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Abstract

This paper is concerned with the problem of domain
adaptation with multiple sources from a causal point of
view. In particular, we use causal models to represent
the relationship between the features X and class la-
bel Y , and consider possible situations where different
modules of the causal model change with the domain.
In each situation, we investigate what knowledge is ap-
propriate to transfer and find the optimal target-domain
hypothesis. This gives an intuitive interpretation of the
assumptions underlying certain previous methods and
motivates new ones. We finally focus on the case where
Y is the cause for X with changing PY and PX|Y , that
is, PY and PX|Y change independently across domains.
Under appropriate assumptions, the availability of multi-
ple source domains allows a natural way to reconstruct
the conditional distribution on the target domain; we pro-
pose to model PX|Y (the process to generate effect X
from cause Y ) on the target domain as a linear mixture
of those on source domains, and estimate all involved
parameters by matching the target-domain feature dis-
tribution. Experimental results on both synthetic and
real-world data verify our theoretical results.

Traditional machine learning relies on the assumption that
both training and test data are from the same distribution. In
practice, however, training and test data are probably sampled
under different conditions, thus violating this assumption, and
the problem of domain adaptation (DA) arises. Consider re-
mote sensing image classification as an example. Suppose
we already have several data sets on which the class labels
are known; they are called source domains here. For a new
data set, or a target domain, it is usually difficult to find the
ground truth reference labels, and we aim to determine the
labels by making use of the information from the source
domains. Note that those domains are usually obtained in
different areas and time periods, and that the corresponding
data distribution various due to the change in illumination
conditions, physical factors related to ground (e.g., different
soil moisture or composition), vegetation, and atmospheric
conditions. Other well-known instances of this situation in-
clude sentiment data analysis (Blitzer, Dredze, and Pereira
2007) and flow cytometry data analysis (Blanchard, Lee, and
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Scott 2011). DA approaches have many applications in varies
areas including natural language processing, computer vi-
sion, and biology. For surveys on DA, see, e.g., (Jiang 2008;
Pan and Yang 2010; Candela et al. 2009).

In this paper, we consider the situation with n source
domains on which both the features X and label Y are
given, i.e., we are given (x(i),y(i)) = (x

(i)
k , y

(i)
k )mi

k=1, where
i = 1, ..., n, and mi is the sample size of the ith source
domain. Our goal is to find the classifier for the target do-
main, on which only the features xt = (xtk)mk=1 are available.
Here we are concerned with a difficult scenario where no
labeled point is available in the target domain, known as un-
supervised domain adaptation. Since PXY changes across
domains, we have to find what knowledge in the source
domains should be transferred to the target one. Previous
work in domain adaptation has usually assumed that PX
changes but PY |X remain the same, i.e., the covariate shift
situation; see, e.g., (Shimodaira 2000; Huang et al. 2007;
Sugiyama et al. 2008; Ben-David, Shalev-Shwartz, and Urner
2012). It is also known as sample selection bias (particularly
on the features X) in (Zadrozny 2004).

In practice it is very often that both PX and PY |X change
simultaneously across domains. For instance, both of them
are likely to change over time and location for a satel-
lite image classification system. If the data distribution
changes arbitrarily across domains, clearly knowledge from
the sources may not help in predicting Y on the target do-
main (Rosenstein et al. 2005). One has to find what type
of information should be transferred from sources to the
target. One possibility is to assume the change in both PX
and PY |X is due to the change in PY , while PX|Y remains
the same, as known as prior probability shift (Storkey 2009;
Plessis and Sugiyama 2012) or target shift (Zhang et al. 2013).
The latter further models the change in PX|Y caused by a
location-scale (LS) transformation of the features for each
class. The constraint of the LS transformation renders PX|Y
on the target domain, denoted by P tX|Y , identifiable; however,
it might be too restrictive.

Fortunately, the availability of multiple source domains
provides more hints as to find P tX|Y , as well as P tY |X . Several
algorithms have been proposed to combine knowledge from
multiple source domains. For instance, (Mansour, Mohri, and
Rostamizadeh 2008) proposed to form the target hypothesis
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by combining source hypotheses with a distribution weighted
rule. (Gao et al. 2008), (Duan et al. 2009), and (Chattopad-
hyay et al. 2011) combine the predictions made by the source
hypotheses, with the weights determined in different ways.

