
Parallel Gaussian Process Regression for Big Data:
Low-Rank Representation Meets Markov Approximation

Kian Hsiang Low∗ and Jiangbo Yu∗ and Jie Chen§ and Patrick Jaillet†
Department of Computer Science, National University of Singapore, Republic of Singapore∗

Singapore-MIT Alliance for Research and Technology, Republic of Singapore§

Massachusetts Institute of Technology, USA†

{lowkh, yujiang}@comp.nus.edu.sg∗, chenjie@smart.mit.edu§, jaillet@mit.edu†

Abstract
The expressive power of a Gaussian process (GP) model
comes at a cost of poor scalability in the data size. To
improve its scalability, this paper presents a low-rank-
cum-Markov approximation (LMA) of the GP model
that is novel in leveraging the dual computational ad-
vantages stemming from complementing a low-rank ap-
proximate representation of the full-rank GP based on
a support set of inputs with a Markov approximation of
the resulting residual process; the latter approximation is
guaranteed to be closest in the Kullback-Leibler distance
criterion subject to some constraint and is considerably
more refined than that of existing sparse GP models uti-
lizing low-rank representations due to its more relaxed
conditional independence assumption (especially with
larger data). As a result, our LMA method can trade
off between the size of the support set and the order of
the Markov property to (a) incur lower computational
cost than such sparse GP models while achieving predic-
tive performance comparable to them and (b) accurately
represent features/patterns of any scale. Interestingly,
varying the Markov order produces a spectrum of LMAs
with PIC approximation and full-rank GP at the two ex-
tremes. An advantage of our LMA method is that it is
amenable to parallelization on multiple machines/cores,
thereby gaining greater scalability. Empirical evaluation
on three real-world datasets in clusters of up to 32 com-
puting nodes shows that our centralized and parallel
LMA methods are significantly more time-efficient and
scalable than state-of-the-art sparse and full-rank GP re-
gression methods while achieving comparable predictive
performances.

1 Introduction
Gaussian process (GP) models are a rich class of Bayesian
non-parametric models that can perform probabilistic regres-
sion by providing Gaussian predictive distributions with for-
mal measures of the predictive uncertainty. Unfortunately, a
GP model is handicapped by its poor scalability in the size
of the data, hence limiting its practical use to small data.
To improve its scalability, two families of sparse GP regres-
sion methods have been proposed: (a) Low-rank approxi-
mate representations (Hensman, Fusi, and Lawrence 2013;
∗Kian Hsiang Low and Jiangbo Yu are co-first authors.
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Lázaro-Gredilla et al. 2010; Quiñonero-Candela and Ras-
mussen 2005; Snelson and Ghahramani 2005) of the full-rank
GP (FGP) model are well-suited for modeling slowly-varying
functions with large correlation and can use all the data for
predictions. But, they require a relatively high rank to capture
small-scale features/patterns (i.e., of small correlation) with
high fidelity, thus losing their computational advantage. (b) In
contrast, localized regression and covariance tapering meth-
ods (e.g., local GPs (Park, Huang, and Ding 2011) and com-
pactly supported covariance functions (Furrer, Genton, and
Nychka 2006)) are particularly useful for modeling rapidly-
varying functions with small correlation. However, they can
only utilize local data for predictions, thereby performing
poorly in input regions with little/no data. Furthermore, to ac-
curately represent large-scale features/patterns (i.e., of large
correlation), the locality/tapering range has to be increased
considerably, thus sacrificing their time efficiency.

Recent sparse GP regression methods (Chen et al. 2013;
Snelson and Ghahramani 2007) have unified approaches from
the two families described above to harness their complemen-
tary modeling and predictive capabilities (hence, eliminating
their deficiencies) while retaining their computational advan-
tages. Specifically, after approximating the FGP (in particular,
its covariance matrix) with a low-rank representation based
on the notion of a support set of inputs, a sparse covari-
ance matrix approximation of the resulting residual process
is made. However, this sparse residual covariance matrix
approximation imposes a fairly strong conditional indepen-
dence assumption given the support set since the support set
cannot be too large to preserve time efficiency (see Remark 2
after Proposition 1 in Section 3). In this paper, we argue that
such a strong assumption is an overkill: It is in fact possible to
construct a more refined, dense residual covariance matrix ap-
proximation by exploiting a Markov assumption and, perhaps
surprisingly, still achieve scalability, which distinguishes our
work here from existing sparse GP regression methods uti-
lizing low-rank representations (i.e., including the unified
approaches) described earlier. As a result, our proposed resid-
ual covariance matrix approximation can significantly relax
the conditional independence assumption (especially with
larger data; see Remark 1 after Proposition 1 in Section 3),
hence potentially improving the predictive performance.

