A Framework for Resolving Open-World Referential Expressions in Distributed Heterogeneous Knowledge Bases

Tom Williams and Matthias Scheutz
Tufts University, Medford, MA, USA
{williams,mscheutz}@cs.tufts.edu

Abstract
We present a domain-independent approach to reference resolution that allows a robotic or virtual agent to resolve references to entities (e.g., objects and locations) found in open worlds when the information needed to resolve such references is distributed among multiple heterogeneous knowledge bases in its architecture. An agent using this approach can combine information from multiple sources without the computational bottleneck associated with centralized knowledge bases. The proposed approach also facilitates “lazy constraint evaluation”, i.e., verifying properties of the referent through different modalities only when the information is needed. After specifying the interfaces by which a reference resolution algorithm can request information from distributed knowledge bases, we present an algorithm for performing open-world reference resolution within that framework, analyze the algorithm’s performance, and demonstrate its behavior on a simulated robot.

Introduction
For robotic or virtual situated agents to effectively engage in natural language interactions with humans, they must be able to identify the people, locations, and objects mentioned by their human interlocutors. This ability, known as reference resolution (Garrod and Sanford 1994), is necessary in order to discuss or carry out actions involving those people, locations, and objects. In a robotic or virtual component-based integrated agent architecture (e.g., DIARC, Scheutz et al. 2013, or ROS, Quigley et al. 2009), knowledge may be localized within different components instead of being centralized in a single knowledge base (KB). This paper presents an approach to solving several unique problems that arise when knowledge is distributed in this manner.

Information in an integrated architecture may be decentralized for a variety of reasons. First and foremost, there simply does not exist a single knowledge representation format that would allow a robot to efficiently deal with all representation and reasoning tasks it must perform. For example, information about entities recognized by a vision component will likely be stored in a substantially different manner than the map produced by a mapping component.

Furthermore, accumulation of knowledge into a central, homogeneous KB can create a bottleneck where computational resources become focused onto a single “stress point” rather than balanced across the architecture’s components. It may make more sense, for example, to keep information about visual features such as pixels, textures, and edges localized to the vision component where they are actually processed and needed.

Finally, knowledge may be decentralized to facilitate “lazy evaluation”. For example, consider a mapping component responsible for performing SLAM. On request, this component may be able to determine whether one location is “to the left down the hall” from another location, or whether two locations are within a five-minute walk of each other. However, it may not be necessary to make such decisions until explicitly requested. If knowledge is centralized in a single KB, then this information must be precomputed and asserted into the knowledge base if it cannot otherwise be inferred — a potentially unnecessary expense if the information is expensive to compute and unlikely to be requested.

The use of a distributed knowledge representation scheme, however, also presents several challenges. For example, multiple aspects of an entity may be spread across multiple KBs (e.g., visual aspects in the vision component, action-based aspects in the manipulation component, linguistic aspects in the NLP component, etc.), and each such KB may have its own form of representation (i.e., whatever form is most natural for the internal operations of that component) and its own way of evaluating queries (especially when “lazy evaluation” is employed).

Furthermore, it may be difficult to determine which KB should be queried in order to resolve a particular referential expression. For example, if an interlocutor says “the ball is in it”, it may not be clear whether candidate entities to associate with “it” should be drawn from the set of objects known to the vision component or from the set of locations known to the mapping component.

The rest of this paper proceeds as follows. We first discuss previous approaches to reference resolution under different knowledge representation schemes. We then introduce a framework that allows information from domain-specific resolution techniques to be used together without the need for a centralized KB. We then present an algorithm for performing reference resolution within that framework, analyze
its performance, and demonstrate its behavior on a simulated robotic agent. Finally, we discuss the results of our analysis and directions for future work.

Previous Work
Reference resolution in robotics has attracted much attention over the past decade. Previous approaches have typically fallen into one of two categories. We term the first category **domain-independent resolution**. Approaches in this category (e.g., Kruijff et al.; Heintz et al.; Lemaignan et al.; Daoitis et al. 2007; 2008; 2011; 2009) typically use a central KB in which information about disparate types of entities are stored in a homogeneous format. Techniques such as graph matching are used to resolve natural language references to entities stored in that KB. These resolution techniques may not be as effective as domain-specific techniques as they are only able to utilize information that can be encoded in the lowest common denominator representation used by the shared ontology (Gray et al. 1997).

