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Figure 2: Power-plant simulations: the step-valued utility function (as in Equation 13) in the first column, the true distribution p
(in blue) and q∗ (in red) in the second column and in the third and forth columns the result of performing Subsampled MC and
Sequential MC (as described in the text) are shown. In the two right-hand columns, note that q∗ achieves the same percentage
of optimal action selection performance as p in a mere fraction of the number of samples.

In Figure 2, the utility functions are shown in the first col-
umn (with black indicating the utility of on as detailed in
Equation 13) and the temperature distributions (p in blue
as described above and q∗ in red) in the second column
are shown. In the third and fourth columns the result of
performing Subsampled MC and Sequential MC of the
Metropolis-Hastings sampler for selecting the best action is
shown such that the x-axis represents the number of samples
and the y-axis shows the percentage of times the correct op-
timal action is selected. Here, in general, we observe that a
significantly smaller number of samples from q∗ is needed
to select the best action in comparison to the number of sam-
ples from p required to achieve the same performance.

To investigate the performance of samples from p and q∗
in higher dimensions, we use a d-dimensional Gaussian mix-
ture corresponding to temperatures at each point in the plant
as p(θ) = N (θ; 10,Σ) +N (θ; 20,Γ) where 10 and 20 are
d-dimensional vectors with constant value 10 and 20 as the
mean and Σi,j = 5 + I[i = j] and Γi,j = 3 + 7I[i = j] as
d × d covariance matrix. In addition, the utility function in
Equation 13 is specified with c(d)on,1 = 23, c

(d)
on,2 = 25, c

(d)
off,1 =

20, c
(d)
off,2 = 22, Hon = 50d,Hoff = 13, Lon = 1.1, Loff =

1.5 log(d). In Figure 3 for d ∈ {2, 4, 10, 20, 50, 80, 100}, we
observe that in an average of 100 runs of the MCMC with
200 samples, as the dimensions increase using q∗ is more ef-

ficient. In fact, for a 100-dimensional bimodal Gaussian we
are unable to find the optimal action using only 200 samples
from p, which should be contrasted with the significantly
improved performance given by sampling from q∗.
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(a) Subsampled MC
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(b) Sequential MC

Figure 3: Performance of the decision maker in selecting the
best action as the dimension of the problem increases in the
power-plant. Note that at 100 dimensions, p is unable to se-
lect the optimal action whereas q still manages to select it
a fraction of the time (and would do better if more samples
were taken).
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(a) Environment’s Map
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(b) Subsampled MC
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(c) Sequential MC

Figure 4: A robot’s internal map showing the samples taken
from its true belief distribution p (two modes are shown in
blue, the second one is slightly obfuscated by the robot) and
the optimal sampling distribution q∗ derived by our loss cal-
ibrated Monte Carlo importance sampler in 4a. In 4b and
4c we see the performance (in terms of percentage of opti-
mal action selected) of our loss-calibrated sampling method
using q∗ leads to near immediate detection of the optimal
action in only a few samples.

Robotics
Another application where sampling has been commonly
used is localization in robotics (Thrun 2000). It is a risk-
sensitive-decision making problem where the robot is re-
warded for navigating to the charger in order to maintain its
power but wrong actions may lead to catastrophic incidents
like falling down the stairs or crashing into obstacles. Due
to minimal resources on-board a robot and the nature of the
real-time localization problem, it is crucial for the robot to
be able to select the optimal action rapidly, yet safely.

The state of the robot is the combination of its coordi-
nates on a map and its heading direction. In our example for
these experiments, we use a three dimensional Gaussian be-
lief state distribution with two locations in a room intended
to model that a robot’s belief update has been confused by
symmetries in the environment: one mode is at the robot’s
true location and the other at the opposite end of the room.

In this experiment, we consider a map as shown in Figure
4a where there is a flat in-door environment that the robot
can move by selecting one of the four actions forward, back-
ward, right or left. This action will lead to a movement step
in robot from the current point on map with the heading di-
rection towards the selected action. In doing so however, the
robot has to avoid the stairs (low utility region) and select
the charging source (high utility region).

Assuming a deterministic transition dynamics model
θ′=T (θ, a) and denoting (T (θx, a), T (θy, a)) as the loca-

tion of the robot after taking action a from state θ (that is,
moving from the current location in the direction of the the
selected action heading) andRr the set induced by region r,
we use the following utility function:

u(θ, a) =


H (T (θx, a), T (θy, a)) ∈ Rcharger

L (T (θx, a), T (θy, a)) ∈ Rstair

M otherwise
, (14)

where L < M < H (in our experiments: L = 1,M =
10, H = 400) and a ∈ {forward, backward, right,
left}. Using distribution q∗ from Theorem 5 as illustrated
in Figure 4a, the samples from q∗ (in red) concentrated on
the charger’s location which has higher utility value com-
pared to the samples from p (in blue) that are from the mode
of the distribution.

As shown in Figure 4b and 4c, using distribution q∗ and
running the same diagnostics as the previous experiment we
see significant improvement in selection of the optimal ac-
tion, requiring only a fraction of the samples of p to achieve
the same optimal action selection percentage.

Conclusion and Future Work
We investigated the problem of loss-calibrated Monte Carlo
importance sampling methods to improve the efficiency of
optimal Bayesian decision-theoretic action selection in com-
parison to conventional loss-insensitive Monte Carlo meth-
ods. We derived an optimal importance sampling distribu-
tion to minimize the regret bounds on the expected utility
for multiple actions. This, to the best of our knowledge, is
the first result linking the utility function for actions and the
optimal distribution for Monte Carlo importance sampling
in Bayesian decision theory. We drew connections from re-
gret to the probability of selecting non-optimal actions and
from there to the variance. We showed using an alternative
distribution as derived in Theorem 5 will sample more heav-
ily from regions of significance as identified by their sum of
utility differences.

Empirically, we showed that our loss-calibrated Monte
Carlo method yields high-accuracy optimal action selections
in a fraction of the number of samples required by loss-
insensitive samplers in synthetic examples of up to 100 di-
mensions and robotics-motivated applications.

Future work should investigate the extension of the novel
results in this work to the case of (a) continuously parameter-
ized actions (Alessandro, Restelli, and Bonarini 2007), (b)
imprecise utility functions (e.g, when the return of a state is
not known precisely, but can be sampled) (Boutilier 2003),
(c) uncontrollable sampling (where the utility partially de-
pends on auxiliary variables that cannot be directly sam-
pled from) and (d) applications in active learning and crowd-
sourcing (Beygelzimer, Dasgupta, and Langford 2009). Fur-
thermore, the bounds obtained here are not tight in the multi-
action setting and can be improved in future work.

Altogether, this work and the many avenues of further
research it enables suggest a new class of state-of-the-art
loss-calibrated Monte Carlo samplers for efficient online
Bayesian decision-theoretic action selection.
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