

VIEW ON GITHUB

M Wwolfe

Ll DOCUMENTATION NEWS

GETTING STARTED.

CONCEPTS

i+1)}

maxProduct(mpParans)

(a) Interactive page with a combination of code and the visualiza-
tion of the factor graph generated by the code. The students can
modify the mathematical definition of the model, and explore
how it translates into conditional independences.

(b) Another section of the documentation showing a mixture of
math and text, with a tree representation of data structures. The
students can not only regenerate the tree by modifying the code,
but the visualization itself supports interactions such as panning
and zooming to navigate more complex trees.

Figure 1: WOLFE Machine Learning Toolkit Documentation

4 Creating Notebooks

So far, we have highlighted the various features of Moro
notebooks that make it useful for teaching Al, and studied
a few examples of how Moro is being used today. However,
often adoption of any format depends crucially on its ease of
use, more so in teaching since the instructors differ consider-
ably in their backgrounds and expertises. With this in mind,
Moro notebook editor has been created to be extremely easy
to use: it uses WYSIWYG* UI principles to give an accu-
rate representation of the notebook, uses syntax highlighting
and keyboard shortcuts customized to each content type, and
supports browser-based interface and a portable file format
for easy creation on any device. A screenshot of the Moro
notebook editor, shown in Figure 4, highlights many of these
features, which we will also elaborate upon next.

4.1 WYSIWYG Interface

The editor interface is laid out with the cell editors on the left
(text fields for entering the content), and the rendered version
of the cell displayed on the right. As the author changes the
content of the cell, for example entering Markdown in the
first cell in Figure 4, Moro renders the output immediately on
the right. This constant rendering allows instructors to detect
errors and iterate quickly on the content. Further, the conver-
sion of the cell code to HTML is carried out remotely on the
server, thus requiring minimal computational requirements
from the client’s browser.

*“What You See Is What You Get”

410¢

4.2 Cell Editors

Since the cell editor (left-side) is the where the content cre-
ators are likely to spend most of their time, we’ve introduced
a number of features for further ease-of-use. The editors sup-
port a wide variety of regular text-editing keyboard shortcuts,
along with extra ones specific to Moro such as navigating
between previous/next cells, regenerating the output of the
current cell, changing the content type of the cell, splitting
the cell, and so on. Each cell editor also adapts to the content
type, using the appropriate syntax highlighting and auto-
completion, making them quite similar to popular editors of
the specific content type.

4.3 File Format and Portability

The underlying format of Moro notebooks is JSON (ECMA
2013), a human readable (and editable) format for structured
data. Using this text-based format not only integrates with
revision control systems and external text-friendly editors,
but also opens up the possibilities of interfacing with other
systems using existing JSON libraries. Further, since only the
cell content is stored, and not the actual rendered HTML, the
Moro notebooks are quite small in size, and thus portable.

4.4 Installation

A difficult and complicated installation of tools causes an
unnecessary overhead for the student’s learning, and requires
additional effort on the instructor’s part to provide support.
We have attempted to make Moro quite easy to install; on any
Linux/Unix shell, including OSX and Cygwin on Windows,
Moro can be installed and run as a web-server using 2 S 3

Training Language Models

The uniform LM is obviously not good at modelling actual language. To improve upon this baseline, we can
estimate the conditional n-gram distributions from the training data. To this end let us first introduce one
parameter 0, for each word w and history h of length n. — 1, and define a parametrized language model py

Po(wih) = O,y

Training an n-gram LM amounts to estimating 8 from some training set Dyyqi; = (W1, ... , W,). One way to do this
is to choose the @ that maximizes the log-likelihood of D,y :

0 =
arg max > po-e)

As it tuns out, this maximum-log-likelihood estimate (MLE) can calculated in closed form, simply by counting:

o < a9
O]

where
#p(e) = Count of e in D

Let us use this to first train a unigram model.

1 val unigram = ngram(train,1)(vocab) @
2 Plotter.barChart(unigram.distribution().take(10))
01 0.14
o 009 009
0.04 i
a 002 002 002 001 oot
0.0 == =1
[oov] /BAR] the you a
[BAR] . 1 to and
The uniform LM has substantially reduced (better) perplexity:
1 unigram.perplexity(test) @

109.04557754023826

Figure 2: A section of the statistical NLP graduate course
material showing math, text, and code, where the bar chart
has been generated directly from the code, and thus can
be modified. Data used to generate the distribution appears
earlier in the notebook.

lines of code. Note that the installation is required primarily
for creating, editing, and displaying notebooks; in many in-
stances only the instructor needs to set up this server, and the
students are able to view notebooks on any browser.

5 Conclusions and Future Work

We are motivated by the need for interactive and visual ed-
ucational materials for teaching Al that are effective ped-
agogical resources (Stein 1996; Mclntyre and Wolff 1998;
Naps and al. 2002), however are extremely difficult to create
using existing tools. To address this concern, we propose
Moro, an in-browser creation and presentation tool that al-
lows instructors to easily create such visual and interactive
pages. In particular, Moro notebooks allow instructors to
combine together math, text, and images with interactive
code blocks that visualize Al data structures. We highlighted
three use cases of Moro that cover different modes of Al edu-
cation: course material, online documentation, and tutorial
presentation. Moro source code, along with the case studies,
is open source at http://wolfe-pack.github.io/moro under the
BSD license.