We term the second category **domain-dependent resolution**. Approaches in this category focus on resolving specific types of references (e.g., spatial reference resolution, Moratz and Tenbrink; Williams et al.; Hemachandra et al.; Kollar et al.; Zender et al.; Shimizu and Haas; Chen and Mooney; Matuszek et al.; Fasola and Matarić 2006; 2013; 2011; 2010; 2009; 2009; 2011; 2012; 2013, action resolution, Kollar et al.; Hewlett 2014; 2011), and use techniques that are specific to their target domain. For example, in (Fasola and Matarić 2013) “semantic fields” are used to interpret descriptions such as “near the kitchen” or “around the table”, a technique which might not generalize to other resolution tasks. Also in this category are approaches like that presented in (Tellex et al. 2011a), which are general in principle but which must be trained to apply to a single target domain.

In recent work, we presented **POWER**, a hybrid approach (Williams and Scheutz 2015a; 2015b) in which a domain-independent reference resolution algorithm (of the first category of approaches) made use of a domain-dependent **consultant** that provided capabilities typically found in the second category of approaches. This is similar to mechanisms found in the knowledge representation literature (e.g., procedural attachment, Bobrow and Winograd 1977) and in some cognitive architectures (e.g., PRODIGY, Veloso et al. 1995).

In this work, we present a framework which extends POWER to handle multiple consultants distributed across the architecture, thus preventing a computational bottleneck. While the use of architectural components to intercede between distributed hierarchical knowledge bases during querying and assertion is not new *per se* (c.f. Gray et al. 1997), we believe this to be the first use of such an approach in a robotic architecture.

Framework
Assume a robotic architecture includes a set of *n* heterogeneous KBs $K = \{k_1, ..., k_n\}$. Each KB k_i is managed by a consultant c_i from $C = \{c_1, ..., c_n\}$. Each consultant performs four functions:

1. advertising the constraints it can evaluate and impose,
2. providing a set of atomic entities from its KB,
3. calculating the likelihood that a given constraint holds for a given set of atomic entities, and
4. adding, removing, or imposing constraints on its KB.

A referential expression in this framework is formulated as a set of constraints $S = \{s_1, ..., s_n\}$ where each $s \in S$ specifies a relationship (s^r, s^s) named by s^r and parameterized by $s^s \in \{s_1^s, ..., s_n^s\}$. For example, “the ball in the box” might be encoded as the set $S = \{(in, \{X, Y\}), (ball, \{X\}), (box, \{Y\})\}$, where $S^V = \{X, Y\}$ contains the variables parameterizing constraints with names ‘in’, ‘ball’, and ‘box’, determined by $s_1^s \cup s_2^s \cup ... \cup s_n^s$. The goal of reference resolution is associate each variable in S^V with an entity from the architecture’s KBs. The first step towards this goal is to determine which KB contains the referent for each variable.

To facilitate this process, each consultant c_i advertises the types of queries it can handle through a set of unique query templates $Q_i = \{q_{i1}, ..., q_{in}\}$, each of which specifies a relationship (q^r, q^s) named by q^r and parameterized by kb-associated variables $q^s = \{q_{i1}v_1, ..., q_{in}v_n\}$. Here, each kb-associated variable $q_{i\nu}v_\nu$ denotes a variable v_ν whose referent should be found in KB k_i. For example, the Visual Consultant c_O associated with KB of objects k_O might advertise the template $(in, \{X : k_O: Y : k_O\})$, and the Spatial Consultant c_s associated with KB of locations k_s might advertise the template $(in, \{X : k_L : Y : k_L\})$. This particular example also demonstrates how relationships that bridge knowledge bases are handled: it is assumed that relationships between pieces of knowledge stored in different KBs will be handled by exactly one of the consultants associated with those KBs. Here, information about the locations of objects is advertised to be handled by the Spatial Consultant. The process of associating a KB with each variable is viewed as the process of finding the optimal mapping $t: V \rightarrow K$ from variables in S^V to KBs K, drawn from set of possible mappings T:

$$\arg\max_{t \in T} \prod_{s \in S} P(t|s).$$

Here, $P(t|s)$ represents the probability that mapping t correctly maps variables to KBs given that s appears in S. If a training corpus is available, $P(t|s)$ can be calculated by consulting the learned conditional distribution $P(T|s)$. Otherwise a uniform distribution may be assumed, and $P(t|s)$ can be calculated as:

$$P(t|s) = \begin{cases} 0, & \text{if } \gamma = 0. \\ 1/|\gamma|, & \text{otherwise.} \end{cases}$$

where $\gamma = \sum_{c_i \in C, q \in Q_i} |\text{matches}(q, s)|$.