This paper presents a low-rank-cum-Markov
approximation (LMA) of the FGP model (Section 3)
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that is novel in leveraging the dual computational advan-
tages stemming from complementing the reduced-rank
covariance matrix approximation based on the support set
with the residual covariance matrix approximation due
to the Markov assumption; the latter approximation is
guaranteed to be closest in the Kullback-Leibler distance
criterion subject to some constraint. Consequently, our
proposed LMA method can trade off between the size
of the support set and the order of the Markov property
to (a) incur lower computational cost than sparse GP
regression methods utilizing low-rank representations
with only the support set size (e.g., (Chen et al. 2013;
Snelson and Ghahramani 2007)) or number of spectral
points (Lázaro-Gredilla et al. 2010) as the varying parameter
while achieving predictive performance comparable to
them and (b) accurately represent features/patterns of any
scale. Interestingly, varying the Markov order produces
a spectrum of LMAs with the partially independent
conditional (PIC) approximation (Chen et al. 2013;
Snelson and Ghahramani 2007) and FGP at the two extremes.
An important advantage of LMA over most existing sparse
GP regression methods is that it is amenable to parallelization
on multiple machines/cores, thus gaining greater scalability
for performing real-time predictions necessary in many
time-critical applications and decision support systems (e.g.,
ocean sensing (Cao, Low, and Dolan 2013; Dolan et al. 2009;
Low, Dolan, and Khosla 2008; 2009; 2011; Low et al. 2012;
Podnar et al. 2010), traffic monitoring (Chen et al. 2012;
Chen, Low, and Tan 2013; Hoang et al. 2014a; 2014b;
Low et al. 2014a; 2014b; Ouyang et al. 2014; Xu et al. 2014;
Yu et al. 2012)). Our parallel LMA method is implemented
using the message passing interface (MPI) framework to run
in clusters of up to 32 computing nodes and its predictive
performance, scalability, and speedup are empirically
evaluated on three real-world datasets (Section 4).

2 Full-Rank Gaussian Process Regression
LetX be a set representing the input domain such that each in-
put x ∈ X denotes a d-dimensional feature vector and is asso-
ciated with a realized output value yx (random output variable
Yx) if it is observed (unobserved). Let {Yx}x∈X denote a GP,
that is, every finite subset of {Yx}x∈X follows a multivariate
Gaussian distribution. Then, the GP is fully specified by its
prior mean µx , E[Yx] and covariance σxx′ , cov[Yx, Yx′ ]
for all x, x′ ∈ X . Supposing a column vector yD of realized
outputs is observed for some set D ⊂ X of inputs, a full-
rank GP (FGP) model can perform probabilistic regression
by providing a Gaussian posterior/predictive distribution

N (µU + ΣUDΣ−1DD(yD − µD),ΣUU − ΣUDΣ−1DDΣDU )

of the unobserved outputs for any set U ⊆ X \ D of inputs
where µU (µD) is a column vector with mean components
µx for all x ∈ U (x ∈ D), ΣUD (ΣDD) is a covariance ma-
trix with covariance components σxx′ for all x ∈ U , x′ ∈ D
(x, x′ ∈ D), and ΣDU = Σ>UD. The chief limitation hinder-
ing the practical use of the FGP regression method is its poor
scalability in the data size |D|: Computing the Gaussian pos-
terior/predictive distribution requires inverting ΣDD, which

incurs O(|D|3) time. In the next section, we will introduce
our proposed LMA method to improve its scalability.

3 Low-Rank-cum-Markov Approximation
Ŷx , ΣxSΣ−1SSYS is a reduced-rank approximate repre-
sentation of Yx based on a support set S ⊂ X of inputs
and its finite-rank covariance function is cov[Ŷx, Ŷx′ ] =

ΣxSΣ−1SSΣSx′ for all x, x′ ∈ X . Then, Ỹx = Yx − Ŷx is
the residual of the reduced-rank approximation and its covari-
ance function is thus cov[Ỹx, Ỹx′ ] = σxx′ − ΣxSΣ−1SSΣSx′ .
Define

QBB′ , ΣBSΣ−1SSΣSB′ and RBB′ , ΣBB′ −QBB′

for all B,B′ ⊂ X . Then, a covariance matrix ΣVV for the
set V , D ∪ U ⊂ X of inputs (i.e., associated with real-
ized outputs yD and unobserved random outputs YU ) can be
decomposed into a reduced-rank covariance matrix approx-
imation QVV and the resulting residual covariance matrix
RVV , that is, ΣVV = QVV +RVV . As discussed in Section 1,
existing sparse GP regression methods utilizing low-rank
representations (i.e., including unified approaches) approxi-
mate RVV with a sparse matrix. In contrast, we will construct
a more refined, dense residual covariance matrix approxi-
mation by exploiting a Markov assumption to be described
next.

Let the set D (U) of inputs be partitioned1 evenly into
M disjoint subsets D1, . . . ,DM (U1, . . . ,UM ) such that the
outputs yDm and YUm are as highly correlated as possible for
m = 1, . . . ,M . Let Vm , Dm ∪Um. Then, V =

⋃M
m=1 Vm.

