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Abstract

Cross-modal hashing (CMH) is an efficient technique for the
fast retrieval of web image data, and it has gained a lot of at-
tentions recently. However, traditional CMH methods usually
apply batch learning for generating hash functions and codes.
They are inefficient for the retrieval of web images which usu-
ally have streaming fashion. Online learning can be exploited
for CMH. But existing online hashing methods still cannot
solve two essential problems: efficient updating of hash codes
and analysis of cross-modal correlation. In this paper, we pro-
pose Online Cross-modal Hashing (OCMH) which can effec-
tively address the above two problems by learning the shared
latent codes (SLC). In OCMH, hash codes can be represented
by the permanent SLC and dynamic transfer matrix. There-
fore, inefficient updating of hash codes is transformed to the
efficient updating of SLC and transfer matrix, and the time
complexity is irrelevant to the database size. Moreover, SLC
is shared by all the modalities, and thus it can encode the
latent cross-modal correlation, which further improves the
overall cross-modal correlation between heterogeneous data.
Experimental results on two real-world multi-modal web im-
age datasets: MIR Flickr and NUS-WIDE, demonstrate the
effectiveness and efficiency of OCMH for online cross-modal
web image retrieval.

Introduction

Web image is typical multi-modal data, which consists
of multiple information type, such as visual contents and
text tags. Cross-modal hashing (CMH) (Song et al. 2013;
Zhang and Li 2014; Xie et al. 2015) has gained a lot of atten-
tions for the fast retrieval of web image data. CMH combines
the advantages of cross-modal analysis (Costa Pereira et al.
2014; Zhai, Peng, and Xiao 2013; Xie, Pan, and Lu 2015)
and hashing technology (Weiss, Torralba, and Fergus 2009;
Zhang et al. 2010; Zhu, Shen, and Xie 2015), it can effi-
ciently solve the retrieval of heterogenous modalities.

The basic idea of CMH methods is to project the infor-
mation from different modalities into a unified hash space,
where hamming distance can be applied as the metric to
measure distance. They often learn hash functions in of-
fline process by batch learning. Then the hash codes of all
database data are computed by the learned hash functions.
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As a result, existing CMH methods might not be able to
achieve good performance under environment of online real-
world web image retrieval, where they generally ignore that
data usually arrive in streaming fashion. The online images
(e.g., those on Flickr and Google), are rapidly increased as
time goes on. For example, millions of new images are up-
loaded to Flickr by users each day. If new images are added
to the web database, existing CMH methods have to accu-
mulate all the database data to retrain new hash functions,
and recomputed the hash codes of whole database. They are
obviously inefficient in the learning process of hash func-
tions and codes, especially when the database is frequently
updated. As an emerging technology, online hashing tech-
nique (Huang, Yang, and Zheng 2013), can be applied to
cope with the online retrieval of streaming database. How-
ever, existing online hashing methods cannot be directly ap-
plied to cross-modal retrieval of web images, in that they
have ignored two essential problems:

• Existing online hashing methods are inefficient when up-
dating hash codes. They only focus on the online learning
of hash functions, but ignore efficient updating of hash
codes. In general online hashing process, the hash func-
tion can be efficiently retrained when new data arrive.
However, the change of hash functions will result in the
change of hamming space. In order to make the new data
and old data to be effectively matched, the whole database
should be accumulated to compute their new hash codes
by the updated hash functions. As a result, the time com-
plexity of updating hash codes depends on the size of
whole database, and it is obviously very inefficient in the
online scenario. For an efficient online hashing method,
the updating time of hash codes must be irrelevant to
database size.

