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Abstract
Metric learning has become a widespreadly used tool
in machine learning. To reduce expensive costs brought
in by increasing dimensionality, low-rank metric learn-
ing arises as it can be more economical in storage and
computation. However, existing low-rank metric learn-
ing algorithms usually adopt nonconvex objectives, and
are hence sensitive to the choice of a heuristic low-rank
basis. In this paper, we propose a novel low-rank met-
ric learning algorithm to yield bilinear similarity func-
tions. This algorithm scales linearly with input dimen-
sionality in both space and time, therefore applicable
to high-dimensional data domains. A convex objective
free of heuristics is formulated by leveraging trace norm
regularization to promote low-rankness. Crucially, we
prove that all globally optimal metric solutions must
retain a certain low-rank structure, which enables our
algorithm to decompose the high-dimensional learning
task into two steps: an SVD-based projection and a met-
ric learning problem with reduced dimensionality. The
latter step can be tackled efficiently through employing
a linearized Alternating Direction Method of Multipli-
ers. The efficacy of the proposed algorithm is demon-
strated through experiments performed on four bench-
mark datasets with tens of thousands of dimensions.

Introduction
During the past decade, distance metric learning, typically
referring to learning a Mahalanobis distance metric, has be-
come ubiquitous in a variety of applications stemming from
machine learning, data mining, information retrieval, and
computer vision. Many fundamental machine learning al-
gorithms such as K-means clustering and k-nearest neigh-
bor classification all need an appropriate distance function
to measure pairwise affinity (or closeness) between data
examples. Beyond the naive Euclidean distance, the dis-
tance metric learning problem intends to seek a better met-
ric through learning with a training dataset subject to par-
ticular constraints arising from fully supervised or semi-
supervised information, such that the learned metric can re-
flect domain-specific characteristics of data affinities or re-
lationships. A vast number of distance metric learning ap-
proaches have been proposed, and the representatives in-
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clude supervised metric learning which is the main focus
in the literature, semi-supervised metric learning (Wu et al.
2009; Hoi, Liu, and Chang 2010; Liu et al. 2010a; 2010b;
Niu et al. 2012), etc. The suite of supervised metric learning
can further be divided into three categories in terms of forms
of supervision: the methods supervised by instance-level la-
bels (Goldberger, Roweis, and Salakhutdinov 2004; Glober-
son and Roweis 2005; Weinberger and Saul 2009), the
methods supervised by pair-level labels (Xing et al. 2002;
Bar-Hillel et al. 2005; Davis et al. 2007; Ying and Li 2012),
and the methods supervised by triplet-level ranks (Ying,
Huang, and Campbell 2009; McFee and Lanckriet 2010;
Shen et al. 2012; Lim, McFee, and Lanckriet 2013). More
methods can also be found in two surveys (Kulis 2012) and
(Bellet, Habrard, and Sebban 2013).

Despite the large amount of literature, relatively little
work has dealt with the problem where the dimensional-
ity of input data can be extremely high. This is relevant
to a wide variety of practical data collections, e.g., images,
videos, documents, time-series, genomes, and so on, which
frequently involve from tens to hundreds of thousands of
dimensions. Unfortunately, learning full-rank metrics in a
high-dimensional input space Rd quickly becomes computa-
tionally prohibitive due to high computational complexities
ranging from O(d2) to O(d6.5). Additionally, limited mem-
ory makes storing a huge metric matrix M ∈ Rd×d a heavy
burden.