The key idea of our low-rank-cum-Markov approximation
(LMA) method is to approximate the residual covariance
matrix RVV by a block matrix RVV partitioned into M ×M
square blocks, that is, RVV , [RVmVn ]m,n=1,...,M where

RVmVn ,


RVmVn if |m− n| ≤ B,
RVmDB

m
R−1
DB

mDB
m
RDB

mVn if n−m > B > 0,

RVmDB
n
R−1
DB

nDB
n
RDB

n Vn if m− n > B > 0,

0 if |m− n| > B = 0;
(1)

such that B ∈ {0, . . . ,M − 1} denotes the order of the
Markov property imposed on the residual process {Ỹx}x∈D
to be detailed later, DB

m ,
⋃min(m+B,M)

k=m+1 Dk, and 0 denotes
a square block comprising components of value 0.

To understand the intuition underlying the approximation
in (1), Fig. 1a illustrates a simple case of RVV with B = 1
and M = 4 for ease of exposition: It can be observed that
only the blocks RVmVn outside the B-block band of RVV
(i.e., |m − n| > B) are approximated, specifically, by un-
shaded blocks RVmVn being defined as a recursive series of
|m − n| − B reduced-rank residual covariance matrix ap-
proximations (1). So, when an unshaded block RVmVn is
further from the diagonal of RVV (i.e., larger |m− n|), it is
derived using more reduced-rank residual covariance matrix
approximations. For example, RV1V4 is approximated by an

1D and U are partitioned according to a simple parallelized
clustering scheme employed in the work of Chen et al. (2013).
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Figure 1:RVV andR
−1
DD withB = 1 andM = 4. (a) Shaded

blocks (i.e., |m − n| ≤ B) form the B-block band while
unshaded blocks (i.e., |m − n| > B) fall outside the band.
Each arrow denotes a recursive call. (b) Unshaded blocks
outside B-block band of R

−1
DD (i.e., |m− n| > B) are 0.

unshaded block RV1V4 being defined as a recursive series of
2 reduced-rank residual covariance matrix approximations,
namely, approximating RV1V4 by RV1D1

1
R−1D1

1D1
1
RD1

1V4 =

RV1D2
R−1D2D2

RD2V4 based on the support set D1
1 = D2

of inputs and in turn approximating RD2V4 by a subma-
trix RD2V4 = RD2D3

R−1D3D3
RD3V4 (1) of unshaded block

RV2V4 based on the support set D1
2 = D3 of inputs. As a

result, RV1V4 = RV1D2R
−1
D2D2

RD2D3R
−1
D3D3

RD3V4 is fully
specified by five submatrices of the respective shaded blocks
RV1V2 ,RV2V2 ,RV2V3 ,RV3V3 , andRV3V4 within theB-block
band of RVV (i.e., |m − n| ≤ B). In general, any un-
shaded block RVmVn outside the B-block band of RVV (i.e.,
|m− n| > B) is fully specified by submatrices of the shaded
blocks within the B-block band of RVV (i.e., |m− n| ≤ B)
due to its recursive series of |m−n| −B reduced-rank resid-
ual covariance matrix approximations (1). Though it may not
be obvious now how such an approximation would entail scal-
ability, (1) interestingly offers an alternative interpretation of
imposing a B-th order Markov property on residual process
{Ỹx}x∈D, which reveals a further insight on the structural
assumption of LMA to be exploited for achieving scalability,
as detailed later.

The covariance matrix ΣVV is thus approximated by a
block matrix ΣVV , QVV +RVV partitioned into M ×M
square blocks, that is, ΣVV , [ΣVmVn ]m,n=1,...,M where

ΣVmVn , QVmVn +RVmVn . (2)

So, within the B-block band of ΣVV (i.e., |m − n| ≤ B),
ΣVmVn = ΣVmVn , by (1) and (2). Note that when B =
0, ΣVmVn = QVmVn for |m − n| > B, thus yielding
the prior covariance matrix ΣVV of the partially indepen-
dent conditional (PIC) approximation (Chen et al. 2013;
Snelson and Ghahramani 2007). When B = M − 1,
ΣVV = ΣVV is the prior covariance matrix of FGP model.
So, LMA generalizes PIC (i.e., if B = 0) and becomes FGP
if B = M − 1. Varying Markov order B from 0 to M − 1
produces a spectrum of LMAs with PIC and FGP at the two

extremes.
By approximating ΣVV with ΣVV , our LMA method uti-

lizes the data (D, yD) to predict the unobserved outputs for
any set U ⊆ X \D of inputs and provide their corresponding
predictive uncertainties using the following predictive mean
vector and covariance matrix, respectively:

µLMA
U , µU + ΣUDΣ

−1
DD (yD − µD) (3)

ΣLMA
UU , ΣUU − ΣUDΣ

−1
DDΣDU (4)

where ΣUU , ΣUD, and ΣDD are obtained using (2), and
ΣDU = Σ

>
UD. If ΣDD in (3) and (4) is inverted directly,

then it would still incur the same O(|D|3) time as inverting
ΣDD in the FGP regression method (Section 2). In the rest of
this section, we will show how this scalability issue can be re-
solved by leveraging the computational advantages associated
with both the reduced-rank covariance matrix approximation
QDD based on the support set S and our proposed residual
covariance matrix approximation RDD due to B-th order
Markov assumption after decomposing ΣDD.