Here, $|\text{matches}|$ is the number of query templates in S^Q that match constraint s (i.e., where $s^r = q^r$ and where s^r and q^r may be unified).

In order to determine the most likely mapping of entities to variables, we must first obtain a set of candidates for each variable, drawn from the appropriate KB. This is performed by choosing the consultant c_v associated with each variable.
v, and requesting a list of candidate entities from that consultant by calling getCandidates(c_v). Each possible combination of variable-entity bindings is called a hypothesis h. The set of these hypotheses is called H. Then, the process of reference resolution can be modeled as:

$$\text{argmax}_{h \in H} \prod_{s \in S} P(s|t, h).$$

Here, $$P(s|t, h)$$ represents the probability that constraint s is an accurate description of the state of the world, given variable-entity mapping h and variable-KB mapping t (as described above). This value is calculated by the component that advertises the relationship matching s with variable-KB mapping t. As it will likely be prohibitively expensive to examine every hypothesis h, we present an algorithm to efficiently search through hypothesis space H.

Algorithms

The distributed POWER algorithm (i.e., DIST-POWER, Algorithm 1) takes four parameters: a query S, a set of consultants C, a mapping T from the set of variables S^V to the set of KBs K managed by C, and a priority queue of initial hypotheses H. C is assumed to be sorted according to some ordering, such as by |S^V|, so that constraints with only one variable (e.g., (room, X)) will be examined before constraints containing multiple variables (e.g., (in, X, Y)), limiting the size of the search space considered. T is assumed to be sorted according to, e.g., the prepositional attachment of the variables contained in T, as described in (Williams and Scheutz 2015b). Each hypothesis h in H contains (1) a set of unapplied constraints h^S, (2) a list of candidate bindings h^D, and (3) $$h^P = p(h^D|S,T)$$, which is used as that hypothesis’ priority.

Algorithm 1 DIST-POWER (S, C, T, H)

1: S: list of relationship constraints
2: C: set of consultants
3: T: optimal mapping from S^V → K
4: H: set of initial hypotheses
5: if H = ∅ then
6: $$\alpha = S[0]|S[0] \cup \{0\}$$
7: $$c_v = \text{find_consultant}(C,T,S[0])$$
8: for all φ ∈ getCandidates(c_v) do
9: push(H, (α → φ), S, 1,0)
10: end for
11: end if
12: A = resolve(S, C, T, H, ∅)
13: if A ≠ ∅ and (A[0])^V ≠ S^V then
14: A = posit(A[0], C, S)
15: end if
16: return A

If H is initially empty, DIST-POWER initializes it with a set of hypotheses $$\{h_0, \ldots, h_m\}$$ where $$h_i^S = S$$, $$h_i^D$$ maps the first variable found in S[0] to the i^{th} candidate returned by getCandidates(c_v), where consultant c_v is determined by find_consultant, i.e., the process described previously, and $$h_i^P = 1.0$$ (Algorithm 1, lines 5-11).

Resolution is then performed using resolve(S, C, T, H, A) (Algorithm 2), which performs a best-first search over the set of possible assignments from values provided by consultants in C to variables in S. If a solution of sufficient probability cannot be found (line 21), resolve tries again with a restricted set of variables (line 22), recursing until it either finds a sufficiently probable solution or runs out of variables to restrict. This process extends the POWER algorithm (Williams and Scheutz 2015b) in order to choose the best consultant for resolution from a set of distributed consultants, instead of only handling a single consultant as POWER did. We thus refer the reader to (Williams and Scheutz 2015b) for the details of the POWER algorithm itself. The POWER algorithm is similar to the algorithm presented in (Tell et al. 2011b), in which a beam search is performed through an initial domain of salient objects in order to identify the most probable satisfaction of an induced probabilistic graphical model. We chose best-first search instead of beam search as a large number of relatively equally likely candidates may exist at each step. When resolving a reference to some “room”, for example, it would be imprudent to discard places that did not fall in the top few most “room-like” candidates since there may be hundreds of places that satisfy this constraint to a high degree. We instead rely on a lower probability threshold τ to keep the search space tractable.