This paper concentrates on a more reasonable learning
paradigm, Low-Rank Metric Learning, also known as struc-
tural metric learning. (Davis and Dhillon 2008) demon-
strated that in the small sample setting n� d (n is the num-
ber of training samples) learning a low-rank metric in a high-
dimensional input space is tractable, achieving linear space
and time complexities with respect to the dimensionality d.
We follow this learning setting n � d throughout the pa-
per. Given a rank r � d, a distance metric can be expressed
into a low-rank form M = LL> which is parameterized by
a rectangular matrix L ∈ Rd×r. L constitutes a low-rank
basis in Rd, and also acts as a dimensionality-reducing lin-
ear transformation since any distance between two inputs x
and x′ under such a low-rank metric M can be equivalently
viewed as a Euclidean distance between the transformed in-
puts L>x and L>x′. Therefore, the use of low-rank met-
rics allows reduced storage of metric matrices (only saving
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L) and simultaneously enables efficient distance computa-
tion (O(dr) time). Despite the benefits of using low-rank
metrics, the existing methods most adopt nonconvex opti-
mization objectives like (Goldberger, Roweis, and Salakhut-
dinov 2004; Torresani and Lee 2006; Mensink et al. 2013;
Lim and Lanckriet 2014), and are thus confined to the sub-
space spanned by a heuristic low-rank basis L0 even includ-
ing the convex method (Davis and Dhillon 2008). In terms of
the training costs, most low-rank metric learning approaches
including (Goldberger, Roweis, and Salakhutdinov 2004;
Torresani and Lee 2006; McFee and Lanckriet 2010; Shen
et al. 2012; Kunapuli and Shavlik 2012; Lim, McFee, and
Lanckriet 2013) yet incur quadratic and cubic time complex-
ities in the dimensionality d. A few methods such as (Davis
and Dhillon 2008) and (Mensink et al. 2013) are known to
provide efficient O(d) procedures, but they both rely on and
are sensitive to an initialization of the heuristic low-rank ba-
sis L0.

This work intends to pursue a convex low-rank metric
learning approach without resorting to any heuristics. Re-
cently, one trend in similarity learning (Kar and Jain 2011;
2012; Chechik et al. 2010; Crammer and Chechik 2012;
Cheng 2013) emerges, which attempts to learn similarity
functions in the form of S(x,x′) = x>Mx′ and appears to
be more flexible than distance metric learning. In light of this
trend, we incorporate the benefits of both low-rank metrics
and similarity functions to learn a low-rank metric M that
yields a discriminative similarity function S(·). Specifically,
we propose a novel low-rank metric learning algorithm by
designing a convex objective which consists of a hinge loss
enforced over pairwise supervised information and a trace
norm regularization penalty promoting low-rankness of the
desired metric. Significantly, we show that minimizing such
an objective guarantees to obtain an optimal solution of a
certain low-rank structure as M? = UW?U>. The low-
rank basis U included in any optimal metric M? turns out
to lie in the column (or range) space of the input data matrix
X ∈ Rd×n, and W? can thus be sought within a fixed sub-
space whose dimensionality is much lower than the original
dimensionality.

By virtue of this key finding, our algorithm intelligently
decomposes the challenging high-dimensional learning task
into two steps which are both computationally tractable and
cost a total O(d) time. The first step is dimensionality re-
duction via SVD-based projection, and the second step is
lower dimensional metric learning by applying a linearized
modification of the Alternating Direction Method of Multi-
pliers (ADMM) (Boyd et al. 2011). The linearized ADMM
maintains analytic-form updates across all iterations, works
efficiently, and converges rapidly. We evaluate the proposed
algorithm on four benchmark datasets with tens of thousands
of dimensions, demonstrating that the low-rank metrics ob-
tained by our algorithm accomplish prominent performance
gains in terms of kNN classification.

Low-Rank Similarity Metrics
Different from most previous metric learning approaches
that used the learned metric into a distance function like√

(x− x′)>M(x− x′), in this paper we pursue a low-rank

Figure 1: The effect of a desired low-rank similarity met-
ric that induces a linear transformation L>. Points with the
same color denote similar data examples, while points with
different colors denote dissimilar data examples.

metric M = LL> for a bilinear similarity function to mea-
sure the similarity between two arbitrary inputs x and x′ in
Rd:

SM(x,x′) = x>Mx′ = x>LL>x′

=
(
L>x

)>(
L>x′

)
, (1)

which is parameterized by a low-rank basis L ∈ Rd×r with
the rank r � d. Naturally, such a similarity function charac-
terized by a low-rank metric essentially measures the inner-
product between two transformed inputs L>x and L>x′ in
a lower dimensional space Rr.

Motivated by (Kriegel, Schubert, and Zimek 2008) which
presented a statistical means based on angles rather than dis-
tances to identify outliers scattering in a high-dimensional
space, we would think that angles own a stronger discrim-
inating power than distances in capturing affinities among
data points in high dimensions. Suppose that we are pro-
vided with a set of pairwise labels

{
yij ∈ {1,−1}

}
of

which yij = 1 stands for a similar data pair (xi,xj) while
yij = −1 for a dissimilar pair (xi,xj). The purpose of our
supervised similarity metric learning is to make an acute an-
gle between any similar pair whereas an obtuse angle be-
tween any dissimilar pair after applying the learned metric
M or equivalently mapping data points from x to L>x. For-
mally, this purpose is expressed as

SM(xi,xj) =

{
> 0, yij = 1,
< 0, yij = −1. (2)

Fig. 1 exemplifies our notion for those angles between simi-
lar and dissimilar data pairs.