It can be observed from RVV (1) that RDD is approxi-
mated by a block matrixRDD = [RDmDn ]m,n=1,...,M where
RDmDn

is a submatrix of RVmVn obtained using (1).

Proposition 1 Block matrix R
−1
DD is B-block-banded, that

is, any block outside its B-block band is 0 (e.g., Fig. 1b).
Its proof follows directly from a block-banded matrix result
of Asif and Moura (2005) (specifically, Theorem 3).
Remark 1. In the same spirit as a Gaussian Markov random
process, imposing a B-th order Markov property on resid-
ual process {Ỹx}x∈D is equivalent to approximating RDD
by RDD whose inverse is B-block-banded (Fig. 1b). That
is, if |m − n| > B, YDm

and YDn
are conditionally inde-

pendent given YS∪D\(Dm∪Dn). Such a conditional indepen-
dence assumption thus becomes more relaxed with larger
data. More importantly, this B-th order Markov assumption
or, equivalently, sparsity of B-block-banded R

−1
DD is the key

to achieving scalability, as shown in the proof of Theorem 2
later.
Remark 2. Though R

−1
DD is sparse, RDD is a dense residual

covariance matrix approximation if B > 0. In contrast, the
sparse GP regression methods utilizing low-rank represen-
tations (i.e., including unified approaches) utilize a sparse
residual covariance matrix approximation (Section 1), hence
imposing a significantly stronger conditional independence
assumption than LMA. For example, PIC (Chen et al. 2013;
Snelson and Ghahramani 2007) assumes YDm

and YDn
to be

conditionally independent given only YS if |m− n| > 0.
The next result reveals that, among all |D| × |D| matrices

whose inverse is B-block-banded, RDD approximates RDD
most closely in the Kullback-Leibler (KL) distance criterion,
that is, RDD has the minimum KL distance from RDD:

Theorem 1 Let KL distanceDKL(R, R̂) , 0.5(tr(RR̂−1)−
log |RR̂−1| − |D|) between two |D| × |D| positive definite
matricesR and R̂ measure the error of approximatingR with
R̂. Then, for any matrix R̂ whose inverse is B-block-banded,
DKL(RDD, R̂) ≥ DKL(RDD, RDD).
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Its proof is in (Low et al. 2014c). Our main result in Theo-
rem 2 below exploits the sparsity of R

−1
DD (Proposition 1) for

deriving an efficient formulation of LMA, which is amenable
to parallelization on multiple machines/cores by constructing
and communicating the following summary information:

Definition 1 (Local Summary) The m-th local summary is
defined as a tuple (ẏm, Ṙm, Σ̇

m
S , Σ̇

m
U ) where

ẏm , yDm
− µDm

−R′DmDB
m

(yDB
m
− µDB

m
)

Ṙm , (RDmDm
−R′DmDB

m
RDB

mDm
)−1

Σ̇m
S , ΣDmS −R′DmDB

m
ΣDB

mS
Σ̇m
U , ΣDmU −R′DmDB

m
ΣDB

mU

such that R′DmDB
m
, RDmDB

m
R−1DB

mDB
m

.

Definition 2 (Global Summary) The global summary is de-
fined as a tuple (ÿS , ÿU , Σ̈SS , Σ̈US , Σ̈UU ) where

ÿS ,
M∑

m=1

(Σ̇m
S )>Ṙmẏm , ÿU ,

M∑
m=1

(Σ̇m
U )>Ṙmẏm

Σ̈SS , ΣSS +
M∑

m=1

(Σ̇m
S )>ṘmΣ̇m

S

Σ̈US ,
M∑

m=1

(Σ̇m
U )>ṘmΣ̇m

S , Σ̈UU ,
M∑

m=1

(Σ̇m
U )>ṘmΣ̇m

U .

Theorem 2 For B > 0, µLMA
U (3) and ΣLMA

UU (4) can be re-
duced to µLMA

U = µU + ÿU − Σ̈USΣ̈−1SS ÿS and ΣLMA
UU =

ΣUU − Σ̈UU + Σ̈USΣ̈−1SSΣ̈>US .

Its proof in (Low et al. 2014c) essentially relies on the sparsity
of R

−1
DD and the matrix inversion lemma.