• The cross-modal correlation is not analyzed by online
hashing. Cross-modal correlation describes the relation-
ship between different modalities, thus it plays an impor-
tant role in cross-modal retrieval. Due to the well-known
semantic gap between different modalities, cross-modal
correlation is difficult to be analyzed. Moreover, with
the change of database, the correlation between heteroge-
neous data is also varied. The analysis of ever-changing
cross-modal correlation poses great challenge to online
hashing method.
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In this paper, we propose Online Cross-Modal Hashing
(OCMH) for the fast retrieval of streaming web images.
To address two aforementioned issues, OCMH decomposes
hash codes of all modalities to shared latent codes (SLC)
and transfer matrix. In the online learning process, SLC can
be incrementally updated by preserving its old codes, and
the improved information from new data can be preserved
by the dynamic transfer matrix. As a result, inefficient up-
dating of hash codes is transformed to efficient updating of
SLC. Moreover, SLC is shared by different modalities, thus
it can encode the latent cross-modal correlation, which are
combined with the basic cross-modal correlation in OCMH.
Therefore, OCMH can thoroughly analyze the cross-modal
correlation in the online learning process. The contributions
of this paper are listed as follows:

• We propose OCMH which is efficient in the online sce-
nario where images arrive in streaming fashion. Unlike
previous online hashing schemes which cannot efficiently
update hash codes, OCMH can update them online by op-
timizing the SLC and transfer matrix.

• OCMH specially considers cross-modal correlation in the
online learning process. SLC can encode the latent cross-
modal correlation, which improves the cross-modal anal-
ysis of OCMH. As a result, OCMH can effectively solve
the retrieval of heterogeneous modalities, while it also en-
sures the learning efficiency.

• Experimental results demonstrate both the effectiveness
and efficiency of OCMH compared to other cross-modal
hashing and online hashing methods.

Related Work

Cross-Modal Hashing

In recent years, many efforts have been devoted to cross-
modal hashing (CMH). Most CMH methods focus on an-
alyzing the cross-modal correlation between heterogenous
data by cross-modal/multi-modal techniques (Zhu et al.
2015). Cross-View Hashing (CVH) (Kumar and Udupa
2011) correlates different modalities by learning similar
hash codes for them. Inter-Media Hashing (IMH) (Song et
al. 2013) models the cross-modal correlation by inter-media
and intra-media consistency. Latent Semantic Sparse Hash-
ing (LSSH) (Zhou, Ding, and Guo 2014) first learns latent
semantic features for images and texts respectively, then
the learned latent features are correlated in a unified hash
space. Collective Matrix Factorization Hashing (CMFH)
(Ding, Guo, and Zhou 2014) uses Collective Matrix Fac-
torization (Singh and Gordon 2008) to obtain joint hash
codes which can correlate different modalities. Some CMH
methods also consider the quantization effect of hash codes
for multi-modal data. Semantic Correlation Maximization
(SCM) (Zhang and Li 2014) adopts the sequential learn-
ing (Wang, Kumar, and Chang 2012) to improve the perfor-
mance of hash codes. Quantized Correlation Hashing (QCH)
(Wu et al. 2015) takes into consideration the quantization
loss for cross-modal correlation.

Due to the advantages of hashing technology, CMH meth-
ods are efficient in the search process. However, most of

Table 1: Comparison of Time Complexity (Nt � N ).
Method CMH Online Hashing OCMH

Hash Code
Learning O(N) O(N) O(Nt)

Hash Function
Learning O(N) O(Nt) O(Nt)

them are not efficient in the learning process. SCM and Lin-
ear Cross-Modal Hashing (LCMH) (Zhu et al. 2013) im-
prove learning process with linear time complexity. But they
are still batch learning based methods, which are not suited
to the online scenario. To the best of our knowledge, cur-
rently there are no CMH methods which use online learning
for hash functions or codes.

Online Hashing

Online Hashing, which exploits online learning (Liberty
2013) for hashing process, is practical in the real-world ap-
plications, but there are not much studies about it so far
(Wang et al. 2014). The study of (Jain et al. 2009) may be
the first attempt to use online learning for hashing, it first de-
signs an online metric learning algorithm, then it updates the
changed hash codes. However, the search time of changed
hash codes depends on the size of whole database. On-
line Kernel-based Hashing (OKH) (Huang, Yang, and Zheng
2013) and Online Sketching Hashing (OSH) (Leng et al.
2015) both learn hash functions in online process. However,
they are not able to update hash codes online. At each round
of updating, since the hash functions are changed, they have
to accumulate all database data to recompute the hash codes,
which is obviously inefficient.

