Pruning Game Tree by Rollouts

Bojun Huang
Microsoft Research
bojhuang@microsoft.com

Abstract

In this paper we show that the \(\alpha-\beta\) algorithm and its successor MT-SSS*, as two classic minimax search algorithms, can be implemented as rollout algorithms, a generic algorithmic paradigm widely used in many domains. Specifically, we define a family of rollout algorithms, in which the rollout policy is restricted to select successor nodes only from a subset of the children list. We show that any rollout policy in this family (either deterministic or randomized) is guaranteed to evaluate the game tree correctly with a finite number of rollouts. Moreover, we identify simple rollout policies in this family that “implement” \(\alpha-\beta\) and MT-SSS*. Specifically, given any game tree, the rollout algorithms with these particular policies always visit the same set of leaf nodes in the same order with \(\alpha-\beta\) and MT-SSS*, respectively. Our results suggest that traditional pruning techniques and the recent Monte Carlo Tree Search algorithms, as two competing approaches for game tree evaluation, may be unified under the rollout paradigm.

Introduction

Game tree evaluation formulates a logic process to make optimal worst-case plans for sequential decision making problems, a research topic usually benchmarked by two-player board games. Historically, classic game-tree search algorithms like \(\alpha-\beta\) and its successors have successfully demonstrated human-champion-level performance in tactical games like Chess, but their computational complexity suffers from exponential growth with respect to the depth of the game tree. In order to reduce the size of the game tree under consideration, these traditional game-tree search algorithms have to be complemented by domain-specific evaluation functions, a task that is very difficult in some domains, such as GO and General Game Playing.

Recently, rollout algorithms have been introduced as a new paradigm to evaluate large game trees, partially because of their independence of domain-specific evaluation functions. In general, rollout algorithm is a generic algorithmic paradigm that has been widely used in many domains, such as combinatorial optimization (Bertsekas, Tsiakis, and Wu 1997) (Glover and Taillard 1993), stochastic optimization (Bertsekas and Castanon 1999), planning in Markov Decision Process (Peret and Garcia 2004) (Kocsis and Szepesvari 2006), and game playing (Tesauro and Galperin 1996) (Abramson 1990). In the context of game tree evaluation, a rollout is a process that simulates the game from the current state (the root of the game tree) to a terminating state (a leaf node), following a certain rollout policy that determines each move of the rollout in the state space. A rollout algorithm is a sequence of rollout processes, where information obtained from one rollout process can be utilized to reinforce the policies of subsequent rollouts, such that the long-term performance of the algorithm may converge towards the (near-)optimal policy.

In particular, a specific class of rollout algorithms, called Monte Carlo Tree Search (MCTS), has substantially advanced the state-of-art in Computer GO (Gelly et al. 2012) and General Game Playing (Finnsson and Bjornsson 2008). The key idea of MCTS is to use the average outcome of rollouts to approximate the minimax value of a game tree, which is shown to be effective in dynamic games (Coulom 2006). On the other hand, however, people also observed that existing MCTS algorithms appear to lack the capability of making “narrow lines” of tactical plans as traditional game-tree search algorithms do. For example, Ramanujan, Sabharwal, and Selman (2012) show that UCT, as a popular rollout algorithms in game playing, is prone to being misled by over-estimated nodes in the tree, thus often being trapped in sub-optimal solutions in some situations.

As a result, researchers have been trying to combine MCTS algorithms with traditional game tree search algorithms in order to design unified algorithms that share the merits of both sides (Baier and Winands 2013) (Lanctot et al. 2013) (Coulom 2006). Unfortunately, one of the major difficulties for the unification is that most traditional \(\alpha-\beta\)-like algorithms are based on minimax search, which seems to be a different paradigm from rollout.

In this paper, we show that two classic game-tree search algorithms, \(\alpha-\beta\) and MT-SSS*, can be implemented as rollout algorithms. The observation offers a new perspective to understand these traditional game-tree search algorithms, one that unifies them with their modern “competitors” under the generic framework of rollout. Specifically,

- We define a broad family of rollout algorithms, and prove that any algorithm in this family is guaranteed to correctly evaluate game trees by visiting each leaf
node at most once. The correctness guarantee is \textit{policy-oblivious}, which applies to arbitrary rollout policy in the family, either deterministic or probabilistic.