Once resolve returns set of candidate solutions A to DIST-POWER (line 24), that set is examined. If A is nonempty, and if the best solution in A does not contain candidate bindings for all variables found in S, then new representations are posited for the entities associated with the missing variables, as described in (Williams and Scheutz 2015b) (Algorithm 1, lines 13-14). These new representations are added to the appropriate KBs by the appropriate
consultants, and assigned new identifiers which are used to update A before it is returned.

If A contains exactly one hypothesis, that hypothesis represents the entity likely described by the utterance. If A is empty, no known entity matched the description, and the robot may need to ask for clarification. If A contains more than one hypothesis, the description matched multiple entities, and the robot may need to ask for clarification.

Proof-of-Concept Demonstration

In this section we present a proof of concept demonstration of our proposed algorithm and framework. The purpose of this demonstration is two-fold: First, we will demonstrate that the proposed algorithm and framework behave as intended, that is, that they allow resolution to be performed when the requisite information is distributed across various databases, and that they allow resolution to be performed without knowledge (on the part of the algorithm itself) as to (1) the format of the knowledge stored in each KB, and (2) the techniques necessary for extracting the relevant knowledge from each KB. Second, we will demonstrate that the algorithm and framework have been fully integrated into a robotic architecture in order to perform tasks natural to human-robot interaction scenarios.

The proposed algorithm was integrated into a Resolver component of ADE (Scheutz 2006) (the implementation middleware of the Distributed, Integrated, Affect, Reflection Cognition (DIARC) architecture, Scheutz et al. 2013), which uses a distributed heterogeneous knowledge representation scheme: the architecture has a Belief, Goal, and Dialog management component which tracks general information and the beliefs of other agents, but information about visual targets, for example, is localized in the Vision component, and information about spatial entities is localized in the Spatial Expert component. To implement the proposed framework, a set of “consultants” were implemented to interface with KBs of known objects, locations, and people. Each consultant performed four functions:

1. Each advertised the types of queries it handled by exposing a list of formulae such as $\text{in}(W - \text{objects}, Y - \text{locations})$. This formula, for example, states that the consultant which advertises it is able to assess the degree to which some entity from the objects knowledge base is believed to be in an entity from the locations knowledge base.

2. Each provided a method which returned a set of numeric identifiers of the atomic entities in its associated KB.

3. Each provided a method which, given formula p (e.g., $\text{in}(X - \text{objects}, Y - \text{locations})$) and mapping m from variable names to numeric identifiers, (e.g., from X and Y to 22 and 25) would return the probability that relationship p held under the variable bindings specified in m. In this example, the appropriate consultant would return the degree to which it believed object 22 to be in location 25.

4. Each provided a method which, given a set of formulae with some unbound variables, would posit new representations to associate with those unbound variables, store the knowledge of their properties represented by those formulae, and return new variable bindings accounting for the newly posited entities.

The Resolver provided a DIST-POWER method which, given a set of formulae S, calculated optimal mapping T and executed the DIST-POWER (S,C,T,H) algorithm.

As a proof of concept demonstration, we examined a robot’s behavior in interpreting the utterance “Jim would like the ball that is in the room across from the kitchen” (assumed to be uttered by an agent named “Bob”). This utterance is represented as:

$$\text{Stmt}(\text{Bob, self, and(wouldlike}(\text{Jim, X}), \text{ball}(X), \text{in}(X, Y), \text{room}(Y), \text{acrossfrom}(Y, Z), \text{kitchen}(Z));$$

A statement from “Bob” to the robot (i.e., “self”), where the head of the and list (i.e., $\text{wouldlike}(\text{Jim, X})$) represents the literal semantics of the sentence, and the tail of the and list represents the properties which must be passed to the Resolver for resolution.