Brief Comparison

Table 1 makes a comparison about learning time of the three
types of hashing technique, where N is the database size, Nt

is the new data size and Nt � N . Table 1 demonstrates that
OCMH is the most efficient, online hashing (e.g. OSH) is
partly efficient and CMH (e.g. CVH) is inefficient for online
web image retrieval.

Method of Online Cross-Modal Hashing

The graphical illustration of OCMH is shown in Fig.1. Hash
codes of each modality are constructed from SLC H and
variable matrix Vm. Then inefficient updating of hashing
codes is transformed to online learning of H and Vm. In the
online learning process, the old part of H is permanent, only
new codes are added to H .

Problem Description

Suppose the database consists of streaming multi-modal
documents, each of them is an image-text pair. At each
round t, new data chunk X(t) = [X

(t)
1 , X

(t)
2 ] is added to the

database, where X(t)
1 ∈ RNt×d1 and X

(t)
2 ∈ RNt×d2 denote

the feature matrices of image and text respectively, Nt is the
size of new data. There also exist old data X̃ = [X̃1, X̃2] in
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Figure 1: The graphical illustration of OCMH.

database. Then the total database contains X = [X1, X2],
where Xm = [X̃T

m, (X
(t)
m )T ]T and m = 1, 2.

At each round t, we aim to learn hash function fm(xm)
and database hash codes Fm for each modality m. The hash
function is defined as:

fm(xm) = sgn (xmWm + bm) (1)

where xm is the feature vector of modality m. If we set
xm = [xm, 1], Wm = [WT

m, bTm]T . Then the hash func-
tion can be reformulated as fm(xm) = sgn (xmWm). Hash
functions from different modalities project all data into a
unified hash space, and the database hash codes of each
modality can be obtained as Fm = sgn (XmWm).

Suppose we have learned W̃m and hash codes F̃m =

X̃mW̃m at previous round t − 1. At round t we should first
learn new hash weights Wm online. Then with the updat-
ing of hash weights, if we directly update hash codes, we
have to accumulate all database data. This updating process
of hash codes is obviously very inefficient, especially when
new data are added frequently. Therefore, one major goal of
our OCMH is to efficiently update hash codes online, which
will be solved in following subsections.

Formulation

At first we optimize the basic cross-modal correlation be-
tween images and texts. The hamming distance between im-
age and text hash codes in a pair should be minimal, thus we
obtain the following objective function:

min ‖X1W1 −X2W2‖2F (2)

where ‖·‖F denotes the Frobenius norm. The non-
differentiable sgn(·) is dropped to avoid the NP-hard solu-
tion (Kumar and Udupa 2011).

The optimization of Wm will result in the updating of
whole hash codes Fm. In ideal case, we may want to pre-
serve existing hash codes F̃m, and only compute codes of
new data to incrementally obtain Fm. However, F̃m is only
related to W̃m which is learned at previous round. It is ob-
viously that F̃m cannot match new hash codes which are
computed by Wm. In order to efficiently updating Fm, we
assume that it is constructed from a permanent SLC H and a
dynamic transfer matrix Vm. Then the inefficient updating of
Fm is transformed to efficient updating of H . The decompo-
sition of Fm can be represented as the following constraints:

XmWm = HVm (m = 1, 2) (3)

where H consists of old latent codes H̃ and new latent codes
H(t), that is H = [H̃T , (H(t))T ]T .