An intuitive interpretation of the assumptions underlying
those algorithms would facilitate choosing or developing DA
methods for the problem at hand. To the best of our knowl-
edge, however, it is still missing in the literature. One of our
contributions in this paper is to provide such an interpretation.
This paper studies the multi-source DA problem from a causal
point of view where we consider the underlying data generat-
ing process behind the observed domains. We are particularly
interested in what types of information stay the same, what
types of information change, and how they change across
domains. This enables us to construct the optimal hypothesis
for the target domain in various situations. To this end, we
use causal models to represent the relationship between X
and Y , because they provide a compact description of the
properties of the change in the data distribution.1 They, for
instance, help characterize transportability of experimental
findings (Pearl and Bareinboim 2011) or recoverability from
selection bias (Bareinboim, Tian, and Pearl 2014).

As another contribution, we further focus on a typical DA
scenario where both PY and PX|Y (or the causal mechanism
to generate effect X from cause Y ) change across domains,
but their changes are independent from each other, as implied
by the causal model Y → X . We assume that the source
domains contains rich information such that for each class,
P tX|Y can be approximated by a linear mixture of PX|Y
on source domains. Together with other mild conditions on
PX|Y , we then show that P tX|Y , as well as P tY , is identifiable
(or can be uniquely recovered). We present a computationally
efficient method to estimate the involved parameters based
on kernel mean distribution embedding (Smola et al. 2007;
Gretton et al. 2007), followed by several approaches to con-
structing the target classifier using those parameters.

One might wonder how to find the causal information
underlying the data to facilitate domain adaptation. We note
that in practice, background causal knowledge is usually
available, helping formulating how to transfer the knowledge
from source domains to the target. Even if this is not the case,
multiple source domains with different data distributions may
allow one to identify the causal structure, since the causal
knowledge can be seen from the change in data distributions;
see e.g., (Tian and Pearl 2001).

1 Possible DA Situations and Their Solutions
DA can be considered as a learning problem in nonstationary
environments (Sugiyama and Kawanabe 2012). It is helpful
to find how the data distribution changes; it provides the clues
as to find the learning machine for the target domain.

We focus on how causality, which provides a compact and
intuitive description about distribution changes, helps us in

1The causal model also describes how the components of the
joint distribution are related to each other, which, for instance,
gives a causal explanation of the behavior of semi-supervised learn-
ing (Schölkopf et al. 2012).

X , Y random variables
X , Y domains
P

(i)
XY distribution in the ith source domain
P t
XY distribution in the target domain

(x(i),y(i)) =

(x
(i)
k , y

(i)
k )mi

k=1

sample in the ith source domain

x
(i)
j = (x

(i)
jk )

mij

k=1 X values with Y = cj in the ith source
domain

xt = (xtk)
m
k=1 X values in the target domain

Kt kernel matrix on xt

Kit “cross” kernel matrix between x(i) and xt

ψ(X) feature map of X

Table 1: Notation used in this paper.

DA. Generally speaking, in the unconfounded case, the pro-
cess that generates the effect from the cause does not depend
on that generating the cause (Pearl 2000). We can represent
such knowledge with graphical models, or selection diagrams
defined in (Pearl and Bareinboim 2011). In particular, let us
consider four situations which are often the case in practice;
see Fig. 1. Here Ws and Vs are represent domain-specific
selection variables, and they are hidden variables.2

Below we discuss what knowledge to transfer from source
domains to target, and how to construct the optimal target-
domain hypothesis in each situation. For clarity and simplic-
ity of the presentation, the causal models in the figure are
simplified—we do not consider the existence of possible con-
founders underlying X and Y or the relationship between
the components of X . We would like to remark that in many
supervised tasks, Y is the cause ofX , e.g., in clinic diagnosis
and handwritten digit recognition problems. The analysis in
this section applies to both classification and regression.

Situation 1 (Fig. 1.a): X → Y with changing PX and
fixed PY |X (covariate shift). Theoretically speaking, in
this case PX is irrelevant for modeling PY |X ; however, if one
uses a simple model to predict Y , which is usually the case,
under-fit of the conditional model causes the predicted Y to
depend on the input distribution PX ; importance reweighting
according to the difference in PX between the source and
target domains is widely used to correct covariate shift (Shi-
modaira 2000; Sugiyama et al. 2008).

