
Using Machine Teaching to Identify
Optimal Training-Set Attacks on Machine Learners

Shike Mei and Xiaojin Zhu
Department of Computer Sciences,

University of Wisconsin-Madison, Madison WI 53706, USA
{mei, jerryzhu}@cs.wisc.edu

Abstract

We investigate a problem at the intersection of machine
learning and security: training-set attacks on machine
learners. In such attacks an attacker contaminates the
training data so that a specific learning algorithm would
produce a model profitable to the attacker. Understand-
ing training-set attacks is important as more intelli-
gent agents (e.g. spam filters and robots) are equipped
with learning capability and can potentially be hacked
via data they receive from the environment. This pa-
per identifies the optimal training-set attack on a broad
family of machine learners. First we show that opti-
mal training-set attack can be formulated as a bilevel
optimization problem. Then we show that for machine
learners with certain Karush-Kuhn-Tucker conditions
we can solve the bilevel problem efficiently using gra-
dient methods on an implicit function. As examples,
we demonstrate optimal training-set attacks on Support
Vector Machines, logistic regression, and linear regres-
sion with extensive experiments. Finally, we discuss po-
tential defenses against such attacks.

Introduction
The study on security threats to intelligent agents has a long
history (Nelson et al. 2009; Tan, Killourhy, and Maxion
2002; Rubinstein et al. 2008; Barreno et al. 2010; Laskov
and Lippmann 2010; Barreno et al. 2006; Dalvi et al. 2004;
Liu and Chawla 2009; Biggio, Fumera, and Roli 2013;
Laskov and Kloft 2009). One important type of threat is
training-set attack (a.k.a. causative or poisoning attack),
where an attacker modifies the training data in order to mis-
lead a machine learner toward a model profitable to the at-
tacker. We foresee training-set attacks to increase in the fu-
ture as more intelligent systems (e.g. wearable devices, cars,
smart houses and robots) include a “life long learning” com-
ponent. The attacker may not be able to directly hack the
machine learning code inside these systems, but may readily
poison the training data these systems receive.

In order to defend against training-set attacks, it is imper-
ative to first formalize them mathematically. Prior work in
training-set attacks tends to utilize heuristic computational
methods and lacks a unifying framework (Xiao, Xiao, and
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Eckert 2012; Chung and Mok 2007; Tan, Killourhy, and
Maxion 2002; Lowd and Meek 2005; Wittel and Wu 2004;
Rubinstein et al. 2008). Our first contribution is a bilevel op-
timization framework that specifies training-set attacks. In-
tuitively, a malicious attacker seeking to cover their tracks
wants to make the fewest manipulations to the training set
as possible, and to make the learned model as close to the
original solution as possible but still incorporates their tar-
get attack. We formalize this intuition as a trade-off between
the attacker’s effort EA and risk RA, to be defined below.

Our second contribution is an efficient solution to the
bilevel optimization problem for a broad families of at-
tack settings. The solution utilizes the Karush-Kuhn-Tucker
(KKT) conditions to convert the bilevel problem into a sin-
gle level optimization problem. Our third contribution is a
demonstration of our training-set attack framework on sup-
port vector machines (SVMs), logistic regression, and lin-
ear regression. Defenses against training-set attacks are dis-
cussed at the end, and is left for future work.

Training-Set Attacks and Machine Teaching
In this paper we assume the attacker has full knowledge of
the learning algorithm.1 The attacker seeks the minimum
training-set poisoning to attack the learned model. We con-
sider machine learners that can be posed as an optimization
problem:

θ̂D ∈ argminθ∈Θ OL(D, θ) (1)
s.t. gi(θ) ≤ 0, i = 1 . . .m (2)

hi(θ) = 0, i = 1 . . . p (3)

where D is the training data. In classic machine learning,
D is an iid sample from the underlying task distribution.
OL(D, θ) is the learner’s objective: For example, in regular-
ized risk minimization OL(D, θ) = RL(D, θ) + λΩ(θ) for
some learner’s empirical risk function RL and regularizer
Ω. The g and h functions are potentially nonlinear; together
with the hypothesis space Θ they determine the feasible re-
gion. θ̂D is the learned model (recall argmin returns the set
of minimizers).