- We then identify two simple rollout policies in this family that implement the classic minimax search algorithms \(\alpha\beta\) and MT-SSS* under our rollout framework. We prove that given any game tree, the rollout algorithms with these particular policies always visit the same set of leaf nodes in the same order as \(\alpha\beta\) and an “augmented” version of MT-SSS*, respectively.

- As a by-product, the “augmented” versions of these classic algorithms identified in our equivalence analysis are guaranteed to \\textit{outprune} their original versions.

\textbf{Preliminaries}

\textbf{Game tree model}

A game tree \(T\) is defined by a tuple \((S,C,V)\), where \(S\) is a finite state space, \(C(\cdot)\) is the successor function that defines an ordered children list \(C(s)\) for each state \(s \in S\), and \(V(\cdot)\) is the value function that defines a \textit{minimax} value for each state \(s \in S\).

We assume that \(C(\cdot)\) imposes a tree topology over the state space, which means there is a single state that does not show in any children list, which is identified as the root node of the tree. A state \(s\) is a leaf node if its children list is empty (i.e. \(C(s) = \emptyset\)), otherwise it is an internal node.

The value function \(V(\cdot)\) of a given game tree can be specified by labeling each state \(s \in S\) as either \textit{MAX} or \textit{MIN}, and further associating each leaf-node state \(s\) with a deterministic reward \(R(s)\). The minimax value \(V(s)\) of each state \(s \in S\) is then defined as

\[V(s) = \begin{cases} R(s) & \text{if } s \text{ is Leaf;} \\ \max_{c \in C(s)} V(c) & \text{if } s \text{ is Internal & MAX;} \\ \min_{c \in C(s)} V(c) & \text{if } s \text{ is Internal & MIN.} \end{cases} \quad (1) \]

To align with previous work, we assume that the reward \(R(s)\) for any \(s\) is ranged in a finite set of integers, and we use the symbols \(+\infty\) and \(-\infty\) to denote a \textit{finite} upper bound and lower bound that are larger and smaller than any possible value of \(R(s)\), respectively.\footnote{The algorithms and analysis proposed in this paper also apply to more general cases, such as when \(R(s)\) is ranged in an infinite set of integers or in the real field.}

Explicit game trees often admit compact specifications in the real world (for example, as the rules of the game). Given the specification of a game tree, our goal is to compute the minimax value of the root node, denoted by \(V(\text{root})\), as quickly as possible. Specifically, we measure the efficiency of the algorithm by the number of times the algorithm calls the reward function \(R(\cdot)\), i.e. the number of leaf-node evaluations, which is often an effective indicator of the computation time of the algorithm in practice (Marsland 1986).

As a convenient abstraction, we suppose that any algorithm in the game tree model can access an \textit{external storage} (in unit time) to retrieve/store a closed interval \([v^L_s, v^U_s]\) as the value range for any specified state \(s \in S\). Initially, we have \([v^L_s, v^U_s] = [-\infty, +\infty]\) in the storage for all states. We remark that such a “whole-space” storage only serves as a conceptually unified interface that simplifies the presentation and analysis in this paper. In practice, we do not need to allocate physical memory for nodes with the trivial bound \([-\infty, +\infty]\). For example, the storage is physically empty if the algorithm does not access the storage at all. Such a storage can be easily implemented based on standard data structures such as a \textit{transposition table} (Zobrist 1970).

\textbf{Depth-first algorithms and \(\alpha\beta\) pruning}

Observe that Eq. (1) implies that there must exist at least one leaf node in the tree that has the same minimax value as the root. We call any such leaf node a \textit{critical leaf}. A \textit{game-tree search} algorithm computes \(V(\text{root})\) by searching for a critical leaf in the given game tree.

\textit{Depth-first algorithm} is a specific class of game-tree search algorithms that compute \(V(\text{root})\) through a depth-first search. It will evaluate the leaf nodes strictly from left to right, under the order induced by the successor function \(C(\cdot)\). It is well known that the \(\alpha\beta\) algorithm is the optimal depth-first algorithm in the sense that, for any game tree, no depth-first algorithm can correctly compute \(V(\text{root})\) by evaluating fewer leaf nodes than \(\alpha\beta\) does (Pearl 1984).