Situation 2 (Fig. 1.b): X → Y with changing PY |X (and
possibly changing PX ). Below we derive the optimal hy-
pothesis for the target domain. Let P t∗Y |X be the underly-
ing optimal posterior of Y on the target domain; see Ta-
ble 1 for the notation used in this paper. Since Vs is un-

2Such variable are graphically depicted as square nodes in (Pearl
and Bareinboim 2011). We would like to distinguish between the
domain-specific selection diagram and the sample selection bias
procedure used in (Bareinboim, Tian, and Pearl 2014). In the former,
the selection variables Ws and Vs are root variables and encode
the information that they change the corresponding data-generating
process across domains. In the latter, the selection variable is a sink
node and encodes the property of the final sampling procedure.
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Ws X Y Ws X Y

Vs

(a) (b)

Ws Y X Ws Y X

Vs

(c) (d)

Figure 1: Possible situations of DA. X denote the feature
vector, and Y is the target to be predicted. Ws and Vs are
domain-specific selection variables assumed to be indepen-
dent, leading to changing PXY across domains. (a) Covariate
shift: PX is changed by Ws, but PY |X does not change. (b)
Ws and Vs change PX and PY |X , respectively. (c) Target
shift: Ws changes PY , with PX|Y unchanged. (d) Ws and
Vs change PY and PX|Y , respectively. In the first two situa-
tions, we consider X as a cause for Y , whilst in the last two
situations, Y is a cause of X .

known, we can estimate the optimal hypothesis by mini-
mizing the expected Kullback-Leibler divergence between
P tXY |Ws,Vs

= P tX|Ws
P tY |X,Vs

= P tXP
t
Y |X,Vs

and P tXP
t∗
Y |X

(or maximizing the expected likelihood), which is given be-
low, and the following position gives the solution.

EVsKL(P
t
XY |Ws,Vs

∣∣∣∣P t
XP

t∗
Y |X)

=EX,Y,Vs log
(P t

XP
t
Y |X,Vs

P t
XP

t∗
Y |X

)
= EX,Y,Vs log

(P t
Y |X,Vs

P t∗
Y |X

)
. (1)

Proposition 1. Minimizing (1) w.r.t. a valid conditional dis-
tribution P t∗Y |X has the solution P t∗Y |X =

∫
PY |X,Vs

dPVs
=

EVs
[PY |X,Vs

]

In practice, the constructed optimal hypothesis would be
P̂ t∗Y |X = 1

n

∑n
i=1 P

(i)
Y |X . That is, the learned target hypoth-

esis is a convex combination (or more specifically, the av-
erage) of the source hypotheses. In (Mansour, Mohri, and
Rostamizadeh 2008) this is known as the convex combination
rule.

Situation 3 (Fig. 1.c): Y → X , with changing PY and
fixed PX|Y . This is called prior probability shift (Storkey
2009) or target shift (Zhang et al. 2013). (Plessis and
Sugiyama 2012) and (Zhang et al. 2013) studied how to
estimate the change in PY in this situation, and the latter also
applies for regression problems (i.e., with continuous Y ).

Here we consider multiple source domains. Suppose P tY
can be represented as P tY =

∑n
i=1 α̃iP

(i)
Y ; we can derive the

posterior of Y on the target domain:

P tY |X =
PX|Y P

t
Y

P tX
=
PX|Y

∑n
i=1 α̃iP

(i)
Y

P tX

=

∑n
i=1 α̃iP

(i)
XY∑n

i=1 α̃iP
(i)
X

=

n∑
i=1

α̃iP
(i)
X∑n

q=1 α̃qP
(q)
X

P
(i)
Y |X . (2)

The hypothesis for the target domain is then a distribution
weighted combination of the individual hypotheses on source
domains. This combination rule has been discussed in (Man-
sour, Mohri, and Rostamizadeh 2008), and here we have
shown that in Situation 3 it is actually optimal. (Mansour,
Mohri, and Rostamizadeh 2008) also compared this combina-
tion rule against the convex combination rule (see Situation
2), and the former was shown to be superior. This is consis-
tent with the fact that in most classification problems Y is the
cause for X; one can think of handwritten digit recognition
and medical diagnosis as typical examples.

Situation 4 (Fig. 1.d): Y → X with changing PX|Y (and
possibly changing PY ). This is known as generalized tar-
get shift in (Zhang et al. 2013), where only a single source
domain was considered. In Situation 4 we have to make
certain assumptions on how PX|Y changes; with them, for-
tunately, P tX might provide additional knowledge to find the
optimal classifier. This case will be further discussed in detail
in the next section.