At each round t, Vm is updated, and H is only added
with codes of new data H(t). The size of Vm is irrelevant
to the database size N , and is much smaller than the total
hash codes. As a result, instead of updating whole Fm, we
only need to update Vm, which is very efficient. Moreover,
H is shared by all modalities, it encodes the latent cross-
modal correlation which can effectively supplement the ba-
sic cross-modal correlation described above.

By combining the objective function Eq.(2) with con-
straints Eq.(3), we can arrive at the following formulation
for learning hash functions and SLC:

min ‖X1W1 −X2W2‖2F + λ
2∑

m=1

θm ‖XmWm −HVm‖2F

+ λ

(
α ‖H‖2F + β

2∑
m=1

θm ‖Vm‖2F
)

(4)

where λ, α and β are regularization parameters. θm denotes
the importance of image and text, and θ1 + θ2 = 1.

Online Optimization

In this section we propose an online optimization of Wm

and H from Eq.(4). The objective function is convex to each
Wm or H , thus we can use the alternative process for opti-
mization.

At first we consider the optimization of SLC H and trans-
fer matrix Vm. By setting the derivative of Eq.(4) w.r.t Vm to
zeros, we can easily update Vm by:

Vm = (CH + βI)−1EmWm (5)

where CH = HTH and Em = HTXm.
According to Theorem 1, we can easily updated Vm in an

online process:

Theorem 1. The time complexity of computing CH and Em

is O(Nt), which is linear to the size of new data.

Proof. We can easily obtain the following equation:

CH =
[
H̃T ,

(
H(t)

)T ] [ H̃

H(t)

]
= H̃T H̃ +

(
H(t)

)T
H(t) = C̃H +

(
H(t)

)T
H(t) (6)

C̃H = H̃T H̃ is related to old data, it is computed at the
previous round, so we only need to compute

(
H(t)

)T
H(t).

We can omit the code length and feature dimensions which
are irrelevant to the data size, then the computing time com-
plexity of C̃H is O(Nt). Similarly, we can obtain:

Em = H̃T X̃m +
(
H(t)

)T
X(t)

m = Ẽm +
(
H(t)

)T
X(t)

m (7)

Then the computation time of Em is also linear to new data
size Nt.

From Theorem 1, we can easily obtain that the updating
time of Vm is O(Nt).
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Since H̃ is permanent, we only need to update H(t),
which is computed by:

H(t) =

2∑
m=1

θmX(t)
m WmV T

m

(
αI +

2∑
m=1

θmVmV T
m

)−1

(8)

According to Eq.(8), the time of computing H(t) is also
O(Nt), and it is irrelevant to the database size N . Then H
can be efficiently updated.

At last we consider the updating of Wm. Substituting
Eq.(5) to Eq.(4), then Eq.(4) can be transformed to:

min Tr

(
M∑

m=1

WT
m ((λθm + 1)Cm − λθmBm)Wm

)
− Tr

(
WT

1 C12W2 +WT
2 C21W1

)
(9)

where Tr (·) denotes the trace operator, and :

Cm = XT
mXm, Cmn = XT

mXn (m,n = 1, 2)

Bm = ET
m(CH + βI)−1Em (10)

By setting the derivative of W2 w.r.t Eq.(9) to zero, we can
obtain:

W2 = ((λθ2 + 1)C2 − λθ2B2)
−1C21W1 (11)

In order to avoid the trivial solution, we add a constraint
for W1. By substituting Eq.(11) into Eq.(9), we can obtain
W1 by solving the following eigenvalue problem:

max Tr
(
WT

1 C12((λθ2 + 1)C2 − λθ2B2)
−1C21W1

)
s.t. WT

1 ((λθ1 + 1)C1 − λθ1B1)W1 = I (12)

We can also efficiently compute Eq.(12) and Eq.(11), ac-
cording to Theorem 2:

Theorem 2. For n,m = 1, 2, the time complexity of com-
puting Cm and Cmn is O(Nt), which is linear to the size of
new data.