The key idea of the \(\alpha\beta\) algorithm is to maintain an open interval \((\alpha, \beta)\) when visiting any tree node \(s\), such that a critical leaf is possible to locate in the subtree under \(s\) only if \(V(s) \in (\alpha, \beta)\). In other words, whenever we know that the value of \(s\) falls outside the interval \((\alpha, \beta)\), we can skip over all leaf nodes under \(s\) without compromising correctness. Algorithm 1 gives the pseudocode of the \(\alpha\beta\) algorithm, which follows Figure 2 in (Plaat et al. 1996). Given a tree node \(s\) and an open interval \((\alpha, \beta)\), the alphabeta procedure returns a value \(g\), which equals the exact value of \(V(s)\) if \(\alpha < g < \beta\), but only encodes a lower bound of \(V(s)\) if \(g \leq \alpha\) (a situation called \textit{fail-low}), or an upper bound of \(V(s)\) if \(g \geq \beta\) (a situation called \textit{fail-high}).

Note that Algorithm 1 accesses the external storage at Line 4 and Line 22, which are unnecessary because the algorithm never visits a tree node more than once. Indeed, the basic version of the \(\alpha\beta\) algorithm does not require the external storage at all. Here, we provide the “storage-enhanced” version of \(\alpha\beta\) for the sake of introducing its successor algorithm MT-SSS*.

\textbf{Best-first algorithms and MT-SSS*}

To a great extent, the pruning effect of the \(\alpha\beta\) algorithm depends on the \textit{order} that the leaf nodes are arranged in the tree. In general, identifying and evaluating the “best” node early tends to narrow down the \((\alpha, \beta)\) window more quickly, thus more effectively pruning suboptimal nodes in the subsequent search. In the best case, the optimal child of any internal node is ordered first, and thus is visited before any other sibling node in the depth-first search. Knuth and Moore (1975) prove that in this case the \(\alpha\beta\) algorithm only needs to evaluate \(n^{3/4}\) leaf nodes, assuming \(n\) leaves in total. In comparison, Pearl (1984) shows that this number degrades to around \(n^{3/4}\) if the nodes are randomly ordered. In the worst case, it is possible to arrange the nodes in such
Raw Text:}

Algorithm 1: The α-β algorithm enhanced with storage.

1. \(g \leftarrow \text{alphabeta}(\text{root}, -\infty, +\infty) \);
2. \(\text{return } g \)
3. \(\text{Function alphabeta}(s, \alpha, \beta) \)

 retrieve \([v_s^-, v_s^+] \);

 if \(v_s^- \geq \alpha \) then return \(v_s^- \);

 if \(v_s^+ \leq \beta \) then return \(v_s^+ \);

 if \(s \) is a leaf node then

 \(g \leftarrow R(s) \);

 else if \(s \) is a MAX node then

 \(g \leftarrow -\infty; \alpha_s \leftarrow \alpha \);

 foreach \(c \in C(s) \) do

 \(g \leftarrow \max\{g, \text{alphabeta}(c, \alpha_s, \beta)\} \);

 \(\alpha_s \leftarrow \max\{\alpha_s, g\} \);

 if \(g \geq \beta \) then break;

 end

 else if \(s \) is a MIN node then

 \(g \leftarrow +\infty; \beta_s \leftarrow \beta \);

 foreach \(c \in C(s) \) do

 \(g \leftarrow \min\{g, \text{alphabeta}(c, \alpha, \beta_s)\} \);

 \(\beta_s \leftarrow \min\{\beta_s, g\} \);

 if \(g \leq \alpha \) then break;

 end

 if \(g < \beta \) then \(v_s^+ \leftarrow g \);

 if \(g > \alpha \) then \(v_s^- \leftarrow g \);

 store \([v_s^-, v_s^+] \);

return \(g \)

a way that the α-β algorithm has to evaluate all of the \(n \) leaf nodes in the tree.

Best-first algorithm is a class of algorithms that always try to evaluate the node that currently looks more “promising” (to be or contain a critical leaf). In particular, The SSS* algorithm, first proposed by Stockman (1979) and later revised by Campbell (1983), is a classic best-first algorithm that is guaranteed to “outprune” the α-β algorithm in the sense that: SSS* never evaluates a leaf node that is not evaluated by α-β, while for some problem instances SSS* manages to evaluate fewer leaf nodes than α-β. The SSS* algorithm is based on the notion of solution tree. The basic idea is to treat each MAX node as a cluster of solution trees, and to always prefer to search the leaf node that is nested in the solution-tree cluster currently with the best upper bound.