2 DA with Independently Changing PY &
PX|Y

Here we consider Situation 4, where PY and PX|Y both
change across domains, as shown in Fig. 1.d. According
to the graphical model or the causal explanation Y → X ,
we know that PY and PX|Y change independent from each
other. In this section we restrict our attention to classification
problems. Generally speaking, without further conditions
on the data generating process, it is not possible to recover
P tX|Y , the conditional distribution on the target domain. It
is possible to solve the problem under rather restrictive as-
sumptions. For instance, (Zhang et al. 2013) considers DA
with a single source domain, and assumes that the change in
PX|Y follows the location-scale (LS) transformation; P tX|Y
is then generally identifiable. They have reported that LS
generalized target shift produces a much better performance
on remote sensing image classification then all alternatives,
which demonstrates that Situation 4 is practically relevant for
some rather complex DA problems.

Compared to a single source domain, multiple source do-
mains contain much richer information as to how to deter-
mine PX|Y on the target domain, and we can avoid the con-
straint of the LS transformation.

2.1 Model: Target Conditional as a Linear
Mixture of Source Conditionals

Motivation One can consider PX|Y,Vs
(which is the condi-

tional PX|Y in the domain associated with Vs; see Fig. 1.d)
as the mechanism to generate features from the class la-
bel given the domain. Imagine that there exist L elemen-
tary “sub-mechanisms”, or class conditional feature distri-
butions, P̃ (l)

X|Y , l = 1, ..., L, so that the mechanism in each
domain, PX|Y,Vs

, is a mixture of those sub-mechanisms, i.e.,
PX|Y=cj ,Vs

=
∑L
l=1 α̃Vs,j,lP̃

(l)
X|Y=cj

, where α̊Vs,j,l depend
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on both Vs and j, α̊Vs,l ≥ 0, and
∑L
l=1 α̊Vs,l = 1. Conse-

quently, in the multi-source DA scenario, if for each j, the
rank of {P (i)

X|Y=cj
| i = 1, ..., n} is equal to L, P tX|Y=cj

can

always be represented as a linear mixture of P (i)
X|Y=cj

.
More generally speaking, the proposed approach was also

inspired by latent variable modeling. According to Fig. 1.d,
we know that PX|Y=cj , or computationally more easily, its
kernel embedding (Smola et al. 2007; Gretton et al. 2007), is
actually a function of Vs:

µ[PX|Y=cj ,Vs
] =

∫
ψ(x)PX|Y=cj ,Vs

dx = Fj(Vs), (3)

where Fj are infinite-dimensional vector functions, which
might vary for different values of j. Here Vs contains domain-
specific conditions. For instance, for object recognition, it
may contain the illumination condition, the angle from which
the image was taken, etc.

One can see that the intrinsic dimensionality of
{µ[P

(i)
X|Y=cj

] | i = 1, ..., n}, is upper bounded by the in-
trinsic dimensionality of Vs, denoted by df . They are equal
if Fj is non-degenerate, i.e., if there is no loss of degree of
freedom in the transformation (3). We define df as the degree-
of-freedom in the conditional distribution change. Generally
speaking, the higher df , the more complex the change in
PX|Y=cj across domains. Since on source domains we only
know that Vs might change across domains but cannot access
its values, we cannot directly find df .

For simplicity, let us assume that Fj in (3) can be approx-
imated by a linear function,3 i.e., µ[PX|Y=cj ,Vs

] = LFj
Vs,

where LFj
has an infinite number of rows and df columns.

That is,(
µ[P

(1)

X|Y =cj
], · · · , µ[P (n)

X|Y =cj
]
)
= LFj ·

(
V

(1)
s , · · · , V (n)

s

)
.

If we further assume that V ts can be constructed as a
linear mixture of Vs on source domains, then P tX|Y=cj

is a linear mixture of PX|Y=cj on source domains. This
tends to be the case if df is small: in this case, the rank
of Vs is small, and then the class conditional feature dis-
tributions are likely to be linearly dependent, that is, the
target-domain conditional distribution is likely to be rep-
resented as a linear mixture of those on source domains.
If needed, in such situations we can directly estimate df
from source domains by finding the rank of the estimated
µ[P

(i)
X|Y=cj

], i = 1, ..., n, under the condition that we have
enough source domains which are diverse enough. More
specifically, let −̂→µ j =

(
µ̂[P

(1)
X|Y=cj

], ..., µ̂[P
(n)
X|Y=cj

]
)

=(
1
m1j

ψ(x
(1)
j )1, ..., 1

m1j
ψ(x

(n)
j )1

)
, where 1 denotes the vec-

tor of all 1’s of an appropriate size; under this condition, df
can be estimated as the maximum of the following quantity
for all j:

rank(−̂→µ j) = rank(−̂→µ
ᵀ

j
−̂→µ j) = rank(Qj), (4)

3This holds if Fj is essentially linear, or if Vs does not change
too much so that one can use linear approximation for Fj on all
observed domains.

where the (i, i′)th entry ofQj is 1
mijmi′j

1ᵀK(x
(i)
j ),x

(i′)
j ))1.