Given the machine learner, the attacker carries out the at-
tack by manipulating the original training data (henceforth

1This is a strong assumption but serves as a starting point to-
ward understanding optimal attacks.
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denoted as D0) into D. For example, in classification the at-
tacker may add some foreign items (x′, y′) to D0, or change
the value of some existing features x and labels y inD0. The
learner is unaware of the changes to the training data,2 and
learns a model θ̂D instead of θ̂D0

. The attacker’s goal is to
make θ̂D beneficial to the attacker, e.g. mislead a spam fil-
ter to pass certain types of spam emails. We characterize the
attacker’s goal using an attacker risk function RA(θ̂D). For
example, the attacker may have a specific target model θ∗ in
mind and wants the learned model θ̂D to be close to θ∗. In
this example, we may define RA(θ̂D) = ‖θ̂D − θ∗‖ with an
appropriate norm.

Meanwhile, the attacker may be constrained by certain
feasible manipulations, or simply prefers “small” manipu-
lations to evade detection. We encode the former as a search
space D from which the attacker chooses D. For example,
say the attacker can change at most B items in the original
training set. We can encode it as D = {D : |D∆D0| ≤ B}
where ∆ is set symmetric difference and | · | the cardinality.
Separately, for the latter preference on small manipulations
we encode it as an attacker effort function EA(D,D0). For
example, if the attack changes the design matrixX0 inD0 to
X , we may defineEA(D,D0) = ‖X−X0‖F the Frobenius
norm of the change. We will give more concrete examples of
RA and EA when we discuss attacks on SVMs, logistic re-
gression, and linear regression later. Let

OA(D, θ̂D) = RA(θ̂D) + EA(D,D0) (4)

be the overall attacker objective function. With these nota-
tions, we define the training-set attack problem as:

min
D∈D,θ̂D

OA(D, θ̂D) (5)

s.t. θ̂D ∈ argminθ∈Θ OL(D, θ) (6)
s.t. g(θ) ≤ 0, h(θ) = 0. (7)

Note that the machine learning problem Eq (1) appears in
the constraint of problem Eq (5). This is a bilevel optimiza-
tion problem (Bard 1998). The optimization over data D in
Eq (5) is called the upper-level problem, and the optimiza-
tion over model θ given D is called the lower-level problem.

Our training-set attack formulation is closely related to
machine teaching (Zhu 2013; Patil et al. 2014). Both aim
to maximally influence a learner by carefully designing the
training set. Machine teaching has focused on the education
setting where the learner is a human student with an assumed
cognitive model, and the teacher has an educational goal θ∗
in mind. The teacher wants to design the best lesson so that
the student will learn the model θ∗. There is a direct map-
ping from teacher to attacker and from student to intelligent
agent. However, previously machine teaching formulation
was only applicable to very specific learning models (e.g.
conjugate exponential family models). One major contribu-
tion of the present paper is this bilevel optimization formu-
lation of training-set attack and its efficient solutions, which
significantly widens the applicability of machine teaching.

2D may not be iid samples anymore, but the learner still carries
out its optimization in (1).

Identifying Attacks by the KKT Conditions
Bilevel optimization problems are NP hard in general. We
present an efficient solution for a broad class of training-
set attacks. Specifically, we require the attack space D to be
differentiable (e.g. the attacker can change the continuous
features inD for classification, or the real-valued target inD
for regression). Attacks on a discrete D, such as changing the
labels inD for classification, are left as future work. We also
require the learner to have a convex and regular objective
OL.