Interestingly, Plaat et al. (1996) show that SSS*, as a best-first algorithm, can be implemented as a series of storage-enhanced depth-first searches. Each pass of such a depth-first search is called a Memory-enhanced Test, so this version of SSS* is also called MT-SSS*. Plaat et al. prove that for any game tree, MT-SSS* visits the same set of leaf nodes in the same order with the original SSS* algorithm.

Algorithm 2 gives the psuedocode of MT-SSS*. Instead of directly determining the exact value of \(V(\text{root}) \) in a single pass, the algorithm iteratively calls the alphabeta procedure (in Algorithm 1) to refine the value bounds of the root until the gap between the bounds is closed. Each pass of the alphabeta procedure is for examining the same question: Is the current upper bound of the root tight? The algorithm calls the alphabeta procedure with the minimum window \((v_{\text{root}}^+, v_{\text{root}}^-) \), which forces the procedure to only visit the leaf nodes “relevant” to this question. In this case the alphabeta procedure will answer this question by returning either a new upper bound that is lower than the original bound \(v_{\text{root}}^+ \) or a matching lower bound that equals \(v_{\text{root}}^- \).

Note that the alphabeta procedure stores value bounds in the external storage, so latter iterations can re-use the results gained in previous iterations, avoiding repeated work. Since SSS* has been proven to outprune α-β, the total number of leaf node evaluations over all passes of minimum-window searches in MT-SSS* will never exceed the number made by a single pass of full-window search. On the other hand, in cases when the given game tree is in a “bad” order, the best-first working style of MT-SSS* can help to significantly reduce the number of leaf-node evaluations.

Monte Carlo Tree Search and UCT

While α-β and MT-SSS* can offer substantial improvement over exhaustive tree search, both of them still have to run in time exponential to the depth of the tree (Pearl 1984), which limits the tree size they can directly deal with. In practice, these algorithms typically need to be complemented with a static evaluation function that can make heuristic estimation on the minimax value of an arbitrarily given non-leaf node, resulting in the “bounded look-ahead” paradigm (Reinefeld and Marsland 1994). In such a paradigm, an internal node \(s \) may be considered as a “virtual leaf node” (or frontier node) under certain conditions, and in that case the evaluation function is applied to give the reward value of this virtual leaf node, with the whole sub-tree under \(s \) being cut-off from the tree search. The hope is that the evaluation function can reasonably approximate \(V(s) \) at these virtual leaf nodes such that the result of searching only the partial tree above these virtual leaves is similar to the result of a complete tree search. However, depending on domains it can sometimes be highly challenging to design a satisfactory evaluation function and cut-off conditions.

Monte Carlo Tree Search (MCTS) is an alternative algorithmic paradigm that can evaluate large game trees without sophisticated evaluation functions (Coulom 2006). As a specific class of rollout algorithms, MCTS algorithms repeatedly perform rollouts in the given game tree and use the...
average outcome of the rollouts to approximate the minimax value of the tree (Abramson 1990).

Among others, the UCT algorithm is a particular instance of MCTS algorithms that has drawn a lot of attention in the community (Kocsis and Szepesvári 2006). At a tree node \(s \), the algorithm uses a deterministic rollout policy that computes for each successor node \(c \) a score \(\text{UCT}(c) = \mu_c + \lambda \sqrt{\ln n_s/n_c} \), where \(\mu_c \) is the average reward of the previous rollouts passing through \(c \), \(n_c \) is the number of such rollouts, and \(n_s \) is the number of rollouts through \(s \). Then the algorithm simply chooses the successor node with the highest score. One can check that the UCT score will approach to the average reward \(\mu_c \) if the current node \(s \) has been extensively visited. In contrast, when the sample size \(n_s \) is small, less-visited successor nodes can get substantial bonus in their score, thus may get chance to be explored even if it has a low average reward \(\mu_c \). The trade-off between exploitation and exploration can be controlled by fine-tuning the parameter \(\lambda \), such that the resulting footprints of the rollouts are “softly” biased to the most promising variations. Kocsis and Szepesvári (2006) proved that the outcome of UCT always converges to the minimax value \(\mathcal{V}(\text{root}) \) if given infinite time.