In practice, an appropriately chosen threshold is needed to
determine the rank, due to the estimation error in the kernel
mean embedding.

Formulation Motivated by this, we make the following
assumption on PX|Y on the target domain.

A1. For each y, P tX|Y=y is a mixture of PX|Y=y on the source
domains, i.e., there exist αij , which satisfy the constraint∑n
i=1 αij = 1 for all j, such that

PnewX|Y=cj
=

n∑
i=1

αijP
(i)
X|Y=cj

(5)

is equal to P tX|Y=cj
, where cj is the jth possible value of

Y .4

Denote by PnewY a marginal distribution of Y , and use
PnewY (cj) as shorthand for PnewY (Y = cj). The correspond-
ing joint distribution is

PnewX,Y=cj = PnewY (cj)P
new
X|Y=cj

, (6)

and the marginal distribution of X is then

PnewX =
C∑
j=1

PnewY (cj)
n∑
i=1

αijP
(i)
X|Y=cj

. (7)

We aim to match PnewX with P tX by tuning the parameters αij
and PnewY (cj). Here we have the constraints PnewY (cj) ≥ 0,
and

∑C
j=1 P

new
Y (cj) = 1. Let βij , PnewY (cj)αij , which

satisfy the condition
C∑
j=1

n∑
i=1

βij = 1. (8)

Once we find the values of βij , we can reconstruct pnewY

and αij by PnewY (cj) =
∑n
i=1 βij , and αij =

βij

Pnew
Y (cj)

. The
following theorem states that under mild conditions, P tX|Y
can be uniquely recovered.
Theorem 1. Let Assumption A1 hold. Further make the fol-
lowing assumption:

A2. For any constants dij that satisfy
∑n
i=1 d

2
ij 6= 0, it holds

that
∑n
i=1 dijP

(i)
X|Y=cj

, j = 1, ..., C, are always linearly
independent, if they are not zero.

Then if PnewX = P tX , we have PnewY = P tY and PnewX|Y =

P tX|Y , i.e, PnewXY is identical to P tXY .

4We have two remarks here. First, for the domains with
P

(i)
Y (cj) = 0, P (i)

X|Y =cj
is undefined, and one can simply set

αij = 0. Second, usually the weights αij in a distribution mix-
ture model are assumed to be nonnegative; however, this is not
necessary to guarantee that the constructed P t

X|Y =cj
is a valid dis-

tribution. For flexibility of the mixture model, we allow αij to be
negative, as long as Pnew

X|Y =cj
is a valid distribution, which, under

appropriate assumptions, is achieved by matching Pnew
X with P t

X ,
as implied by Theorem 1.
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To get an idea how strong (or weak) Assumption A2 is,
note that it is an assumption of linear independence of proba-
bility measures, or of densities (as functions of x). For contin-
uous x, those are objects in infinite-dimensional spaces, and
linear independence is the generic case rather than a special
situation.

A sufficient condition for Assumption A2 is that P (i)
X|Y=cj

,
i = 1, ..., n, j = 1, ..., C, are linearly independent. Note
that this conditional is much stronger: Assumption A2 allows
P

(i)
X|Y=cj

, i = 1, ..., n, to be linear dependent for the same
j. In fact, here we do not care about the the identifiability of
the parameters βij (or αij and PY ), but the identifiability of
PnewX|Y .

2.2 Parameter Estimation by Reproducing the
Target Feature Distribution

We can estimate the parameters βij , and hence αij and PnewY ,
by minimizing the maximum mean discrepancy (MMD;
see (Gretton et al. 2007)):∣∣∣∣∣∣µ[Pnew

X ]− µ[P t
X ]]
∣∣∣∣∣∣ = ∣∣∣∣∣∣EPnew

X
[ψ(X)]− µ[P t

X ]
∣∣∣∣∣∣

=
∣∣∣∣∣∣ C∑

j=1

Pnew
Y (cj)

n∑
i=1

αijµ[P
(i)

X|Y =cj
]− µ[P t

X ]
∣∣∣∣∣∣. (9)