Under these conditions, the bilevel problem Eq (5) can
be reduced to a single-level constrained optimization prob-
lem via the Karush-Kuhn-Tucker (KKT) conditions of the
lower-level problem (Burges 1998). We first introduce KKT
multipliers λi, i = 1 . . .m and µi, i = 1 . . . p for the lower-
level constraints g and h, respectively. Since the lower-level
problem is regular, we replace the lower-level problem with
its KKT conditions (the constraints are stationarity, comple-
mentary slackness, primal and dual feasibility, respectively):

min
D∈D,θ,λ,µ

OA(D, θ) (8)

s.t. ∂θ
(
OL(D, θ) + λ>g(θ) + µ>h(θ)

)
= 0

λigi(θ) = 0, i = 1 . . .m

g(θ) ≤ 0, h(θ) = 0, λ ≥ 0.

This equivalent single-level optimization problem allows us
to use the descent method on an implicit function (Colson,
Marcotte, and Savard 2007). In iteration t, we update the
data D by taking a projected gradient step (the upper level
problem):

D(t+1) = PrjD

(
D(t) + αt∇DOA(D, θ(t))

∣∣∣
D=D(t)

)
, (9)

where αt is a step size. Then, we fix D(t+1) and solve for
θ(t+1), λ(t+1), µ(t+1) which is a standard machine learn-
ing problem (the lower level problem). The gradient of the
upper-level problem is computed by the chain rule

∇DOA(D, θ) = ∇θOA(D, θ)
∂θ

∂D
. (10)

∇θOA(D, θ) is often easy to compute. Let the machine
learning model θ have d parameters, and the training set D
have n variables that can be manipulated. Then ∂θ

∂D is the
d×n Jacobian matrix, and is the main difficulty because we
do not have an explicit representation of θ w.r.t. D. Instead,
we note that the equalities in the KKT conditions defines a
function f : Rn+d+m+p 7→ Rd+m+p:

f(D, θ, λ, µ) =

∂θ (OL(D, θ) + λ>g(θ) + µ>h(θ)
)

λigi(θ), i = 1 . . .m
h(θ)

 .

(11)
A data set D and its learned model θ, λ, µ will satisfy
f(D, θ, λ, µ) = 0. The implicit function theorem guarantees
that, if f is continuously differentiable w.r.t. its parameters
and the Jacobian matrix

[
∂f
∂θ

∣∣∣ ∂f∂λ ∣∣∣ ∂f∂µ] is of full rank, then
f induces a unique function (θ,λ,µ) = i(D) in an open
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neighborhood. Furthermore,

∂i

∂D
= −

[
∂f

∂θ

∣∣∣ ∂f
∂λ

∣∣∣ ∂f
∂µ

]−1(
∂f

∂D

)
. (12)

where ∂f
∂θ is the Jacobian matrix of f(D, θ,λ,µ) w.r.t. θ, and

so on. Then ∂θ
∂D is the first d rows of ∂i

∂D .
We now have a generic procedure to optimize the attack-

ing training-set D. In the rest of the paper we derive three
concrete cases of training-set attacks against SVMs, logis-
tic regression, and linear regression, respectively. These are
examples only; attacks against many other learners can be
readily derived.

Attacking SVM
There are many possible training-set attack settings against
an SVM. Our work differs from an earlier work in attacking
SVM which greedily changes one data point at a time (Big-
gio, Nelson, and Laskov 2012), in that we have a formal
framework for optimal attacks, that we allow different at-
tack settings, and that we have a convex attack solution for
the specific attack setting below (proof of convexity in (Mei
and Zhu 2014)). The attack setting we consider here is math-
ematically illuminating while also relevant in practice. Let
D0 = (X0,y0) be the original data set. The attacker is only
allowed to change the features. Formally, the attack search
space is D = {(X,y0) | X ∈ Rd×n}.

Recall that given training set D ∈ D, an SVM learns
weights ŵD and bias b̂D by solving the lower level prob-
lem Eq (1):

OL(D,w, b, ξ) =
1

2
‖w‖22 + C

∑
i

ξi (13)

gi = 1− ξi − yi(x>i w + b) (14)
gi+n = −ξi (15)

for i = 1 . . . n, where ξi is the hinge loss and C the regular-
ization parameter.