We will now describe the behavior of the Resolver R as it follows the DIST-POWER algorithm, detailing the state of R’s hypothesis queue at several points throughout the trace of the algorithm. In order to provide an easily describable example, we limited the number of entities in the initial populations of each KB to three or four entities. The robot’s knowledge base of locations contained a hallway and several rooms, including a kitchen, and a room across from it which only contained, to the robot’s knowledge, a table. The robot’s knowledge base of objects contained the table and several boxes and balls. We will use o as shorthand for objects and l as shorthand for locations.

R first calculates optimal mapping T, and returns $\{X : o, Y : l, Z : l\}$, determining that the first constraint to be examined will be $\text{ball}(X)$. R thus instantiates its hypothesis queue by requesting a set of candidate entities for X from the consultant associated with KB o, which produces $\{o_1, o_2, o_3, o_4\}$. R then requests from o the probability of each of $\{\text{ball}(o_1), \text{ball}(o_2), \text{ball}(o_3), \text{ball}(o_4)\}$ being true, and receives back, respectively, 0.82, 0.92, 0.0, 0.0. Since 0.0 < 0.1 (the chosen value of τ), the hypotheses with mappings $X : o_3$ and $X : o_4$ are thrown out, and the other two hypotheses are returned to H, resulting in hypothesis queue:

<table>
<thead>
<tr>
<th>Binding</th>
<th>Unconsidered Constraints</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>${X : o_2}$</td>
<td>${\text{room}(Y), \text{in}(X, Y), \text{acrossfrom}(Y, Z)}$</td>
<td>.92</td>
</tr>
<tr>
<td>${X : o_1}$</td>
<td>${\text{room}(Y), \text{kitchen}(Z), \text{in}(X, Y)}$</td>
<td>.82</td>
</tr>
</tbody>
</table>

The next constraint to be considered is $\text{room}(Y - l)$. Since $\{X : o_2\}$ does not contain a candidate identifier for Y, R requests the initial domain of Y from l, receives $\{l_1, l_2, l_3, l_4\}$, and replaces the first hypothesis with a set of four hypotheses which each have a different binding for Y but share the original P value and set of unconsidered constraints. $P(\text{in}(o_2, l_i))$ is then assessed for each of these four hypotheses, resulting in, respectively, 0.82, 0.92, 0.0, 0.6. The third hypothesis is thrown out and the others are returned to H with updated probabilities, producing:
As the hypothesis with binding \(\{ X : o_2, Y : l_2 \} \) is then the most likely hypothesis and the next constraint to consider is \(\text{kitchen}(Z) \), \(Z \) is expanded with candidate locations, each checked for the \(\text{kitchen}(Z) \) property. As only location \(2 \) is known to be a kitchen, the first hypothesis is replaced with a single new hypothesis, with probability 0.762. This causes the hypothesis with binding \(\{ X : o_1 \} \) to become the most probable hypothesis, resulting in the above process being repeated for that hypothesis, producing:

\[
\begin{align*}
\{ X : o_2, Y : l_1, Z : l_2 \} & \rightarrow \{ \text{in}(X, Y), \text{acrossfrom}(Y, Z) \} & 0.762 \\
\{ X : o_2, Y : l_1 \} & \rightarrow \{ \text{kitchen}(Z), \text{in}(X, Y), \text{acrossfrom}(Y, Z) \} & 0.754 \\
\{ X : o_1, Y : l_2 \} & \rightarrow \{ \text{kitchen}(Z), \text{in}(X, Y), \text{acrossfrom}(Y, Z) \} & 0.754 \\
\{ X : o_2, Y : l_6 \} & \rightarrow \{ \text{kitchen}(Z), \text{in}(X, Y), \text{acrossfrom}(Y, Z) \} & 0.736 \\
\{ X : o_1, Y : l_1 \} & \rightarrow \{ \text{kitchen}(Z), \text{in}(X, Y), \text{acrossfrom}(Y, Z) \} & 0.672 \\
\{ X : o_1, Y : l_6 \} & \rightarrow \{ \text{kitchen}(Z), \text{in}(X, Y), \text{acrossfrom}(Y, Z) \} & 0.656
\end{align*}
\]