Learning Framework
Let us inherit the conventional deployment of pairwise su-
pervision adopted by most metric learning methods, e.g.,
(Xing et al. 2002; Bar-Hillel et al. 2005; Davis et al. 2007;
Davis and Dhillon 2008; Wu et al. 2009; Hoi, Liu, and
Chang 2010; Liu et al. 2010a; 2010b; Niu et al. 2012;
Ying and Li 2012). This paper tackles a supervised simi-
larity metric learning problem provided with a set of labeled
pairs I = {(xi,xj , yij)}. Suppose that n (� d) data ex-
amples X = {xi ∈ Rd}ni=1 are gathered in the set I. In-
spired by the aforementioned angle-based learning principle
in Eq. (2), we design a margin criterion over the similarity
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outputs of the supervised pairs, that is, SM(xi,xj) ≥ 1 for
yij = 1 and SM(xi,xj) ≤ −ε (ε is a small positive value)
for yij = −1. Note that setting the margin values to 1 and
-1 for positive and negative pairs in the context of similarity
learning may be infeasible for multi-class data. For exam-
ple, there are data points x1, x2, and x3 from three different
classes. Imposing SM(x1,x2) ≤ −1, SM(x1,x3) ≤ −1,
and SM(x2,x3) ≤ −1 is problematic since the former two
likely lead to SM(x2,x3) > 0.

This similarity margin criterion ensures that after apply-
ing the linear transformation L> induced by a desired met-
ric M, the angle between a similar pair (xi,xj) is acute
since their inner-product

(
L>xi

)>(
L>xj

)
= SM(xi,xj)

is large enough, and meanwhile the angle between a dissim-
ilar pair is obtuse since their inner-product is negative.

In order to promote low-rankness of the target metric, we
leverage nuclear norm ‖M‖∗, the sum of all singular values
of M, as a regularization penalty in our learning framework.
Nuclear norm has been corroborated to be able to encourage
low-rank matrix structure in the matrix completion litera-
ture (Fazel, Hindi, and Boyd 2001; Candès and Recht 2009;
Recht, Fazel, and Parrilo 2010). Moreover, since our frame-
work constrains M to be in the positive semidefinite (PSD)
cone Sd+ to make M a valid metric, the nuclear norm ‖M‖∗
can be replaced by the trace norm tr(M).

Integrating the angle principle and the trace norm regu-
larizer, the objective of our proposed Low-Rank Similarity
Metric Learning (LRSML) framework is formulated as

min
M∈Sd+

f(M) :=
n∑

i,j=1

[ỹij − yijSM(xi,xj)]+ + αtr(M),

(3)

where ỹij =

{
ε, yij = −1
yij , otherwise , [x]+ = max(0, x), and α >

0 is the regularization parameter. Above all, the objective
in Eq. (3) is convex and does not introduce any heuris-
tic low-rank basis which was required by the prior con-
vex method (Davis and Dhillon 2008) and those noncon-
vex methods (Goldberger, Roweis, and Salakhutdinov 2004;
Torresani and Lee 2006; Mensink et al. 2013; Lim and
Lanckriet 2014) in low-rank distance metric learning. Sec-
ond, minimizing the hinge loss in Eq. (3) enforces the
margin criterion on the similarity function SM so that the
dissimilar pairs can be obviously distinguished from the
similar ones. It is worth clarifying that we do not pursue
SM(xi,xj) = 0 (i.e., ε = 0) in the case of yij = −1 in
Eq. (2) because it may lead to the trivial solution M = 0 to
Eq. (3).1

Due to the space limit, all the proofs of lemmas and theo-
rems presented in this section are placed in the supplemental
material.

1We observed the trivial solution M = 0 in the case of ε = 0
when the training data examples are fewer and the regularization
parameter α is relatively large.