Proof. Similar to Theorem 1, Cm and Cmn can be computed
by:

Cm = C̃m +
(
X(t)

m

)T
X(t)

m , Cmn = C̃mn +
(
X(t)

m

)T
X(t)

n (13)

where C̃m = X̃T
mX̃m and C̃mn = X̃T

mX̃n has been com-
puted at previous round, thus we only need to compute new
data, and the time complexity is O(Nt).

The updating of Eq.(11) is based on the computation of
Cm and Cmn, thus W2 can be efficiently computed with
time complexity O(Nt). Moreover, in Eq.(12), we only need
to solve the eigenvectors of a d1 × d1 matrix, which is ob-
viously irrelevant to both database size N and new data size
Nt. As a result, the computation of all Wm will cost O(Nt).

The whole optimization process at each round t is pre-
sented in Algorithm 1, where Titer denotes the total numbers
of iterations. At each round, since Vm has been optimized by
old data, we do not need much iterations for updating Vm,
as well as the updating of H . Thus we set Titer = 3 in our
implementations.

Algorithm 1 Optimizing algorithm at round t

Input:

X
(t)
m , Vm, H̃ , C̃H , Ẽm, C̃m, C̃mn (m, n=1,2)

Output:
Wm, H , CH , Em, Cm, Cmn,Vm

1: Update Cm, Cmn according to Eq.(10);
2: Initialize H(t) randomly;
3: for iter < Titer do
4: Compute W1 by solving the eigenvalue problem of

Eq.(12);
5: Compute W2 according to Eq.(11);
6: Update CH and Em according to Eq.(6) and Eq.(7);
7: Update Vm according to Eq.(5);
8: Compute H(t) according to Eq.(8);
9: end for

10: Update H by H = [HT , sgn(H(t))T ]T ;

Algorithm 1 is efficient in both time and memory cost. At
each round, the matrix CH , Em, Cm, Cmn,Vm is preserved
for the updating at next round. The size of these matrices are
only related to feature dimensions and hash code length, thus
they are very small and occupy not much memory space.
Moreover, we have discussed that the updating of Wm, Vm

and H is linear to new data size. Since Titer is small, the
time complexity of whole optimizing algorithm is O(Nt),
which is linear to new data size. As a result, we can expect
a stable learning time which is irrelevant to database size at
any rounds.

Retrieval Process

After the updating of H , the new hash codes of each modal-
ity can be represented by HVm. We consider two types
of cross-modal retrieval tasks. The first is image query,
where image example is used as query to search texts in
database. The other is text query, where text example is
used to search images in database. Suppose the new query
is a text x2, we can compute its hash codes by x2W2, and
the distance vector between query and database images are
dist = x2W2V

T
1 HT . We can approximate the distance by

sgn
(
x2W2V

T
1

)
HT , then the distance between hash codes

are transferred to distance between query latent codes and
SLC. The latent codes of each query can be computed as:

hq(xm) = sgn
(
xmWmV T

n

)
, m, n = 1, 2 and m �= n (14)

In the retrieval process, given a query from any modality,
we compute the hamming distance between hq(xm) and H
to search relevant data.

Experiments

Datasets and Features

In our experiments, two real-world web image datasets: MIR
Flickr and NUS-WIDE, are used to evaluate the effective-
ness and efficiency of OCMH.

MIR Flickr consists of 25,000 images downloaded from
Flickr. Each image is associated with several text words, thus
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Figure 2: The MAP scores of NUS-WIDE at each round, with 32 and 64 bits of hash codes.
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Figure 3: Time comparison on NUS-WIDE with 32 and 64 bits, both log seconds and seconds are used.

they can be considered as a multi-modal image-text pair. Im-
ages are annotated with 38 class labels which are used as the
ground truth. In the retrieval, images which share at least one
same label are considered as relevant. We randomly select
1,000 images and their associated text as queries. To support
the evaluation of online performance, the whole dataset is
split to 13 data chunks, each of the first 12 chunks contains
2,000 pairs, and the last chunk contains 1,000 pairs.