Let x(i)jk , k = 1, ...,mij denote the data points of X in the
ith source domain for which Y = cj , where mij is the total
number of points in the ith source domain for which Y = cj .
Similarly, xtk denotes the kth point of X in the target domain.
In practice, we minimize the square of the empirical version
of (9):

J0 =
∣∣∣∣∣∣ C∑

j=1

Pnew
Y (cj)

n∑
i=1

αij

mij

mij∑
k=1

ψ(x
(i)
jk )−

1

m

m∑
k=1

ψ(xtk)
∣∣∣∣∣∣2

=

C∑
j=1

n∑
i=1

C∑
j′=1

n∑
i′=1

βijβi′j′

mijmi′j′

mij∑
k=1

mi′j′∑
k′=1

k(x
(i)
jk , x

(i′)
j′k′)−

2

C∑
j=1

n∑
i=1

βij
mmij

mij∑
k=1

m∑
k′=1

k(x
(i)
jk , x

t
k′) + const. (10)

Let ~β , (β11, ..., β1C , β21, ..., β2C , ..., βn1, ..., βnC)ᵀ,
A be a nC × nC matrix with
A(i−1)C+j,(i′−1)C+j′ = 1

mijmi′j′

∑
k

∑
k k(x

(i)
jk , x

(i′)
j′k′) =

1
mijmi′j′

1ᵀK(x
(i)
j ,x

(i′)
j′ )1 for i ∈ {1, 2, ..., n},

i′ ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., C}, and j′ ∈ {1, 2, ..., C},
and b be a nC-dimensional vector with its entries
b(i−1)C+j = − 1

mmij

∑mij

k=1

∑m
k′=1 k(x

(i)
jk , x

t
k′) =

− 1
mmij

1ᵀK(x
(i)
j ,xtk′) for i ∈ {1, 2, ..., n},

i′ ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., C}. ~β can then be
estimated by minimizing J0:

J0 = ~βᵀA~β + 2bᵀ~β + const, (11)
subject to the constraint (8).5 This is a quadratic programming
(QP) problem. After finding the values of ~β, we can then

5Here we use a hard constraint on βij . Note that in (Huang et al.
2007; Gretton et al. 2008), a slightly different constraint was used
for importance weights to correct for covariate shift.

construct αij and PnewY (cj). For some practical issues in
this optimization procedure, including enforcing the sparsity
constraint on αij ; see Supplementary Material.

In our experiments, we use the Gauss kernel, which is
known to be characteristic; unless specified otherwise, we
adopt the median heuristic to set the kernel width.

2.3 Construction of Target Classifiers
Given the estimated parameters βij (or αij), we then present
several natural ways to construct the target-domain classifier
or directly determine the class labels on the target domain.

By importance reweighting on source samples (denoted
weigh sample) The first approach is to train the classi-
fier on the original data points in source domains with appro-
priate importance weights. Once we find αij and PnewY (cj),
we can construct PnewXY , which mimics P tXY . According
to (5), since an empirical estimator of P (i)

X|Y (x|y = cj) is

P̂
(i)
X|Y (x|y = cj) = 1

mij

∑mij

k=1 δ
(
x−x(i)jk

)
, where δ(·) is the

Dirac delta function, an empirical estimator of PnewXY (x, y =

cj) is P̂newXY = PnewY (cj)
∑n
i=1

αij

mij

∑mij

k=1 δ
(
x − x

(i)
jk

)
.

We aim to find the function f(x) which minimizes the
expected loss on the target domain. Denoted by l(x, y; θ)
the loss function, where θ denotes the involved pa-
rameters, the expected loss is R[P tXY , θ, l(x, y; θ)] =
EP t

XY
[l(x, y; θ)]. Its empirical estimator is

Remp[P̂
new
XY , θ, l(x, y; θ)] =

∫
P̂newXY l(x, y; θ)dxdy =∑C

j=1

∑n
i=1

∑mij

k=1
αijP

new
Y (cj)
mij

l(x
(i)
jk , cj ; θ). We can then

train the classifier on all source data points with the
reweighting coefficients αijP

new
Y (cj)
mij

.

By generative modeling (denoted genar model) The
second approach is purely generative. Let ηj(x) ,

P tY=cj |X(x) =
P t

Y (cj)P
t
X|Y =cj

P t
X

. For any value of x, if ηj(x)

is known, one can directly find the class label for x by com-
paring ηj(x), j = 1, ..., C. We propose a method to estimate
ηj(x) without explicitly estimating those involved distribu-
tions. Again, we make use of the kernel mean embedding of
distributions. For details see Supplementary Material.