Optimality Characterization
Despite being convex, the framework in Eq. (3) is not easy
to directly tackle when the data points of X live in a space
of high dimensions, i.e., d is very large. Under the high-
dimensional scenario, basic matrix manipulations upon M
are too expensive to execute. For example, projecting M
onto Sd+ costs O(d3). Nonetheless, by delving into problem
(3) we can characterize a certain low-rank structure of its
all optimal solutions. In particular, such a low-rank structure
can be proven to be the form of UWU>, in which U is a
low-rank basis lying in the column space of the data matrix
X.

Let us do the singular value decomposition (SVD) over
the data matrix X = [x1, · · · ,xn] ∈ Rd×n, obtaining
X = UΣV> =

∑m
i=1 σiuiv

>
i , where m (≤ n � d) is

the rank of X, σ1, · · · , σm are the positive singular values,
Σ = diag(σ1, · · · , σm), and U = [u1, · · · ,um] ∈ Rd×m
and V = [v1, · · · ,vm] ∈ Rn×m are the matrices com-
posed of left- and right-singular vectors, respectively. It is
obvious that range(X) ≡ range(U), in which we write
range(A) = span

(
{ai}i

)
as the column space of a given

matrix A. Significantly, the optimality of problem (3) can
be characterized as follows.

Lemma 1. For any optimal solution M? to problem (3), we
have M? ∈

{
UWU>|W ∈ Sm+

}
.

Lemma 1 reveals that although we are seeking M? in Sd+,
any optimal solution M? must obey the certain low-rank
structure UWU> because of the nature of problem (3). This
important discovery enables us to first project the data onto
the low-rank basis U and then seek W via optimizing a new
problem in Eq. (4) which is at a much smaller scale than the
raw problem in Eq. (3).

Theorem 1. For any i ∈ [1 : n], denote x̃i = U>xi ∈ Rm.
Then M? is an optimal solution to problem (3) if and only if
M? = UW?U> in which W? belongs to the set

arg min
W∈Sm+

f̃(W) :=

n∑
i,j=1

[
ỹij − yijx̃>

i Wx̃j

]
+
+ αtr(W).

(4)

Theorem 1 indicates that through a simple projection step
(xi → U>xi), we are able to reduce the high-dimensional
metric learning task in Eq. (3) to a lower dimensional met-
ric learning problem in Eq. (4) with guarantees, thereby
greatly reducing the computational costs. However, the scale
of problem (4) could still be not neglectable, which severely
limits the use of the off-the-shell interior point based solvers
such as SDPT3 (Toh, Todd, and Tütüncü 1999). In the next
subsection, we will devise an efficient first-order method to
solve problem (4).

Similar projection tricks have been recently exploited and
proven for convex distance metric learning problems reg-
ularized by squared Frobenius norm (Chatpatanasiri et al.
2010) and several other strictly convex functions (Kulis
2012), whose proof strategies, however, cannot carry over to
trace norm since trace norm is not strictly convex. To the best
of our knowledge, the structural representation UW?U>
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characterizing optimal metric solutions is firstly explored
here for trace norm regularized convex metric learning.

Linearized ADMM
Now we develop an efficient optimization method to exactly
solve Eq. (4). To facilitate derivations, we define three ma-
trix operators: the Hadamard product ◦, the inner-product
〈·, ·〉, and the Frobenius norm ‖ · ‖F.

We first introduce a dummy variable matrix Z = [zij ]ij ∈
Rn×n to equivalently rewrite problem (4) as

min
W∈Sm+ ,Z

n∑
i,j=1

[zij ]+ + αtr(W) (5)

s.t. Z− Ỹ + Y ◦
(
X̃>WX̃

)
= 0,

in which three constant matrices X̃ = [x̃1, · · · , x̃n] =

U>X ∈ Rm×n, Y = [yij ]ij ∈ Rn×n, and Ỹ = [ỹij ]ij ∈
Rn×n are involved. Either of the objective function and con-
straint in Eq. (5) is separable in terms of two variables Z
and W, which naturally suggests a use of alternating direc-
tion methods. To this end, we employ the increasingly pop-
ular Alternating Direction Method of Multipliers (ADMM)
(Boyd et al. 2011) to cope with Eq. (5). ADMM works on
the following augmented Lagrangian function:

Lρ(Z,W;Λ) :=

n∑
i,j=1

[zij ]+ + αtr(W)

+
〈
Λ,Z− Ỹ + Y ◦

(
X̃>WX̃

)〉
+
ρ

2

∥∥∥Z− Ỹ + Y ◦
(
X̃>WX̃

)∥∥∥2
F
, (6)

where Λ = [λij ]ij ∈ Rn×n is the multiplier for the lin-
ear constraint in Eq. (5) (a.k.a. dual variable), and ρ > 0 is
the penalty parameter. ADMM will proceed through succes-
sively and alternatingly updating the three variable matrices
Zk, Wk and Λk (k = 0, 1, · · · ).