NUS-WIDE contains 269,648 image-text pairs which are
also downloaded from Flickr, each pair is labeled by 81 con-
cepts that can be used for evaluation. We randomly select
2,000 images and associated texts as queries. The whole
dataset is split to 27 chunks, each of the first 26 chunks con-
tains 10,000 pairs, and the last chunk contains 9,648 pairs.

On MIR Flickr, we directly use the image and text fea-
tures provided in (Guillaumin, Verbeek, and Schmid 2010),
including 15 image features and one binary text feature. We
also directly use 6 image features and one binary text fea-
ture provided by (Chua et al. 2009). Since the dimensions
of image feature are too large, we use Kernel PCA (KPCA)
(Schölkopf, Smola, and Müller 1997) to combine image fea-
tures and reduce their dimensions. Finally we obtain 500-D
visual feature for images on MIR Flickr, and 100-D visual
feature for images on NUS-WIDE.

Experimental Settings

In the implementation of OCMH, we set the regularization
parameters λ, α and β to 10−6. Since text usually contains
more semantic information than image, we set θ1 = 0.3 and
θ2 = 0.7.

There are no existing similar hashing methods to OCMH,
so we use CMH and online hashing methods for com-
parison. We compare our OCMH to three representative

cross-modal hashing methods, including Cross-View Hash-
ing (CVH) (Kumar and Udupa 2011), Inter-Media Hashing
(IMH) (Song et al. 2013) and Collective Matrix Factoriza-
tion Hashing (CMFH) (Ding, Guo, and Zhou 2014). All of
them use batch learning for hash functions and codes, thus
we have to retrain them at each round. We also compare
OCMH to Online Sketching Hashing (OSH) (Leng et al.
2015) which is a uni-modal online hashing method.

Mean average precision (MAP) (Song et al. 2013) is used
to measure the effect of retrieval, and MAP scores are com-
puted on the top 50 retrieved documents of each query.
Moreover, we evaluate the learning time of all methods
to measure the efficiency of retrieval, and learning time is
the total time of learning hash functions and updating hash
codes at each round. All the experiments are conducted on a
computer with Intel Core(TM) i5 2.6GHz 2 processors and
12.0GB RAM.

Results of Cross-Modal Retrieval

In our experiments, two types of cross-modal retrieval tasks:
image query and text query, are considered for evaluation.
The whole online retrieval process contains several rounds.
At each round, a new data chunk is added to the database,
and we evaluate the retrieval performance. According to the
number of data chunks, MIR Flickr has 13 rounds in total,
and NUS-WIDE has 27 rounds.

CVH is batch learning based hashing, at each round, we
use all database data to retrain hash functions and codes.
CMFH and IMH are also batch learning based methods,
but they need tremendous time and memory to use whole
database for learning. Thus in training process of IMH,
we randomly select 10% database data on both datasets.
CMFH is more efficient than IMH, thus for the training of
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Figure 4: The MAP scores of MIR Flickr at each round, with 32 and 64 bits of hash codes.
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Figure 5: Time comparison on MIR Flickr with 32 and 64 bits, both log seconds and seconds are used.

CMFH, we select 10% database data on NUS-WIDE, and
all database data on MIR Flcikr. OSH can learn hash func-
tions online, but when it computes hash codes, all database
data should be used. In addition, OSH is not designed for
multi-modal data, thus we have to slightly improve OSH for
cross-modal hashing. In the hashing process of OSH, we
concatenate image feature x1 and text feature x2 to form
a single feature x, then the learned hashing weight matrix
W = [WT

1 ,WT
2 ]T .