On the original data D0, the SVM would have learned
the weight vector ŵD0

. We assume that the attacker has a
specific target weight vector w∗ 6= ŵD0

in mind, and the
attacker risk function is

RA(ŵD) =
1

2
‖ŵD −w∗‖22. (16)

That is, the attacker wants to “nudge” the SVM toward w∗.
We also assume that the attacker effort function is the Frobe-
nius norm

EA(D,D0) =
λ

2
‖X−X0‖2F . (17)

These fully specifies the attack problem in Eq (5). We reduce
the SVM KKT conditions to:

wj − αi
∑
i

I1(1− yi(x>i w + b) ≥ 0)yixij = 0 (18)

for j = 1 . . . d, where I1(z) = 1 if z is true and 0 other-
wise, αi is a value between [0, C] which is uniquely deter-
mined by D. The derivation is in the longer version (Mei

and Zhu 2014). We plug in the KKT conditions to reduce
the bilevel attack problem to a constrained single-level opti-
mization problem:

min
D∈D,w

1

2
‖w −w∗‖22 +

λ

2
‖X−X0‖2F (19)

s.t. wj − αi
∑
i

I1(1− yi(x>i w + b) ≥ 0)yixij = 0.

As discussed in the previous section, we use gradient descent
to solve Eq (19). The gradient is

∇X = ∇wRA(w)
∣∣∣
ŵ(X)

∂ŵ(X)

∂X
+∇XEA(D,D0) (20)

with

∇wRA(w) = w −w∗ (21)
∇xij

EA(D,D0) = λ(Xij −X0,ij). (22)

To compute ∂ŵ(X)
∂X , denote the left hand side of Eq (18)

as f(w,X). Under suitable conditions the implicit function
theorem holds and the Jacobian matrix of ∂f

∂w is the identity
matrix:

∂f

∂w
= I. (23)

The Jacobian ∂f
∂X at row j′ and column ij as[

∂f

∂X

]
j′,ij

= −αiyiI1(j = j′)I1(1− yixTi w ≥ 0). (24)

The element at row j′ and column ij in ∂ŵ(X)
∂X is[

∂ŵ(X)

∂X

]
j′,ij

= αiyiI1(j = j′)I1(1− yix>i w ≥ 0). (25)

Intuitively, modifying a point x will only have an effect on
w if x incurs hinge loss (i.e. x is a support vector), a well-
known fact.

Attacking Logistic Regression
As another example, we show training-set attacks on logis-
tic regression. As in attacking SVM, the attacker can only
change the features in D0 = {X0,y0}. The attack space is
D = {(X,y0) | X ∈ Rd×n}

Given training set D, logistic regression estimates the
weight ŵD and bias b̂D by solving the following lower level
problem:

OL(D,w, b) =
∑
i

log
(
1 + exp(−yiĥi)

)
+
µ

2
‖w‖22, (26)

where ĥi , w>xi + b is the predicted response on instance
i, log

(
1 + exp(−yiĥi)

)
= − log

(
σ(yiĥi)

)
is the negative

likelihood P (yi | xi,w, b), σ(a) , 1/(1 + exp(−a)) is the
logistic function, and µ is the regularization parameter.

Let the attack goal be defined by a target weight
vector w∗ 6= ŵD0 . The attacker risk function is
RA(ŵD) = 1

2‖ŵD − w∗‖22, and the attacker effort func-
tion is EA(D,D0) = λ

2 ‖X −X0‖2F . Note that the logistic
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regression problem Eq (26) is convex, we reduce it to the
equivalent KKT condition∑

i

−
(
1− σ(yiĥi)

)
yixij + µwj = 0. (27)

By replacing the lower-level problem Eq (26) with the KKT
condition Eq (27), the training-set attack bilevel problem re-
duces to the single-level constrained problem:

minD∈D,w
1

2
‖w −w∗‖22 +

λ

2
‖X−X0‖2F (28)

s.t.
∑
i

−
(
1− σ(yiĥi)

)
yixij + µwj = 0.