Z,Λ-Updates
Here we first present the updates for Z and Λ which are
easier to achieve than the update for W.

The Z-update is achieved by minimizing Lρ(Z,W;Λ)
with respect to Z while keeping W and Λ fixed, that is,

Zk+1 := argmin
Z
Lρ
(
Z,Wk;Λk

)
= argmin

Z

n∑
i,j=1

[zij ]+

+
ρ

2

∥∥∥Z− Ỹ + Y ◦
(
X̃>WkX̃

)
+ Λk/ρ

∥∥∥2
F
.

To solve this Z subproblem, we utilize the proximal operator
Tθ(a) = argminz∈R θ[z]+ + 1

2 (z − a)
2 (θ > 0) to handle

[zij ]+. Tθ(a) is a proximal mapping of θ[z]+ and has shown
in (Ye, Chen, and Xie 2009) to output as follows

Tθ(a) =

{
a− θ, a > θ,
0, 0 ≤ a ≤ θ,
a, a < 0.

(7)

By applying T1/ρ elementwisely, we obtain a closed-form
solution to the Z subproblem as

Zk+1 := T1/ρ
(
Ỹ −Y ◦ (X̃>WkX̃)−Λk/ρ

)
. (8)

The Λ-update is prescribed to be

Λk+1 := Λk + ρ
(
Zk+1 − Ỹ + Y ◦ (X̃>Wk+1X̃)

)
. (9)

W-Update

In the standard ADMM framework, W is updated by mini-
mizing Lρ(Z,W;Λ) with respect to W while Z and Λ are
fixed. Noticing X̃X̃> = ΣV>VΣ = Σ2, we derive the
W-update as follows

Wk+1 := arg min
W∈Sm+

Lρ
(
Zk+1,W;Λk

)
= arg min

W∈Sm+
αtr(W) +

〈
Λk,Y ◦

(
X̃>WX̃

)〉
+
ρ

2

∥∥∥Zk+1 − Ỹ + Y ◦
(
X̃>WX̃

)∥∥∥2
F

= arg min
W∈Sm+

ρ

2

∥∥X̃>WX̃
∥∥2
F
+ 〈αI,W〉

+
〈
Λk + ρZk+1 − ρỸ,Y ◦

(
X̃>WX̃

)〉
= arg min

W∈Sm+

ρ

2

〈
WΣ2,Σ2W

〉
+ 〈αI,W〉

+
〈
X̃
(
Y ◦ (Λk + ρZk+1 − ρỸ)

)
X̃>,W

〉
= arg min

W∈Sm+

1

2

〈
WΣ2,Σ2W

〉
+
〈
αI/ρ+ X̃

(
Y ◦ (Zk+1 − Ỹ + Λk/ρ)

)
X̃>,W

〉
= arg min

W∈Sm+
g
(
W;Zk+1,Λk

)
, (10)

where I denotes the m ×m identity matrix. Unfortunately,
there is no analytical solution available for this W sub-
problem in Eq. (10). Trying iterative optimization methods
to solve Eq. (10) would, however, limit the efficiency of
ADMM. In what follows, we develop a linearized modifi-
cation of the original ADMM framework in Eqs. (8)(10)(9)
by rectifying the W-update in Eq. (10) to an easier one.

Linearization. Rather than dealing with intrinsically
quadratic g

(
W;Zk+1,Λk

)
, we resort to optimizing a surro-

gate function ĝτ
(
W;Zk+1,Λk

)
which is the linear approx-

imation to g and augmented by a quadratic proximal term.
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Concretely, the rectified W-update is shown as

Wk+1 := arg min
W∈Sm+

ĝτ
(
W;Zk+1,Λk

)
= arg min

W∈Sm+

1

2τ

∥∥W −Wk
∥∥2
F
+ g
(
Wk;Zk+1,Λk

)
+

+

〈
∇Wg

(
W;Zk+1,Λk

)∣∣∣∣
W=Wk

,W −Wk

〉
= arg min

W∈Sm+

〈
Gk,W −Wk

〉
+

1

2τ

∥∥W −Wk
∥∥2
F

= arg min
W∈Sm+

1

2τ

∥∥W −
(
Wk − τGk

)∥∥2
F

= PSm+
(
Wk − τGk

)
. (11)

In Eq. (11) we introduce the matrix

Gk = ∇Wg
(
W;Zk+1,Λk)∣∣∣∣

W=Wk

(12)

= αI/ρ+ X̃
(
Y ◦ (Zk+1 − Ỹ + Λk/ρ)

)
X̃> + Σ2WkΣ2.