Fig. 2 shows the MAP scores of all compared methods
on NUS-WIDE at each round, with 32 and 64 bits. We can
find that the MAP scores of OCMH are consistently in-
creased with the increase of rounds, which illustrates that
cross-modal correlation can be improved by OCMH at each
round. Generally, online learning may lose some preci-
sion to achieve efficiency. But Fig. 2 shows an interesting
phenomenon, that the online learning based OCMH per-
forms even better than batch learning based CVH, IMH and
CMFH. The reason is that OCMH can analyze latent cross-
modal correlation by SLC, which is ignored by other CMH
methods. As a result, OCMH can learn more cross-modal
correlation while guarantee the learning efficiency. OCMH
also outperforms OSH, the reason is that cross-modal corre-
lation cannot be learned by OSH which is not designed for
multi-modal data.

Fig. 3 shows the learning time of all compared methods
on NUS-WIDE with 32 and 64 bits. Since the learning time
of IMH and CMFH is much larger than other methods. The
left two figures use log seconds which are the log value of
seconds, to demonstrate the time comparison of all meth-
ods. From these two figures we can find OCMH costs the
least learning time, and IMH and CMFH are inefficient in
the online scenario. The right two figures only show the sec-

onds of OCMH, CVH and OSH, we can find from them that
the time cost of OCMH at each round is not increased. This
result confirms that the time complexity of OCMH is inde-
pendent with the database size which is increased at each
round. In addition, we can find the time cost of OSH is in-
creased linearly at each round. OSH can learn hash functions
online, but it has to compute all database hash codes at each
round, thus it is less efficient for the online retrieval.

Fig. 4 and Fig. 5 show the MAP scores and learning time
of all compared methods on MIR Flickr at each round, with
32 and 64 bits. From them, we can obtain similar results
to NUS-WIDE. OCMH gains the best MAP scores at most
rounds, and it costs the least learning times. OCMH can-
not significantly outperform CVH in terms of MAP score,
but it costs much less learning time than CVH. Therefore
OCMH can better solve online web image retrieval. In ad-
dition, OCMH achieves more significant performance on
NUS-WIDE, which implies that OCMH is more suited to
larger database.

Conclusion

In this paper we propose OCMH for the effective and effi-
cient retrieval of multi-modal web images. OCMH is supe-
rior to traditional CMH in that it can effectively learn the
streaming web data online. Besides, it specially considers
efficient updating of hash codes which is not solved by pre-
vious online hashing methods. OCMH solves the updating
of hash codes by transforming it to the efficient updating
of SLC and transfer matrix. Moreover, SLC encodes the
latent cross-modal correlation which can improve the ef-
fect of cross-modal analysis. Then, an efficient online op-
timization algorithm, whose time complexity is independent
with database size, is proposed for updating SLC and hash
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functions. Experimental results on two web image datasets
demonstrate both the effectiveness and efficiency of OCMH.

Acknowledgement

Jialie Shen and Lei Zhu are supported by Singapore MOE
tier 2 one.

References

Chua, T.-S.; Tang, J.; Hong, R.; Li, H.; Luo, Z.; and Zheng,
Y. 2009. Nus-wide: a real-world web image database from
national university of singapore. In Proceedings of ACM In-
ternational Conference on Image and Video Retrieval (CIVR
09), 48. ACM.
Costa Pereira, J.; Coviello, E.; Doyle, G.; Rasiwasia, N.;
Lanckriet, G. R.; Levy, R.; and Vasconcelos, N. 2014. On
the role of correlation and abstraction in cross-modal multi-
media retrieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence 36(3):521–535.
Ding, G.; Guo, Y.; and Zhou, J. 2014. Collective matrix
factorization hashing for multimodal data. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2014), 2083–2090. IEEE.
Guillaumin, M.; Verbeek, J.; and Schmid, C. 2010. Multi-
modal semi-supervised learning for image classification. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 10), 902–909. IEEE.
Huang, L.-K.; Yang, Q.; and Zheng, W.-S. 2013. Online
hashing. In Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence (IJCAI 13), 1422–1428.
AAAI Press.
Jain, P.; Kulis, B.; Dhillon, I. S.; and Grauman, K. 2009. On-
line metric learning and fast similarity search. In Advances
in Neural Information Processing Systems (NIPS 09), 761–
768.
Kumar, S., and Udupa, R. 2011. Learning hash functions
for cross-view similarity search. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI 11), volume 22, 1360.
Leng, C.; Wu, J.; Cheng, J.; Bai, X.; and Lu, H. 2015. Online
sketching hashing. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 15),
2503–2511.
Liberty, E. 2013. Simple and deterministic matrix sketch-
ing. In Proceedings of the 19th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD 13), 581–588. ACM.
Schölkopf, B.; Smola, A.; and Müller, K.-R. 1997. Kernel
principal component analysis. In Proceedings of Artificial
Neural Networks (ICANN 97). Springer. 583–588.
Singh, A. P., and Gordon, G. J. 2008. Relational learn-
ing via collective matrix factorization. In Proceedings of
the 14th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD 08), 650–658.
ACM.

