) and
natural language processing (Collobert and Weston 2008).
More recently, some researchers have tried to apply deep
learning to intelligent transportation system, and proved
its efficiency in traffic flow prediction (Huang et al. 2014;
Lv et al. 2015). Another interesting application of deep
learning is using deep hybrid model to do weather forecast-
ing (Grover, Kapoor, and Horvitz 2015).

Recently, a number of researches on analyzing traffic ac-
cident have been proposed (Xie and Yan 2013; Anderson
2009; Bil, Andrasik, and JanoSka 2013), mainly focusing on
hot spot detection of traffic accidents. However, they cannot
meet requirements of knowing the real-time traffic accident
risk in the neighboring roads in order to select a safer route.
Research on dynamic prediction of traffic accident risk on a
large scale is very limited due to the lack of support from hu-
man mobility data. Thus, in this research, we firstly propose
a general model of traffic accident risk prediction that can
be applied to simulate real-time risk with updates of human
mobility data.

Conclusion

In this paper, big and heterogeneous data on traffic accidents
and human mobility in Japan have been collected. By min-
ing these big data, how human mobility affects traffic ac-
cident risk has been investigated. We have utilized a deep
architecture to extract features from human mobility data,
and trained a general prediction model for simulating traf-
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be applied to early warn people of possible traffic accident
risk for the sake of a safer route. The experimental results
demonstrate the efficiency of our simulation model.

However, our study has several limitations owing to the
complexity of traffic accidents. Human mobility data are not
enough to construct a satisfactory model for the prediction of
risks. We will combine human mobility data with other data
like land uses and POI (points of interest) data to improve
the present model.
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