To solve it, we still use the gradient descent method. The gra-
dient is ∇X = ∇wRA(w)

∣∣∣
ŵ(X)

∂ŵ(X)
∂X + ∇XEA(D,D0)

where ∇wRA(w) = w − w∗ and ∇xijEA(D,D0) =

λ(Xij−X0,ij). To calculate ∂ŵ(X)
∂X , we denote the left hand

side of Eq (27) as f(w,X). Under suitable conditions, the
implicit function theorem holds and we compute ∂ŵ(X)

∂X us-
ing Eq (12). All we need is the two right hand side terms of
Eq (12). The first term has the element at the j′−th row and
the j−th column as[

∂f

∂w

]
j′,j

=
∑
i

σ(yiĥi)(1− σ(yiĥi))xijxij′ (29)

+λI1(j = j′).

We note that the inversion of matrix ∂f
∂w is well-defined be-

cause the matrix is positive definite. It is the Hessian matrix
of OL(D,w, b). The second term on the right hand side of
Eq (12) has the element at the j′−th row and the ij−th col-
umn [

∂f

∂X

]
j′,ij

= σ(yiĥi)(1− σ(yiĥi))wjxij′ (30)

−(1− σ(yiĥi))yiI1(j = j′).

Attacking Linear Regression
For demonstration, we consider the simplest linear regres-
sion: ordinary least squares (OLS). Denote the n × d input
matrix X and the response vector y. Therefore, given data
D = (X,y), OLS assumes y = Xβ + ε, where the noise
ε ∼ N (0, σ2I). The maximum likelihood estimate (MLE)
corresponds to the lower level problem

OL(D,β) = ‖y −Xβ‖2. (31)

This problem is convex and unconstrained. The equivalent
KKT condition is simply the familiar OLS solution

β̂D − (X>X)−1X>y = 0. (32)

Without loss of generality, for original training set D0 =

{X0,y0}, we assume β̂D0,1 > 0. For demonstration pur-
pose let us suppose that the attack goal is to modify the data
such that β̂D, the OLS estimate on the modified data, has
β̂D,1 ≤ 0. Let the attacker be allowed to only change y by

adding an n-vector δ, that is y ← y0 + δ. We will give a
concrete example in the experiment section.

The attacker may define the attacker risk function as a
hard constraint on β̂D,1, that is RA(β̂D) = I(β̂D,1 ≤ 0),
where the indicator function I(z) is zero when z is true and
infinity otherwise. In other words, D = {(X0,y0 + δ) : δ ∈
Rn}.

There are different ways to define the attacker effort func-
tion, which measures some notion of the magnitude of δ. In-
terestingly, different choices lead to distinct attacking strate-
gies. We discuss two attacker effort functions. The first one
is the `2-norm effort, defined as EA(D,D0) = ‖δ‖22. Let
A = (X>0 X0)−1X>0 . According to the KKT conditions
Eq (32), β̂D = A(y0 + δ) = β̂D0 + Aδ. The optimal at-
tack problem (5) reduces to

min
δ
‖δ‖22 s.t. β̂D,1 ≤ 0. (33)

Instead of using the gradient descent method described in
previous sections to solve it, one can obtain an analytic so-
lution for δ. Let a1 be the first column in A>: a1 = A>e,
where e = (1, 0, . . .)> is the first unit vector. One can show

that the attack solution is δ = − β̂D0,1

a>1 a1
a1 (Mei and Zhu

2014).
The second attacker effort function is the `1-norm effort,

defined as EA(D,D0) = ‖δ‖1. The optimal attack problem
becomes

min
δ
‖δ‖1 s.t. β̂D,1 ≤ 0. (34)

Without loss of generality assume a1 = (α1, . . . , αd)
>

with |α1| ≥ . . . ≥ |αd|, then the solution is δ =

(− β̂D0,1

α1
, 0, . . . , 0)> (Mei and Zhu 2014). The attack so-

lution is sparse: δ changes only a single data point. This
sparsity is distinct from standard `1-regularization such as
LASSO, in that it is not on the model parameters but on the
training data.

Experiments
Using the procedure developed in the previous section, we
present empirical experiments on training-set attacks. Our
attack goals are meant to be fictitious but illustrative.