There are a number of future avenues we plan to ex-
plore. To increase the coverage of instructors with differ-
ent programming backgrounds, we would like to expand the
programming languages that Moro supports. Given Moro’s
REST-ful API, we do not anticipate this to be a significant
challenge. We are also going to investigate data structure
visualizations commonly used in teaching artificial intelli-
gence beyond the ones currently supported by Moro (matri-
ces, graphs, trees, plate models, and plots), including popular

4105

Truncated SVD

If we truncate D toits L largest values

Y

trunc

then Y = UDtrunc V = (Uy/Dirunc)(y/Dtrunc V7

is the rank-L minimizer of 'Y — Y12
Eckart-Young theorem

7

(a) Slide with combination of text, figures, and equations

SVD demo

1 val (u,s,v) = breezeSVD(M)

2 val eigen = numbers(rowVector(s))

3 val (ea,ev) = toEmbeddings(u,s,v,4)

4 val ml = opacity(matrix(dots(ea,ev)),0,2)
5

render (Seq(opacity (matrix(M),0,2),numbers (rowVector(s)),ml) , layout)

8

(b) Slide with interactive code block, modifying which during
the presentation generates different output matrices.

Figure 3: Slides from the ACL 2015 Tutorial

application-specific structures such as the grid-world and
computer vision (Moro currently supports NLP tasks). Fi-
nally, we are actively seeking feedback from Moro users
(students and instructors), and plan to improve Moro continu-
ously to incorporate their suggestions.

Acknowledgements

The authors would like to thank Tim Rocktidschel, Luke
Hewitt, Jason Naradowsky, Guillaume Bouchard, Matko
Bosnjak, Andreas Vlachos, and Vivek Srikumar for ideas,
testing, and bug reports for early versions of Moro. This work
was supported in part by TerraSwarm, one of six centers of
STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA, in part by the Paul Allen
Foundation through an Allen Distinguished Investigator grant
and in part by a Marie Curie Career Integration Fellowship.

markdown e I - I R 0B

Settings

Title
Sub-title
Normal Text, _Ttalics_,

Content Type
pold

* List
* [Link](http://google.com)
1. sublist

* Inline Math: Q\prod_i \sum_j i + j\\)

Input Box

1 import ml.wolfe.nlp.syntax._

2 val doc = Document.fromString("Hello World, how are you?")
3 val pipeline = Tokenizer.default andThen Segmenter.default
4 val segmented = pipeline(doc)

5 val test = segmented(®) = _.arcs =

6 Seq(Arc(3,1,Some("sbj")), Arc(3,4,"obj"))

7 renderDependencies(test) Content-type specific Editor

Input Box

Document Title

Test Notebook

Exe

cute

Edit Title View Save Source
S B 0 » B+ <«
Settings Re-render Save As
Title
Sub-title
Normal Text, /talics, bold
o List
e Link
1. sublist
+ Inline Math: T, 3%, i +j Output Box
sbj
A iy e i
HelloWorld,how are you ?
Output Box

Figure 4: Moro Notebook Editor: Screenshot of the Moro notebook creation interface, with some of the features such as
WYSIWYG interface, cell mode selection, cell and notebook configuration, etc. highlighted in purple.

References

Archambault, A. 2015. Jupyter Scala. https://github.com/
alexarchambault/jupyter-scala. [Online; accessed 30-Nov-
2015].

Cervone, D.; Sorge, V.; Perfect, C.; and Krautzberger, P. 2009.
MathJax. https://www.mathjax.org/. [Online; accessed 15-
Sep-2015].

ECMA. 2013. The JSON Data Interchange Format. Technical
Report 404, ECMA Standards.

Gruber, J. 2004. Daring Fireball - Markdown. http:
//daringfireball.net/projects/markdown/syntax. [Online; ac-
cessed 15-Sep-2015].

Hattab, H. E. 2011. reveal.js - The HTML Presentation
Framework. http://lab.hakim.se/reveal-js/. [Online; accessed
15-Sep-2015].

Lamport, L. 1994. BIEX: a Document Preparation System.
Reading, Ma.: Addison-Wesley Publishing Company, 2 edi-
tion. Illustrations by Duane Bibby.

Mclntyre, D. R., and Wolff, F. G. 1998. An experiment with
WWW interactive learning in university education. Comput-
ers & Education 31(3):255 — 264.

Miller, B.; Ranum, D.; Guzdial, M.; Ericson, B.; and Thakur,
V. 2011. Runestone Interactive. http://www.interactivepython.
org/runestone. [Online; accessed 30-Nov-2015].

Naps, T. L., and al. 2002. Exploring the role of visualization
and engagement in computer science education. In Working
Group Reports from ITiCSE on Innovation and Technology in
Computer Science Education, ITICSE-WGR °02, 131-152.
New York, NY, USA: ACM.

Odersky, M., and al. 2004. An Overview of the Scala Pro-

4106

gramming Language. Technical Report 1C/2004/64, EPFL,
Lausanne, Switzerland.

O’Hara, K.; Blank, D.; and Marshall, J. 2015. Computational
notebooks for Al education. In Florida Artificial Intelligence
Research Society Conference.

Pérez, F., and Granger, B. E. 2007. IPython: A system for
interactive scientific computing. Computing in Science and
Engineering 9(3).

Riedel, S.; Singh, S.; Srikumar, V.; Rocktaschel, T.; Visen-
geriyeva, L.; and Noessner, J. 2014. Wolfe: Strength reduc-
tion and approximate programming for probabilistic program-

ming. In International Workshop on Statistical Relational Al
(StarAl).

Stein, L. A. 1996. Interactive programming: Revolutionizing
introductory computer science. ACM Comput. Surv. 28(4es).