Remark 1. To parallelize LMA, each machine/core m
constructs and uses the m-th local summary to compute
the m-th summation terms in the global summary, which
are then communicated to a master node. The master
node constructs and communicates the global summary to
the M machines/cores, specifically, by sending the tuple
(ÿS , ÿUm , Σ̈SS , Σ̈UmS , Σ̈UmUm) to each machine/core m. Fi-
nally, each machine/corem uses this received tuple to predict
the unobserved outputs for the set Um of inputs and provide
their corresponding predictive uncertainties using µLMA

Um (3)
and ΣLMA

UmUm (4), respectively. Computing ΣDmU and ΣDB
mU

terms in the local summary can also be parallelized due to
their recursive definition (i.e., (1) and (2)), as discussed in
(Low et al. 2014c). This parallelization capability of LMA
shows another key advantage over existing sparse GP regres-
sion methods2 in gaining scalability.
Remark 2. Supposing M, |U|, |S| ≤ |D|, LMA can
compute µLMA

U and tr(ΣLMA
UU ) distributedly in O(|S|3 +

(B|D|/M)3 + |U|(|D|/M)(|S|+B|D|/M)) time using M
parallel machines/cores and sequentially in O(|D||S|2 +
B|D|(B|D|/M)2+|U||D|(|S|+B|D|/M)) time on a single

2A notable exception is the work of Chen et al. (2013) that
parallelizes PIC. As mentioned earlier, our LMA generalizes PIC.

centralized machine. So, our LMA method incurs cubic time
in support set size |S| and Markov order B. Increasing the
number M of parallel machines/cores and blocks reduces the
incurred time of our parallel and centralized LMA methods,
respectively. Without considering communication latency, the
speedup3 of our parallel LMA method grows with increasing
M and training data size |D|; to explain the latter, unlike the
additional O(|D||S|2) time of our centralized LMA method
that increases with more data, parallel LMA does not have a
corresponding O((|D|/M)|S|2) term.
Remark 3. Predictive performance of LMA is improved by
increasing the support set size |S| and/or Markov order B
at the cost of greater time overhead. From Remark 2, since
LMA incurs cubic time in |S| as well as in B, one should
trade off between |S| and B to reduce the computational
cost while achieving the desired predictive performance. In
contrast, PIC (Chen et al. 2013; Snelson and Ghahramani
2007) (sparse spectrum GP (Lázaro-Gredilla et al. 2010))
can only vary support set size (number of spectral points) to
obtain the desired predictive performance.
Remark 4. We have illustrated through a simple toy example
in (Low et al. 2014c) that, unlike the local GPs approach,
LMA does not exhibit any discontinuity in its predictions
despite data partitioning.

4 Experiments and Discussion
This section first empirically evaluates the predictive perfor-
mance and scalability of our proposed centralized and parallel
LMA methods against that of the state-of-the-art centralized
PIC (Snelson and Ghahramani 2007), parallel PIC (Chen
et al. 2013), sparse spectrum GP (SSGP) (Lázaro-Gredilla
et al. 2010), and FGP on two real-world datasets: (a) The
SARCOS dataset (Vijayakumar, D’Souza, and Schaal 2005)
of size 48933 is obtained from an inverse dynamics problem
for a 7 degrees-of-freedom SARCOS robot arm. Each input
is specified by a 21D feature vector of joint positions, ve-
locities, and accelerations. The output corresponds to one of
the 7 joint torques. (b) The AIMPEAK dataset (Chen et al.
2013) of size 41850 comprises traffic speeds (km/h) along
775 road segments of an urban road network during morning
peak hours on April 20, 2011. Each input (i.e., road segment)
denotes a 5D feature vector of length, number of lanes, speed
limit, direction, and time. The time dimension comprises 54
five-minute time slots. This traffic dataset is modeled using
a relational GP (Chen et al. 2012) whose correlation struc-
ture can exploit the road segment features and road network
topology information. The outputs correspond to the traffic
speeds.

Both datasets are modeled using GPs whose prior co-
variance σxx′ is defined by the squared exponential covari-
ance function4 σxx′ , σ2

s exp(−0.5
∑d

i=1(xi − x′i)2/`2i ) +
σ2
nδxx′ where xi (x′i) is the i-th component of input feature

3Speedup is the incurred time of a sequential/centralized algo-
rithm divided by that of its parallel counterpart.