The introduced operator PSm+ (·) represents the projection
operation onto the PSD cone Sm+ ; for example, PSm+ (A) =∑m
i=1[γi]+pip

>
i for any symmetric matrix A ∈ Rm×m

whose eigenvector-eigenvalue pairs are (pi, γi)
m
i=1. The in-

troduced parameter τ > 0 is the step size which is to be
specified later.

The advantage of linearizing g
(
W;Zk+1,Λk

)
is that the

resulting W-update in Eq. (11) enjoys an analytical expres-
sion and consequently works very efficiently. This modifi-
cation of the standard ADMM, i.e., optimizing ĝτ instead of
g, is the core ingredient of our developed linearized ADMM
framework, namely linearized ADMM. The following theo-
rem certifies that the developed linearized ADMM is theo-
retically sound, producing a globally optimal solution to the
raw problem in Eq. (5).

Theorem 2. Given 0 < τ < 1
‖X̃‖4op

= 1
‖X‖4op

, the sequence{(
Zk,Wk,Λk

)}
k

generated by the linearized ADMM in
Eqs. (8)(11)(9) starting with any symmetric

(
Z0,W0,Λ0

)
converges to an optimal solution of problem (5).

Note that ‖ · ‖op denotes the operator norm of matrices.
For simplicity, we initialize W0 = Im×m and Λ0 = 0n×n
to launch the linearized ADMM.

Algorithm
We summarize the proposed Low-Rank Similarity Metric
Learning (LRSML) approach in Algorithm 1, which con-
sists of two steps: 1) SVD-based projection, and 2) lower
dimensional metric learning via the linearized ADMM. In
the projection step, the SVD of X can be efficiently per-
formed in O(dn2) time by running the eigen-decomposition
over the matrix X>X. If the data vectors in X are zero-
centered, such a decomposition is exactly PCA. In the lin-
earized ADMM step, we use the scaled dual variable matrix
Λ̃k = Λk/ρ. Importantly, we claim that there is no need
to explicitly compute and even store the large d × d metric

Algorithm 1 Low-Rank Similarity Metric Learning
Input: the data matrix X ∈ Rd×n (d � n), the pairwise label matrix
Y ∈ {1,−1}n×n, the regularization parameter α > 0, three positive constants
ε, ρ, τ , the budget iteration number T .
SVD Projection: perform the SVD of X = UΣV> to obtain U ∈ Rd×m,
Σ ∈ Rm×m+ , and compute the projected data X̃ = U>X ∈ Rm×n.
Linearized ADMM:
form the matrix Ỹ ∈ {1, ε}n×n according to Y;
initialize W0 = Im×m, Λ̃0 = 0n×n, S0 = X̃>X̃;
for k = 1, · · · , T do

Zk ←− T1/ρ
(
Ỹ −Y ◦ Sk−1 − Λ̃k−1

)
,

Gk−1 ←− α
ρ Im×m+X̃

(
Y◦(Zk−Ỹ+Λ̃k−1)

)
X̃>+Σ2Wk−1Σ2,

Wk ←− PSm
+

(
Wk−1 − τGk−1

)
, Sk ←− X̃>WkX̃,

Λ̃k ←− Λ̃k−1 + Zk − Ỹ + Y ◦ Sk ,
if
∥∥Zk − Ỹ + Y ◦ Sk

∥∥2

F
/n2 ≤ 10−12 then

break,
end if

end for.
Output: run the eigen-decomposition of Wk = HEH> in which E ∈ Rr×r

retains the positive eigenvalues, and then output the optimal low-rank basis L? =

UHE1/2 ∈ Rd×r (the corresponding low-rank metric is M? = L?L?>).

matrix M; instead, it only needs to store the low-rank ba-
sis U and update the much smaller m × m metric matrix
Wk, as indicated by Theorem 1. In doing so, LRSML cir-
cumvents expensive matrix manipulations such as projecting
M onto Sd+, therefore accomplishing considerable savings in
both storage and computation. The total time complexity of
LRSML is bounded by O(dn2+Tn3) which scales linearly
with the input dimensionality d. In practice, we find that the
linearized ADMM converges rapidly within T = 1, 000 it-
erations under the setting of ρ = 1, τ = 0.01 (see the con-
vergence curves in the supplemental material).