By weighted combination of source classifiers (denoted
combn classf) Alternatively, we can combine the indi-
vidual source classifiers to form the one for the target do-
main:

P t
Y |X(y = cj |x) =

P t
Y (cj)

∑n
i=1 αijP

(i)

X|Y (x|y = cj)

P t
X

=

n∑
i=1

γ
(i)
j (x)P

(i)

Y |X(y = cj |x), (12)

where γ
(i)
j (x) , αijP

t
Y (cj)P

(i)
X (x)

P
(i)
Y (cj)P t

X(x)
. Note that under As-

sumption A1, we have
∑n
i=1 γ

(i)
j (x) = 1. The weights

γ
(i)
j (x) can be estimated in a similar way to ηj in approach
genar model. This method involves construction of n clas-
sifiers and combines them with weights γ(i)j (x), which de-
pend on all of the test point x, domain i, and class j.
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Comparisons of those approaches involve theoretical stud-
ies of discriminative and generative classifiers and the be-
havior of importance reweighting and weighted combina-
tion of classifiers. Generally speaking, as a generative ap-
proach, genar model might not work well when X is
high-dimensional. We will next compare them empirically.

2.4 Special Case: Distribution Weighted
Hypothesis Combination

The distribution weighted hypothesis combination rule (Man-
sour, Mohri, and Rostamizadeh 2008) is actually a special
case of the proposed combn classf under additional con-
straints; as stated in the following theorem.

Theorem 2. Suppose the conditions in Theorem 1 hold.
The source hypothesis combination rule (12) reduces to the
distribution weighted combination rule in the form of (2)
under any of the following conditions:

1. PX|Y does not change across domains, and P tY is a linear
mixture of PY on source domains, or

2. PY does not change, and αij in (5) are the same for all
classes j = 1, ..., C, or

3. both PX|Y and PY change, but αijP
(i)
Y (cj)/P

t
Y (cj) are

the same for all j.

The three conditions in the above theorem all constrain
how PY or PX|Y change. For the distribution weighted rule,
the same coefficient, 1/n, was used in (Mansour, Mohri,
and Rostamizadeh 2008) for all sources; here we denote
this method by simple adapt. We propose to use kernel
mean matching (KMM; see (Huang et al. 2007)) to estimate
α̃i in the distribution weighted rule (2) from data such that∑
i α̃iP

(i)
X is as close to P tX as possible, and the resulting

hybrid method is denoted by dstr wgh (H). Moreover,
note that in our dstr wgh (H), the weights can be nega-
tive, while in (Mansour, Mohri, and Rostamizadeh 2008) all
coefficients have to be nonnegative.

3 Experiments
3.1 Simulations
We first test the performance of the multi-source DA meth-
ods proposed in Section 2.3 for classification on simulated
data. We generated the data according to Assumption A1

in Sec. 2.1: on each domain, we generated the data points
belonging to each class as a mixture of three fixed Gaussians,
which have different means or variances, with random coef-
ficients, and PY was also randomly chosen on each domain.
We used three source domains, and in each domain the num-
ber of points in each class is a random number between 50
and 600. Fig. 2 shows the simulated data in one replication.

We compare the three classification approaches proposed
in Section 2.3 against a number of alternatives. We include
the following representative hypothesis combination methods
for comparison: LWE (Gao et al. 2008), convex hypothe-
sis combination (Mansour, Mohri, and Rostamizadeh 2008),

denoted convex, simple adapt (Mansour, Mohri, and
Rostamizadeh 2008), and dstr wgh (H), which adopts
the distribution weighted combination rule (2) with the
weights α̃i estimated from data. KMM for correcting co-
variate shift (Huang et al. 2007), the pooling SVM (denoted
pool SVM), which merge all source data to train the SVM,
domain-invariant component analysis (DICA) (Muandet, Bal-
duzzi, and Schölkopf 2013), and Learning marginal predic-
tors (LMP) proposed by (Blanchard, Lee, and Scott 2011)
are also included.

In our methods, we simply set the kernel width to 0.5, and
the SVM parameters were selected by 5-fold cross validation
on the parameter grids. Fig. 3 gives the boxplot of the misclas-
sification rate of each method over 50 replications. We use
both the Wilcoxon signed ranks test and Friedman test, rec-
ommended by (Dems̆ar 2006), for performance comparison.
With both tests, we found that on simulated data, the pro-
posed approaches weigh sample and combn classf
outperform all alternatives with p values smaller than 0.01,
and that genar model outperforms all the remaining meth-
ods with the p values smaller than 0.05. dstr wgh (H)
and simple adapt are closely behind, verifying the find-
ing that distribution weighted rule outperforms the convex
combination of the source hypotheses reported in (Mansour,
Mohri, and Rostamizadeh 2008).