4For AIMPEAK dataset, multi-dimensional scaling is used to
map the input domain (i.e., of road segments) onto the Euclidean
space (Chen et al. 2012) before applying the covariance function.
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|D| 8000 16000 24000 32000
FGP 2.4(285) 2.2(1799) 2.1(5324) 2.0(16209)
SSGP 2.4(2029) 2.2(3783) 2.1(5575) 2.0(7310)

M = 32
LMA 2.4(56) 2.2(87) 2.1(157) 2.0(251)
PIC 2.4(254) 2.2(294) 2.1(323) 2.0(363)

M = 48
LMA 2.4(51) 2.2(84) 2.1(126) 2.0(192)
PIC 2.4(273) 2.2(308) 2.1(309) 2.0(332)

M = 64
LMA 2.4(61) 2.2(87) 2.1(111) 2.0(155)
PIC 2.4(281) 2.2(286) 2.1(290) 2.0(324)

(a) Parallel LMA (B = 1, |S| = 2048), parallel PIC (|S| = 4096), SSGP (|S| = 4096)
|D| 8000 16000 24000 32000
FGP 7.9(271) 7.3(1575) 7.0(5233) 6.9(14656)
SSGP 8.1(2029) 7.5(3781) 7.3(5552) 7.2(7309)

M = 32
LMA 8.4(20) 7.5(44) 7.1(112) 6.9(216)
PIC 8.1(484) 7.5(536) 7.3(600) 7.2(598)

M = 48
LMA 8.4(18) 7.5(33) 7.0(74) 6.8(120)
PIC 8.1(542) 7.5(590) 7.3(598) 7.2(616)

M = 64
LMA 8.4(17) 7.5(28) 7.0(57) 6.7(87)
PIC 8.1(544) 7.5(570) 7.3(589) 7.2(615)

(b) Parallel LMA (B = 1, |S| = 1024), parallel PIC (|S| = 5120), SSGP (|S| = 4096)

Table 1: RMSEs and incurred times (seconds) reported in
brackets of parallel LMA, parallel PIC, SSGP, and FGP with
varying data sizes |D| and numbers M of cores for (a) SAR-
COS and (b) AIMPEAK datasets.

vector x (x′), the hyperparameters σ2
s , σ

2
n, `1, . . . , `d are, re-

spectively, signal variance, noise variance, and length-scales,
and δxx′ is a Kronecker delta that is 1 if x = x′ and 0 oth-
erwise. The hyperparameters are learned using randomly
selected data of size 10000 via maximum likelihood estima-
tion. Test data of size |U| = 3000 are randomly selected from
each dataset for predictions. From remaining data, training
data of varying |D| are randomly selected. Support sets for
LMA and PIC and the set S of spectral points for SSGP are
selected randomly from both datasets5.

The experimental platform is a cluster of 32 computing
nodes connected via gigabit links: Each node runs a Linux
system with Intelr Xeonr E5620 at 2.4 GHz with 24 GB
memory and 16 cores. Our parallel LMA method and parallel
PIC are tested with different numbers M = 32, 48, and 64 of
cores; all 32 computing nodes with 1, 1-2, and 2 cores each
are used, respectively. For parallel LMA and parallel PIC,
each computing node will be storing, respectively, a subset
of the training data (Dm ∪ DB

m, yDm∪DB
m

) and (Dm, yDm
)

associated with its own core m.
Three performance metrics are used to evaluate the

tested methods: (a) Root mean square error (RMSE)
(|U|−1 ∑x∈U (yx − µx|D)2)1/2, (b) incurred time, and (c)
speedup. For RMSE metric, each tested method has to plug
its predictive mean into µx|D.

Table 1 shows results of RMSEs and incurred times of
parallel LMA, parallel PIC, SSGP, and FGP averaged over 5
random instances with varying data sizes |D| and cores M
for both datasets. The observations are as follows:
(a) Predictive performances of all tested methods improve

5Varying the set S of spectral points over 50 random instances
hardly changes the predictive performance of SSGP in our exper-
iments because a very large set of spectral points (|S| = 4096) is
used in order to achieve predictive performance as close as possible
to FGP and our LMA method (see Table 1).

with more data, which is expected. For SARCOS dataset,
parallel LMA, parallel PIC, and SSGP achieve predictive
performances comparable to that of FGP. For AIMPEAK
dataset, parallel LMA does likewise and outperforms parallel
PIC and SSGP with more data (|D| ≥ 24000), which may be
due to its more relaxed conditional independence assumption
with larger data (Remark 1 after Proposition 1).
(b) The incurred times of all tested methods increase with
more data, which is also expected. FGP scales very poorly
with larger data such that it incurs> 4 hours for |D| = 32000.
In contrast, parallel LMA incurs only 1-5 minutes for both
datasets when |D| = 32000. Parallel LMA incurs much less
time than parallel PIC and SSGP while achieving a compa-
rable or better predictive performance because it requires a
significantly smaller |S| than parallel PIC and SSGP simply
by imposing a 1-order Markov property (B = 1) on the resid-
ual process (Remark 3 after Theorem 2). Though B is only
set to 1, the dense residual covariance matrix approximation
provided by LMA (as opposed to sparse approximation of
PIC) is good enough to achieve its predictive performances
reported in Table 1. From Table 1b, when training data is
small (|D| = 8000) for AIMPEAK dataset, parallel PIC in-
curs more time than FGP due to its huge |S| = 5120, which
causes communication latency to dominate the incurred time
(Chen et al. 2013). When |D| ≤ 24000, SSGP also incurs
more time than FGP due to its large |S| = 4096.
(c) Predictive performances of parallel LMA and PIC gener-
ally remain stable with more cores, thus justifying the practi-
cality of their structural assumptions to gain time efficiency.