Attack Experiments on SVM
We demonstrate attacks using the LIBLINEAR SVM imple-
mentation as the learner (Fan et al. 2008). The regularization
parameter C in the learner is set to 1 by a separate cross val-
idation process, and we assume that the attacker knows C.
D0 is the wine quality data set (Cortez et al. 2009). The data
set has n = 1600 points, each with d = 11 numerical fea-
tures x and a wine quality number ranging from 1 to 10. We
normalize each feature dimension to zero mean and standard
deviation one. We threshold the wine quality number at 5 to
produce a binary label y.

The fictitious attacker’s goal is to make it seem like only
the feature “alcohol” correlates with wine quality. We sim-
ulate this goal by first generating the attack target weight
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(a) attacker risk RA (b) feature changes on positive data (c) feature changes on negative data

Figure 1: Training-set attack on SVM. The “alcohol” feature is marked by a red star in (b,c).

vector w∗ as follows. We create another set of labels y′i for
each data point in D0 by thresholding the (normalized) al-
cohol feature xi,alcohol at 0. We train a separate SVM on
D′ = {(xi, y′i)}ni=1, and let the learned weight be w∗. As
expected, w∗ has a much larger positive weight on “alcohol”
compared to other dimensions. We then let the attacker risk
function be Eq (16) with this w∗. We let the attacker effort
function be Eq (17) with the weight λ = 0.1. We then run
the optimization procedure to identify the optimal attack-
ing training-set D. The step length αt of gradient defined in
Eq (9) is set to αt = 0.5/t.

We compare the optimal attack against a heuristic base-
line called naive attack, which moves every data point xi to
its nearest point with zero hinge loss under the attack target
weight: xi ← argminz‖z− xi‖2 s.t. (1− yiz>w∗)+ = 0.

The attack results are shown in Figure 1. The optimal
training-set attack rapidly decreased the attacker risk RA to
zero, with an effort EA = 370. In contrast, naive attack also
achieved zero attacker risk but not until an effort of 515.
Figures 1(b,c) are box plots showing how the training-set at-
tacker manipulated the data points for positive and negative
data, respectively. As expected, the attack basically changed
the value of the “alcohol” feature (the right-most or the 11th)
to made it appear to strongly correlate with the class label.
This behavior increased the weight on “alcohol”, achieving
the attack.

Attack Experiments on Logistic Regression
We use logistic regression in the LIBLINEAR package as
the learner, which has the regularization parameter C =
0.01 set separately by cross validation. D0 is the Spambase
data set (Bache and Lichman 2013). This data set consists
of n = 4601 instances, each of which has d = 57 numeri-
cal features x and a binary label yi (1 for spam and −1 for
not spam). Each feature is the percentage of a specific word
or character in an email. We denote the logistic regression
model weights trained from D0 as w0.

The attack is constructed as follows. We picked the word
“credit” and assume that the attacker wanted the learned
model to ignore this (informative) feature. To this end, we
generate a new feature vector x′i for each instance by copy-
ing x′ from D0 but set x′i,freq credit = 0. We then produce
the attack target weights w∗ as the learned weights of logis-
tic regression given data D′ = {(x′i, yi)}ni=1. As expected,

w∗ has zero weight on the feature “credit” and is similar
to w0 on other dimensions. We then let the attacker risk
function be Eq (16) with this w∗. We let the attacker effort
function be Eq (17) with the weight λ = 0.01. We then run
the optimization procedure to identify the optimal attack-
ing training-set D. The step length αt of gradient defined in
Eq (9) is set to αt = 1/t.

The data set D′ used to generate w∗ is the baseline we
compare against.

Figure 2 shows the results. Our training-set attack proce-
dure rapidly decreased the attacker risk RA to zero with an
attacker effort of EA = 232. The baseline D′ achieved zero
RA (since the target weights w∗ was learned from D′), but
its attacker effort is a much higher 390. Therefore, our pro-
cedure efficiently attacked logistic regression. The optimal
training-set attack essentially changed the feature “credit”
(the 20th feature) in the following way to decrease the corre-
sponding weight to zero: It decreased (increased) the feature
value for positively (negatively) labeled instances.