Since the data points from each class were drawn from
the mixture of three Gaussians with random coefficients,
for each class, df , the degree-of-freedom in the conditional
distribution change, as defined in Section 2.1, is 3. Recall
that it indicates how many non-redundant source domains are
needed to reconstruct P tX|Y . On the simulated data we found
that rank(Qj) = 3. We also varied the number of source
domains from 3 to 5, and the rank ofQj is still 3, as confirmed
by the test of the rank of Hermitian positive semidefinite
matrices (Camba-Mendez and Kapetanios 2005).

3.2 Real data: Sentiment analysis & Object
recognition

The sentiment data (Blitzer, Dredze, and Pereira 2007) con-
sist of review text and labels for four categories of goods
(domains): book, dvd, electronics, and kitchen; each domain
contains 2000 data points (or reviews) with four labels (or
classes). We repeated the experiments on this dataset by
(Mansour, Mohri, and Rostamizadeh 2008), but with a more
general setting. (Mansour, Mohri, and Rostamizadeh 2008)
constructed the target domain as a uniform mixture of data
points randomly sampled from the four domains; the rest of
the data were used as source-domain data. For each class,
we sampled w% (w is a random number between 20 and 50)
of the points from each source domain as the target-domain
data. Our sampling scheme is more general: in our case P tXY
is not necessary a uniform mixture of P (i)

XY . We use the the
frequency of the unigrams that appear 50 times or more in
every domain as the features (in total there are 308 features).
Each method was repeated 10 times by randomly sampling
the data. The mean and standard deviation of the accuracies
on target domains by each method are given in the upper part
of Table 2. combn classf and weigh sample give the
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Figure 2: Simulated data in one replication.
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Figure 3: Boxplot of misclassification rate of each method on simulated data (50 replications).

best accuracies.
We also compared our approaches with alternatives on the

object recognition data (Griffin, Holub, and Perona 2007), as
done by (Gong et al. 2012). We evaluated different methods
on four object recognition datasets (domains): Amazon (im-
ages downloaded from Amazon), Webcam (low-resolution
images by a web camera), DSLR (high-resolution images
by a SLR camera), and Caltech-256 (Griffin, Holub, and
Perona 2007). We extracted 10 common categories among
all domains. There are 8 to 151 samples per category per
domain, and 2533 images in total. We used three domains as
sources and the rest one as the target. We followed the feature
extraction scheme in (Gong et al. 2012). We used SVM for
all the DA methods, and the SVM hyper parameters were
selected by 5-fold cross validation on a grid. The results are
shown in table 2. The Friedman test gives the p value 0.02,
indicating that those approaches give different performances
at the significance level 0.05; furthermore, combn classf
performs best, closely followed by dstr wgh (H).

4 Conclusion and discussions
We provided a causal view to domain adaptation with mul-
tiple source domains and noted that the background causal
knowledge—the data-generating process—helps greatly in
domain adaptation. Under different causal assumptions, the
knowledge to be transferred from source domains to the target
may be different, leading to different algorithms for domain
adaptation. We considered several simplified causal models
for this task, and accordingly gave the optimal hypothesis for
the target domain. In particular, we have focused on a multi-
source domain adaptation problem in which PY and PX|Y
change independently across domains, where X denotes fea-
tures and Y the target. The proposed methods consist of two
steps. One first recovers PX|Y and PY on the test domain, by
tuning involved parameters to reproduce the corresponding
observed feature distribution. The second step constructs the
classifier for the target domain or directly determines the
target-domain class labels; to this end we presented three
natural approaches for target-domain classification, which

exploit importance reweighting, use generative learning, or
resort to a weighted combination of source hypotheses.

The proposed methods rely on the assumption that for each
class, the target-domain conditional distribution PX|Y can
be represented as a mixture of those on source domains. We
remark that for some real problems, certain features could
be highly noisy, and it is worth noting that this assumption
might not hold for some features or components of features;
therefore it would be beneficial to find appropriate feature rep-
resentations, as in (Ben-David et al. 2007). Furthermore, an-
other future line of research is to derive convergence bounds
and learning guarantees for the proposed domain adaptation
approaches, following (Cortes, Mansour, and Mohri 2010;
Iyer, Nath, and Sarawagi 2014).
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