A Family of Rollout Algorithms

Rollout algorithms perform a rollout by iteratively selecting a successor node at each node \(s \) along a top-down path starting from the root. In general, a rollout algorithm may select the successor node according to an arbitrary probability distribution over the whole children list \(C(s) \). However, the idea of \(\alpha \)-\(\beta \) pruning suggests that it may be unnecessary to consider every successor node for computing the value of \(\mathcal{V}(\text{root}) \). In this section we present a family of rollout algorithms that follows this observation by restricting the successor node selection to be over a subset of \(C(s) \). As shown later, this family of rollout algorithms naturally encompasses the ideas of traditional minimax search algorithms.

Recall that at any time we know from the external storage a value range \([v^-, v^+] \) for each tree node \(c \in \mathcal{S} \). We start with identifying an important property of the knowledge in the storage. Specifically, we say that the storage is valid with respect to a given game tree \(T \) if \(v^- \leq \mathcal{V}(s) \leq v^+ \) for any node \(s \in T \). Moreover, we define that a valid storage is coherent to the given game tree if its validity is robust to the uncertainty itself claims.

Definition 1. Given a game tree \(T = (\mathcal{S}, \mathcal{C}, \mathcal{V}) \), a storage \(M = \{[v^-, v^+]\}_{s \in \mathcal{S}} \) is coherent, with respect to \(T \), if (i) \(M \) is valid to \(T \); and (ii) For any leaf node \(c \in \mathcal{S} \) and for any \(r \in [v^-, v^+] \), let \(T' = (\mathcal{S}', \mathcal{C}, \mathcal{V}') \) be the game tree obtained by setting \(R(c) = r \) in the original tree \(T \), \(M \) is valid to \(T' \).

A coherent storage enables a sufficient condition to ignore a tree node \(c \) (as well as the subtree rooted at \(c \)) in the search for the value of \(\mathcal{V}(\text{root}) \). Specifically, let \(\mathcal{P}(c) \) be the set of tree nodes between and including the root node and node \(c \) (so \(\mathcal{P}(\text{root}) = \{\text{root}\} \)). For each tree node \(c \), define \([\alpha_c, \beta_c] \) as the intersection interval of the value ranges of all nodes in \(\mathcal{P}(c) \). That is,

\[
[\alpha_c, \beta_c] = \bigcap_{s \in \mathcal{P}(c)} [v^-, v^+],
\]

or equivalently, in practice we can compute \(\alpha_c \) and \(\beta_c \) by

\[
\alpha_c = \max_{s \in \mathcal{P}(c)} v^-, \quad \beta_c = \min_{s \in \mathcal{P}(c)} v^+.
\]

The following lemma shows that if the uncertainty in the storage is coherent, then under certain condition, not only is the value range \([v^\text{root}, v^\text{root}] \) stable to the “disturbance” from lower layers of the tree, but the exact minimax value \(\mathcal{V}(\text{root}) \) is also stable. The key insight is to see that both max and min are monotone value functions.

Lemma 1. Given any game tree \(T = (\mathcal{S}, \mathcal{C}, \mathcal{V}) \), let \(M = \{[v^-, v^+]\}_{s \in \mathcal{S}} \) be a storage coherent to \(T \). For any leaf node \(c \in \mathcal{S} \) and for any \(r \in [v^-, v^+] \), let \(T' = (\mathcal{S}, \mathcal{C}, \mathcal{V}') \) be the game tree obtained by setting \(R(c) = r \) in the original tree \(T \), then \(\mathcal{V}'(\text{root}) = \mathcal{V}(\text{root}) \) if \(\alpha_c \geq \beta_c \).

Proof. First observe that the lemma trivially holds when the leaf node \(c \) is at depth 1, i.e. when it is the root node – in that case we have \([\alpha_c, \beta_c] = [v^- \text{root}, v^+ \text{root}] \), and thus \(\alpha_c \geq \beta_c \) implies \(v^- \text{root} = v^+ \text{root} \) if the storage \(M \) is valid. For leaf node \(c \) with a depth larger than 1, by induction we only need to prove the lemma assuming that it holds for all ancestor nodes of the \(c \) (or equivalently, for each such ancestor node we assume the lemma holds for another tree in which the subtree of this ancestor node is pruned).