Attack Experiments on Linear Regression
We demonstrate an attack on OLS. D0 comes from the
Wisconsin State Climatology Office, and consists of annual
number of frozen days for Lake Mendota in Midwest USA
from 1900 to 2000 3. It is a regression problem with n = 101
points. Each xi is a two dimensional vector of year and the
constant 1 for the bias term. The response yi is the number
of frozen days in that year. On D0 OLS learns a downward
slope β̂1 = −0.1, indicating a warming trend for this lake,
see Figure 3(a).

We now construct an attack whose goal is to hide the
warming trend, i.e., β∗1 ≥ 0. As stated earlier, this can be
achieved by an attacker risk indicator function RA(β̂D) =

I(β̂D,1 ≤ 0). The attacker can manipulate y inD by adding
a vector δ. Interestingly, we demonstrate how different at-
tacker effort functions affect the optimal attack:

(Results with `2-norm attacker effort) With the at-
tacker effort function ‖δ‖22, the optimal attack is specified
by Eq (33). We show the optimal attack in Figure 3(b). The
optimal changes δ “pivoted” each and every data point, such
that OLS learned a flat line with β̂1 = 0.

3data available at http://www.aos.wisc.edu/∼sco/lakes/
Mendota-ice.html
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(a) attacker risk RA (b) feature changes on positive data (c) feature changes on negative data

Figure 2: Training-set attack on logistic regression. The 20th feature on “frequency of word credit” is marked

OLS on D0 `2 attacker effort `1 attacker effort

Figure 3: Training-set attack on OLS

(Results with `1-norm attacker effort) If the attacker ef-
fort function is ‖δ‖1 instead as in Eq (34), the optimal attack
δ is drastically different: Only the rightmost data point was
changed (by a lot) while all other points remained the same,
see Figure 3(c). The learned model after attack became a flat
line with β̂1 = 0, too.

A Discussion on Defenses
Although we focused on formulating the optimal training-set
attack in this paper, our ultimate goal is to design defenses
in the future.

There is a related line of research on robust learn-
ing (Globerson and Roweis 2006; Torkamani and Lowd
2013; El Ghaoui et al. 2003; Xu, Caramanis, and Mannor
2009; Kim, Magnani, and Boyd 2005; Dekel, Shamir, and
Xiao 2010). Promising as the name suggests, we point out
that robust learning is not an appropriate defense against
training-set attacks. In robust learning the learner receives
clean training data D0, and wishes to learn a model that per-
forms well on future contaminated test data. The contam-
inated test data is unknown ahead of time, but is assumed
to be within a given distance from D0 under an appropriate
metric. One may view robust learning as an extreme case of
domain adaptation: the training data comes from the source
domain and the test data from the target domain, but there
are no examples from the target domain except for the dis-
tance constraint. The test data may not be iid either, but
can be adversarially contaminated. Robust learning typically
employs a minimax formulation to mitigate the worst possi-
ble test risk. Obviously, robust learning’s assumption that

the learner receives clean training data D0 is immediately
broken by a training-set attack. If a robust learner in fact re-
ceives a poisoned training set D, it will unnecessarily try to
guard against further contamination to D. This will likely
make the learned model highly obtuse because the model
needs to be “doubly robust.” Bridging robust learning and
defenses against training-set attacks remains an open prob-
lem.

Our optimal training-set attack formulation opens the
door for an alternative defense: flagging the parts of train-
ing data likely to be attacked and focus human analysts’ at-
tention on those parts. For instance, in our attack on OLS
with the `1-norm effort function we observed the attack be-
havior that only the extreme data item was changed, and by
a large amount. This suggests that under this attack setting
the extreme data items have a high risk of being manipu-
lated, and the analysts should examine such items. As an-
other example, the optimal attack on logistic regression dras-
tically increases the count for the feature “credit” in non-
spam emails, and the optimal attack on SVM drastically in-
creases the feature value of “alcohol” in good-quality wines.
Such attacks can potentially be noticed by analysts once they
know where to look.
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