When the next best hypothesis is examined, it will be eliminated, as \(o_2 \) is not known to be located in \(l_2 \). Indeed, as no ball is known to exist in a room across from a kitchen, all hypotheses are systematically eliminated. Once this has finished, DIST-POWER removes the head of \(T \) and tries the entire above process again, with \(T = \{ Y : l_1, Z : l \} \) and \(S = \{ \text{room}(Y), \text{acrossfrom}(Y, Z), \text{kitchen}(Z) \} \). The elimination of \(X \) from these sets suggests that \(X \) refers to an entity which is not yet known to the robot. This time, the initial hypothesis queue is, after considering the first formula in \(S \) (i.e., \(\text{room}(Y) \)):

\[
\begin{align*}
\{ Y : l_1 \} & \rightarrow \{ \text{kitchen}(Z), \text{acrossfrom}(Y, Z) \} & 0.92 \\
\{ Y : l_2 \} & \rightarrow \{ \text{kitchen}(Z), \text{acrossfrom}(Y, Z) \} & 0.82 \\
\{ Y : l_6 \} & \rightarrow \{ \text{kitchen}(Z), \text{acrossfrom}(Y, Z) \} & 0.8
\end{align*}
\]

After going through the same resolution process, the final hypothesis queue will be:

\[
\begin{align*}
\{ Y : l_1, Z : l_2 \} & \rightarrow \{ \} & 0.702
\end{align*}
\]

DIST-POWER then instructs the \textit{objects} consultant to create a new representation for \(X \), the new identifier for which is then used to update the hypothesis queue:

\[
\begin{align*}
\{ X : o_5, Y : l_1, Z : l_2 \} & \rightarrow \{ \} & 0.702
\end{align*}
\]

DIST-POWER then instructs both the \textit{objects} and \textit{locations} consultants to maintain consistency with \(S \) under the bindings of the remaining hypothesis \(h \). This results in the \textit{objects} consultant asserting into its KB that \(o_5 \) is a ball, and the \textit{locations} consultant asserting into its KB that \(l_1 \) contains \(o_5 \).

\(R \) then uses \(h^B \) to convert \(\text{wouldlike}(\text{Jim}, X) \) into \(\text{wouldlike}(\text{Jim}, o_5) \). The utterance \(\text{Stmt}(\text{Bob, self, wouldlike}(\text{Jim}, o_5)) \) is then returned to the Dialog module of DIARC’s Belief, Goal and Dialog Management component.

While resolution confidence could be used to determine whether to ask for clarification, we currently pass the utterance directly to a pragmatic reasoning component, which uses a set of pragmatic rules to produce a set of candidate underlying intentions (Williams et al. 2015a). One such rule in this set is:

\[
\text{Stmt}(S, L, \text{wouldlike}(C, O)) \rightarrow \text{goal}(L, \text{bring}(L, O, C)).
\]

Quantitative Analysis

In this section we analyze the performance of DIST-POWER compared to our previous, non-distributed, POWER algorithm. This analysis is not presented as an evaluation \textit{per se}, but rather to demonstrate that the DIST-POWER algorithm, in addition to providing new capabilities and opportunities for easier integration, provides improved efficiency: even \textit{without} the use of heuristics and domain-dependent tricks. This analysis is thus presented as a baseline which may be improved upon using such heuristics. Future work should include an extrinsic, task-based evaluation.

For this analysis we generated forty KBs: five each of sizes \(n = 20, 40, \ldots, 160 \) where \(n \) indicates the number of entities in each KB. In each KB, half of the entries were locations in a random floor plan (i.e., rooms, halls, intersections and floors) with various properties with randomly assigned likelihoods; the rest were objects (i.e., balls, boxes and desks), each randomly assigned properties and room of location. Baseline performance was assessed by measuring the average time taken by POWER to evaluate the query associated with “the box in the room” for each set of five KBs.

We then generated forty additional pairs of KBs: five pairs each of sizes \((n_1, n_2) = (10, 10), (20, 20), (30, 30), \ldots, (80, 80)\) such that the first KB dealt with all location-based knowledge and the second KB dealt with object-related knowledge. Performance of DIST-POWER was established by measuring the average time taken to evaluate the query associated with “the box in the room” for each set of five KB \textit{pairs}.