Discussion
A primary advantage of our analysis in Lemma 1 and The-
orem 1 is avoiding the expensive projection onto the high-
dimensional PSD cone Sd+, which was required by the pre-
vious trace norm regularized metric learning methods such
as (McFee and Lanckriet 2010; Lim, McFee, and Lanck-
riet 2013). In the supplemental material, we further provide
in-depth theoretic analysis (see Lemma 3 and Theorem 3)
to comprehensively justify the low-rank solution structure
M? = UW?U> for any convex loss function in terms of
x>i Mxj regularized by trace norm tr(M) or squared Frobe-
nius norm ‖M‖2F. As a result, our analysis would directly
lead to scalable O(d) algorithms for a task of low-rank dis-
tance or similarity metric learning supervised by instance-
level, pairwise, or listwise label information. For example,
our analysis would give anO(d)-time algorithm for optimiz-
ing the low-rank distance metric learning objective (a hinge
loss based on listwise supervision plus a trace norm regular-
izer) in (McFee and Lanckriet 2010) through following our
proposed two-step scheme, SVD projection + lower dimen-
sional metric learning.

We remark here that linearized ADMM techniques have
been investigated in the optimization community, and ap-
plied to the problems arising from compressed sensing
(Yang and Zhang 2011), image processing (Zhang et al.
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Table 1: Basic descriptions of four datasets used in the ex-
periments.

Dataset # Classes # Samples # Dimensions
Reuters-28 28 8,030 18,933
TDT2-30 30 9,394 36,771

UIUC-Sports 8 1,579 87,040
UIUC-Scene 15 4,485 21,504

2010), and nuclear norm regularized convex optimization
(Yang and Yuan 2013). Nevertheless, the linearized ADMM
method that we developed in this paper is self-motivated in
the sense that it was derived for solving a particular opti-
mization problem of low-rank metric learning. To the best
of our knowledge, linearized ADMM has not been applied
to metric learning before, and the analytic-form updates pro-
duced by our linearized ADMM method are quite advanta-
geous. Note that (Lim, McFee, and Lanckriet 2013) applied
the standard ADMM to solve a subproblem in every iteration
of their optimization method, but executing ADMM at only
one time costs the cubic time complexity O(T ′d3) (T ′ is
the iteration number of ADMM) which is computationally
infeasible in high dimensions. By contrast, our linearized
ADMM tackles the entire metric optimization in O(Tn3)
time, performing at least one order of magnitude faster than
the standard ADMM by virtue of the elegant W-update.

Experiments
We carry out the experiments on four benchmark datasets
including two document datasets Reuters-28 and TDT2-30
(Cai, He, and Han 2011), and two image datasets UIUC-
Sports (Li and Fei-Fei 2007) and UIUC-Scene (Lazebnik,
Schmid, and Ponce 2006). Note that we choose 28 cate-
gories in the raw Reuters-21578 corpus (Cai, He, and Han
2011) such that each category has no less than 20 exam-
ples. In Reuters-28 and TDT2-30, each document is repre-
sented by an `2 normalized TF-IDF feature vector; in UIUC-
Sports and UIUC-Scene, each image is represented by an `2
normalized sparse-coding feature vector (Wang et al. 2010).
The basic information about these four datasets is shown in
Table 1.