Table 2 shows results of speedups of parallel LMA and
parallel PIC as well as incurred times of their centralized
counterparts averaged over 5 random instances with vary-
ing data sizes |D| and numbers M of cores for AIMPEAK
dataset. The observations are as follows:
(a) The incurred times of centralized LMA and central-
ized PIC increase with more data, which is expected. When
|D| ≥ 32000, centralized LMA incurs only 16-30 minutes
(as compared to FGP incurring > 4 hours) while centralized
PIC and SSGP incur, respectively, more than 3.5 and 2 hours
due to their huge |S|. In fact, Table 2 shows that centralized
PIC incurs even more time than FGP for almost all possible
settings of |D| and M due to its huge support set.
(b) The speedups of parallel LMA and parallel PIC generally
increase with more data, as explained in Remark 2 after
Theorem 2, except for that of parallel LMA being slightly
higher than expected when |D| = 16000.
(c) The incurred time of centralized LMA decreases with
more blocks (i.e., larger M ), as explained in Remark 2 after
Theorem 2. This is also expected of centralized PIC, but its
incurred time increases with more blocks instead due to its
huge support set, which entails large-scale matrix operations
causing a huge number of cache misses6. This highlights
the need to use a sufficiently small support set on a single
centralized machine so that cache misses will contribute less
to incurred time, as compared to data processing.
(d) The speedup of parallel LMA increases with more cores,

6A cache miss causes the processor to access the data from main
memory, which costs 10× more time than a cache memory access.
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|D| 8000 16000 24000 32000
FGP −(271) −(1575) −(5233) −(14656)
SSGP −(2029) −(3781) −(5552) −(7309)

M = 32
LMA 6.9(139) 9.4(414) 8.0(894) 8.2(1764)
PIC 19.4(9432) 18.8(10105) 19.3(11581) 21.6(12954)

M = 48
LMA 6.9(125) 10.2(338) 9.2(678) 10.2(1227)
PIC 25.3(13713) 24.1(14241) 26.2(15684) 26.8(16515)

M = 64
LMA 7.1(120) 10.8(302) 10.1(576) 11.5(1003)
PIC 31.6(17219) 31.5(17983) 33.0(19469) 33.3(20503)

Table 2: Speedups of parallel LMA (B = 1, |S| = 1024)
and parallel PIC (|S| = 5120) and incurred times (seconds)
reported in brackets of their centralized counterparts with
varying data sizes |D| and cores M for AIMPEAK dataset.
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Figure 2: RMSEs and incurred times (seconds) of par-
allel LMA with varying support set sizes |S| =
128, 512, 1024, 2048, 4096 and Markov orders B =
1, 3, 5, 7, 9, 13, 15, 19, 21, |D| = 8000, and M = 32 for
AIMPEAK dataset. Darker gray implies longer incurred time
(larger RMSE) for the left (right) plot.

as explained in Remark 2 after Theorem 2. Though the
speedup of parallel PIC appears to increase considerably
with more cores, it is primarily due to the substantial number
of cache misses (see observation c above) that inflates the
incurred time of centralized PIC excessively.

Fig. 2 shows results of RMSEs and incurred times of par-
allel LMA averaged over 5 random instances with varying
support set sizes |S| and Markov orders B, |D| = 8000, and
M = 32 obtained using 8 computing nodes (each using 4
cores) for AIMPEAK dataset. Observations are as follows:
(a) To achieve RMSEs of 8.1 and 8.0 with least incurred
times, one should trade off a larger support set size |S| for
a larger Markov order B (or vice versa) to arrive at the re-
spective settings of |S| = 1024, B = 5 (34 seconds) and
|S| = 1024, B = 9 (68 seconds), which agrees with Remark
3 after Theorem 2. However, to achieve the same RMSE of
7.9 as FGP, the setting of |S| = 128, B = 21 incurs the
least time (i.e., 205 seconds), which seems to indicate that,
with small data (|D| = 8000), we should instead focus on
increasing Markov order B for LMA to achieve the same
predictive performance as FGP; recall that whenB = M −1,
LMA becomes FGP. This provides an empirically cheaper
and more reliable alternative to increasing |S| for achiev-
ing predictive performance comparable to FGP, the latter
of which, in our experiments, causes Cholesky factorization
failure easily when |S| becomes excessively large.
(b) When |S| = 1024, B = 1, and M = 32, parallel LMA
using 8 computing nodes incurs less time (i.e., 10 seconds)

|D| 128000 256000 384000 512000 1000000
LMA 823(155) 774(614) 728(3125) 682(7154) 506(78984)
PIC 836(948) −(−) −(−) −(−) −(−)

Table 3: RMSEs and incurred times (seconds) reported in
brackets of parallel LMA (B = 1, |S| = 512) and parallel
PIC (|S| = 3400) with M = 512 cores and varying data
sizes |D| for EMSLP dataset.

than that using 32 nodes (i.e., 20 seconds; see Table 1b)
because the communication latency between cores within a
machine is significantly less than that between machines.