Song, J.; Yang, Y.; Yang, Y.; Huang, Z.; and Shen, H. T.
2013. Inter-media hashing for large-scale retrieval from het-
erogeneous data sources. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data
(SIGMOD 13), 785–796. ACM.
Wang, J.; Shen, H. T.; Song, J.; and Ji, J. 2014. Hashing for
similarity search: A survey. arXiv preprint arXiv:1408.2927.
Wang, J.; Kumar, S.; and Chang, S.-F. 2012. Semi-
supervised hashing for large-scale search. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
34(12):2393–2406.
Weiss, Y.; Torralba, A.; and Fergus, R. 2009. Spectral hash-
ing. In Advances in Neural Information Processing Systems
(NIPS 09), 1753–1760.
Wu, B.; Yang, Q.; Zheng, W.-S.; Wang, Y.; and Wang, J.
2015. Quantized correlation hashing for fast cross-modal
search. In Proceedings of the 24th International Joint Con-
ference on Artificial Intelligence (IJCAI 15), 3946–3952.
AAAI Press.
Xie, L.; Zhu, L.; Pan, P.; and Lu, Y. 2015. Cross-modal
self-taught hashing for large-scale image retrieval. Signal
Processing.
Xie, L.; Pan, P.; and Lu, Y. 2015. Analyzing semantic
correlation for cross-modal retrieval. Multimedia Systems
21(6):525–539.
Zhai, X.; Peng, Y.; and Xiao, J. 2013. Heterogeneous met-
ric learning with joint graph regularization for cross-media
retrieval. In Proceedings of the 27th AAAI Conference on
Artificial Intelligence (AAAI 13).
Zhang, D., and Li, W.-J. 2014. Large-scale supervised mul-
timodal hashing with semantic correlation maximization. In
Proceedings of the 28th AAAI Conference on Artificial Intel-
ligence (AAAI 14), 2177–2183.
Zhang, D.; Wang, J.; Cai, D.; and Lu, J. 2010. Self-taught
hashing for fast similarity search. In Proceedings of the
33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 10), 18–25.
ACM.
Zhou, J.; Ding, G.; and Guo, Y. 2014. Latent semantic sparse
hashing for cross-modal similarity search. In Proceedings of
the 37th International ACM SIGIR Conference on Research
& Development in Information Retrieval (SIGIR 14), 415–
424. ACM.
Zhu, X.; Huang, Z.; Shen, H. T.; and Zhao, X. 2013. Lin-
ear cross-modal hashing for efficient multimedia search. In
Proceedings of the 21st ACM International Conference on
Multimedia (ACM MM 13), 143–152. ACM.
Zhu, L.; Shen, J.; Jin, H.; Zheng, R.; and Xie, L. 2015.
Content-based visual landmark search via multi-modal hy-
pergraph learning. IEEE Transactions on Cybernetics.
Zhu, L.; Shen, J.; and Xie, L. 2015. Topic hypergraph hash-
ing for mobile image retrieval. In Proceedings of the 23rd
ACM Conference on Multimedia (MM 15), 843–846. ACM.

300