The baseline method is named as “Original”, which
takes original feature vectors for 1NN classification, and
the linear SVM is also included in comparison. Here we
evaluate and compare eight metric and similarity learning
methods including: two classical linear dimensionality re-
duction methods Latent Semantic Analysis (LSA) (Deer-
wester et al. 1990) and Fisher Linear Discriminant Analy-
sis (FLDA) (Hastie, Tibshirani, and Friedman 2009), two
low-rank variants LSA-ITML and CM-ITML (Davis and
Dhillon 2008) of a representative distance metric learn-
ing method Information-Theoretic Metric Learning (ITML)
(Davis et al. 2007) (LSA-ITML uses LSA’s output as its
heuristic low-rank basis, while CM-ITML uses the class
means as its heuristic low-rank basis), two recent low-rank
distance metric learning methods Metric Learning to Rank
(MLR) (McFee and Lanckriet 2010) and Metric Learning
for the Nearest Class Mean classifier (MLNCM) (Mensink

et al. 2013) (MLNCM also uses LSA’s output as its heuris-
tic low-rank basis), a similarity learning method Adaptive
Regularization Of MAtrix models (AROMA) (Crammer and
Chechik 2012), and the Low-Rank Similarity Metric Learn-
ing (LRSML) method proposed in this paper. Except ML-
NCM which requires to use the Nearest Class Mean classi-
fier, all the compared metric/similarity learning methods col-
laborate with the 1NN classifier. Note that we choose to run
LSA instead of PCA because of the nonnegative and sparse
nature of the used feature vectors. LSA-ITML, CM-ITML,
MLR and LRSML are convex methods, while MLNCM is a
nonconvex method. We choose the most efficient version of
AROMA, which restricts the matrix M used in the similar-
ity function to be diagonal. To efficiently implement MLR,
we follow the two-step scheme, which has been justified in
this paper, SVD projection followed by MLR with lower di-
mensionality.

Except AROMA which does not impose the PSD con-
straint on M, each of these referred methods can yield a
low-rank basis L. For them, we try three measures between
two inputs x and x′: (i) distance

∥∥L>x−L>x′
∥∥, (ii) inner-

product
(
L>x

)>(
L>x′

)
, and (iii) cosine (L>x)>(L>x′)

‖L>x‖‖L>x′‖ .
For LSA, FLDA, LSA-ITML, CM-ITML, MLR and ML-
NCM, distance and cosine measures are tried; while for
LRSML, inner-product and cosine measures are tried since
the inner-product measure (ii) is exactly the bilinear similar-
ity function shown in Eq. (1). The baseline “Original” gives
the same results under the three measures as the feature vec-
tors are `2 normalized already.

Let C be the number of classes in every dataset. On
Reuters-28 and TDT2-30, we select 5 × C up to 30 × C
samples for training such that each category covers at least
one sample; we pick up the same number of samples for
cross-validation; the rest of samples are for testing. We re-
peat 20 times of random training/validation/test splits, and
then report the average classification error rates and training
time for all the competing methods in Tables 2 and 3. On
the two image datasets, we follow the commonly used eval-
uation protocols like (Lazebnik, Schmid, and Ponce 2006;
Wang et al. 2010). On UIUC-Sports, we select 10 to 70
samples per class for training, a half number of samples for
validation, and the remaining ones for testing; on UIUC-
Scene, we obey the similar setting and the training sam-
ples range from 10 to 100 per class. By running 20 times,
the average of per-class recognition rates as well as the
training time are reported in the tables of the supplemen-
tal material. To run our proposed method LRSML, we fix
ε = 0.1, ρ = 1, and find that τ = 0.01 makes the lin-
earized ADMM converge within T = 1, 000 iterations on all
datasets. The results shown in all the referred tables demon-
strate that LRSML consistently leads to the highest accuracy
in terms of 1NN classification. Across all datasets, the best
two results are achieved by LRSML with two measures; the
cosine measure almost results in slightly higher classifica-
tion accuracy than the inner-product measure. More experi-
mental results are presented in the supplemental material.
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Conclusions
The proposed LRSML formulated a trace norm regularized
convex objective which was proven to yield a globally opti-
mal solution with a certain low-rank structure. With the op-
timality guarantee, the challenging high-dimensional metric
learning task can be reduced to a lower dimensional metric
learning problem after a simple SVD projection. The lin-
earized ADMM was further developed to efficiently solve
the reduced problem. Our approach bears out to maintain
linear space and time complexities in the input dimension-
ality, consequently scalable to high-dimensional data do-
mains. Through extensive experiments carried out on four
benchmark datasets with up to 87,000 dimensions, we cer-
tify that our learned low-rank similarity metrics are well
suited to high-dimensional problems and exhibit prominent
performance gains in kNN classification. In future work, we
would like to investigate generalization properties of the pro-
posed LRSML like (Cao, Guo, and Ying 2012), and aim
to accomplish a tighter generalization bound for trace norm
regularized convex metric learning.
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