Next, the predictive performance and scalability of our
parallel LMA method are empirically compared with that of
parallel PIC using the large EMULATE mean sea level pres-
sure (EMSLP) dataset (Ansell et al. 2006) of size 1278250 on
a 5◦ lat.-lon. grid bounded within lat. 25-70N and lon. 70W-
50E from 1900 to 2003. Each input denotes a 6D feature
vector of latitude, longitude, year, month, day, and incremen-
tal day count (starting from 0 on first day). The output is the
mean sea level pressure (Pa). The experimental setup is the
same as before, except for the platform that is a cluster of 16
computing nodes connected via gigabit links: Each node runs
a Linux system with AMD OpteronTM 6272 at 2.1 GHz with
32 GB memory and 32 cores.

Table 3 shows results of RMSEs and incurred times of par-
allel LMA and parallel PIC averaged over 5 random instances
with M = 512 cores and varying data sizes |D| for EMSLP
dataset. When |D| = 128000, parallel LMA incurs much
less time than parallel PIC while achieving better predictive
performance because it requires a significantly smaller |S|
by setting B = 1, as explained earlier. When |D| ≥ 256000,
parallel PIC fails due to insufficient shared memory between
cores. On the other hand, parallel LMA does not experience
this issue and incurs from 10 minutes for |D| = 256000 to
about 22 hours for |D| = 1000000.
Summary of Experimental Results. LMA is significantly
more scalable than FGP in the data size while achieving
a comparable predictive performance for SARCOS and
AIMPEAK datasets. For example, when |D| = 32000 and
M ≥ 48, our centralized and parallel LMA methods are,
respectively, at least 1 and 2 orders of magnitude faster than
FGP while achieving comparable predictive performances for
AIMPEAK dataset. Our centralized (parallel) LMA method
also incurs much less time than centralized PIC (parallel PIC)
and SSGP while achieving comparable or better predictive
performance because LMA requires a considerably smaller
support set size |S| than PIC and SSGP simply by setting
Markov order B = 1, as explained earlier. Trading off be-
tween support set size and Markov order of LMA results
in less incurred time while achieving the desired predictive
performance. LMA gives a more reliable alternative of in-
creasing the Markov order (i.e., to increasing support set size)
for achieving predictive performance similar to FGP; in prac-
tice, a huge support set causes Cholesky factorization failure
and insufficient shared memory between cores easily. Finally,
parallel LMA can scale up to work for EMSLP dataset of
more than a million in size.
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5 Conclusion
This paper describes a LMA method that leverages the dual
computational advantages stemming from complementing
the low-rank covariance matrix approximation based on sup-
port set with the dense residual covariance matrix approx-
imation due to Markov assumption. As a result, LMA can
make a more relaxed conditional independence assumption
(especially with larger data) than many existing sparse GP
regression methods utilizing low-rank representations, the
latter of which utilize a sparse residual covariance matrix
approximation. Empirical results have shown that our central-
ized (parallel) LMA method is much more scalable than FGP
and time-efficient than centralized PIC (parallel PIC) and
SSGP while achieving comparable predictive performance.
In our future work, we plan to develop a technique to automat-
ically determine the “optimal” support set size and Markov
order and devise an “anytime” variant of LMA using stochas-
tic variational inference like (Hensman, Fusi, and Lawrence
2013) so that it can train with a small subset of data in each
iteration instead of learning using all the data. We also plan
to release the source code at http://code.google.com/p/pgpr/.
Acknowledgments. This work was supported by Singapore-
MIT Alliance for Research and Technology Subaward Agree-
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Quiñonero-Candela, J., and Rasmussen, C. E. 2005. A unifying
view of sparse approximate Gaussian process regression. JMLR
6:1939–1959.
Snelson, E., and Ghahramani, Z. 2005. Sparse Gaussian pro-
cesses using pseudo-inputs. In Proc. NIPS.
Snelson, E., and Ghahramani, Z. 2007. Local and global sparse
Gaussian process approximations. In Proc. AISTATS.
Vijayakumar, S.; D’Souza, A.; and Schaal, S. 2005. Incre-
mental online learning in high dimensions. Neural Comput.
17(12):2602–2634.
Xu, N.; Low, K. H.; Chen, J.; Lim, K. K.; and Özgül, E. B. 2014.
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