Figure 1 shows the results of this experiment: along the horizontal axis are the sum sizes of KBs used in each

1As indicated by the Dempster-Shafer theoretical confidence interval \([0.95, 0.95]\). For more on our use of this uncertainty representation framework, we direct the reader to our previous work (Williams et al. 2015a).
to integrate DIST-POWER into a larger resolution framework. In fact, we are currently working on using them here would have conflated the performance of best-first search over, e.g., beam search. However, the exponential in the number of stored entities, due to the use of the primary advantages of the DIST-POWER algorithm is demonstrated. From these results one may observe the performance improvement effected through use of the proposed algorithm: up to 3x speedup among the examined cases.

Discussion

One will notice that both algorithms show performance exponential in the number of stored entities, due to the use of best-first search over, e.g., beam search. However, the complexity of both algorithms when used in the real world would likely be substantially reduced, for several reasons. First, the consultants used by DIST-POWER did not use any heuristics when returning the set of initial candidates to consider. While these would certainly be employed in practice, but using them here would have conflated the performance of the algorithm with the performance of those heuristics, which is beyond the scope of this paper.

Second, complexity would be significantly reduced by tracking the entities in, e.g., the robot’s short term memory, and checking against those entities before querying the robot’s knowledge bases. In fact, we are currently working to integrate DIST-POWER into a larger resolution framework inspired by Gundel et al.’s **Givenness Hierarchy** (Gundel et al. 1993), which will both substantially reduce complexity and allow a robot to resolve references occurring in a wider variety of linguistic forms (Williams et al. 2015b).

We also note that in order to have a consistent evaluation, the POWER and DIST-POWER algorithms were provided with information represented in the same way. However, one of the primary advantages of the DIST-POWER algorithm is that information need not be represented in a single format; the information stored in the locations knowledge base could just as easily have been represented in a topological map rather than as a database of formulae. In fact, this was the case for our proof-of-concept demonstration.

Finally, we would like to discuss how the experiments demonstrate the architectural commitments of DIARC facilitated by DIST-POWER. First, DIARC does not prescribe any single knowledge representation. This is facilitated by distributing information amongst KBs of heterogeneous representation. Second, DIARC uses formulae for inter-component communication whenever possible. This is facilitated by accepting queries represented as sets of formulae. Finally, DIARC components should perform processing asynchronously, with components possibly spread across multiple computers. This is facilitated by allowing information and processing to remain localized in separate components, rather than using a single centralized KB. However, DIST-POWER is not incremental or parallelized, aspects which would yield tighter adherence to this architectural commitment, suggesting directions for future work.

Future Work

We have already presented several directions for future work, including parallelization, incrementalization, and encapsulation within a larger resolution framework, in order to both increase efficiency and bring our approach closer in line with psycholinguistic reference resolution theories. In this section we present two additional directions for future work.

First, the probability of the best candidate referent, and the number of possible candidate referents, should be used to initiate resolution clarification requests. Doing this appropriately will require the algorithm to be able to distinguish uncertainty from ignorance; ideally, the algorithm would be able to distinguish between a consultant responding that it does not know whether a certain object has a certain property, and that consultant simply returning a fairly low probability that an object has a certain property. This could be effected, e.g., through a Dempster-Shafer theoretic approach, similar to that seen in (Williams et al. 2015a).

Second, we will investigate the performance of DIST-POWER when different heuristics are used by its components, and under different constraint-ordering strategies. For example, it may be more efficient to consider rarer constraints first so as to quickly prune the search space. On the other hand, it may be more efficient to instead sort constraints by cost, so that expensive constraints are only examined after establishing that less expensive constraints hold.

Conclusion

In this paper we introduced a framework for performing open-world reference resolution in an integrated architecture with knowledge distributed among heterogeneous KBs. We then presented the DIST-POWER algorithm for efficiently searching the space of candidate referential hypotheses, along with an objective analysis of algorithm performance and a proof-of-concept demonstration of behavior on a simulated robot, showing how the algorithm helps address the challenges of performing reference resolution with a distributed, heterogeneous knowledge representation scheme.

Acknowledgments

This work was funded in part by grant #N00014-14-1-0149 from the US Office of Naval Research.
References

Marios Daoutis, Silvia Coradeschi, and Amy Ounifi. Grounding commonsense knowledge in intelligent systems. *Journal of Ambient Intelligence and Smart Environments*, 2009.