Let \(s \) be the parent node of \(c \). For contradiction assume \(c \) could affect the value of root, i.e., for leaf node \(c \) with \(\alpha_c \geq \beta_c \), \(\mathcal{V}'(\text{root}) \neq \mathcal{V}(\text{root}) \) when \(R(c) \) changes to some \(r \in [v^-, v^+] \). In that case we must have \(\alpha_s < \beta_s \), because otherwise \(s \) cannot affect the value of the root (which is assumed by induction), and neither can its successor node \(c \).

Now we have \(\alpha_s < \beta_s \) and \(\alpha_c \geq \beta_c \). Recall that \([\alpha_c, \beta_c] = [\alpha_s, \beta_s] \cap [v^-, v^+] \), which means we have either (i) \(v^- = v^+ \), in which case the lemma trivially holds; or (ii) \(\beta_c < \alpha_s \); or (iii) \(v^+ < \alpha_s \). We only discuss case (ii) in the following, and the argument for case (iii) is symmetrical.

Since \(\beta_c < \alpha_s \), and by Eq.(3), \(\beta_s = \min_{s \in \mathcal{P}(s)} v^+ \), there must exist a node \(s^* \in \mathcal{P}(s) \) such that \(v^+_s \leq v^- \). That is, there is no overlap between the value ranges of \(c \) and \(s^* \) (except the boundary). Now we suppose \(R(c) = v^- \) in \(T \), and prove that \(\mathcal{V}'(s^*) = \mathcal{V}(s^*) \) if \(R(c) \) increases from \(v^- \) to any \(v^+ \). In that case it immediately follows that the value of \(s^* \) must also remain constant if \(R(c) \) is further changing between such \(s^* \'s \) (because any of them equals the \(\mathcal{V}(s^*) \) when \(R(c) = v^- \)).

The key insight is to see that both the max function and the min function are monotone, and so does any recursive function defined by Eq.(1). Specifically, because \(v^- \leq v^- \), and because \(v^+ \) is valid upper bound, we have \(\mathcal{V}(s^*) \leq v^- \).

Case 1: When \(\mathcal{V}(s^*) = v^- \). Because \(\mathcal{V}(\cdot) \) is monotone and \(r > v^- \), we have \(\mathcal{V}(s^*) \geq \mathcal{V}(s^*) = v^- \). On the other hand, recall that we already have \(v^- \leq v^+ \), and because the storage \(M \) is valid to \(T' \), we must have \(\mathcal{V}(s^*) \leq v^+ \leq v^- \). For both the inequalities about \(\mathcal{V}'(s^*) \) to be true, the only possibility is \(\mathcal{V}'(s^*) = \mathcal{V}(s^*) \), and thus \(\mathcal{V}'(s^*) = \mathcal{V}(s^*) \).
such that illustrated by Figure 1.

Finally, it is not hard to see that the storage of Algorithm 3 is always directly based on the minimax function defined by Eq.(1). It is

Case 2: When \(\mathcal{V}(s^*) < v_c^- \). Because \(\mathcal{V}(c) = v_c^- \), we have \(\mathcal{V}(s^*) < \mathcal{V}(c) \). One can check that in this case there must exist an \(s' \) and its successor node \(c_1 \), both on the path between \(s^* \) and \(c \) (included), such that \(\mathcal{V}(s') < v_c^- \leq \mathcal{V}(c_1) \).

Notice that this can only happen when \(s' \) is a MIN node and there is another successor node of \(s' \), denoted by \(c_2 \), such that \(\mathcal{V}(c_2) = \mathcal{V}(s') < \mathcal{V}(c_1) \). In other words, the value of \(s' \) must be currently dominated by \(c_2 \), and not by \(c_1 \). Again, due to the monotonicity of the minimax function, when \(R(c) \) increases from \(v_c^- \) to \(r > v_c^- \), the value of \(c_1 \) must become even larger, if ever changed. On the other hand, all the other successor nodes of \(s^* \) – including \(c_2 \) – are not ancestors of \(c \), so their values do not change when \(R(c) \) changes. Therefore, we know that the value of \(s' \) must still be dominated by \(c_2 \) after \(R(c) \) changes, i.e., \(\mathcal{V}'(s') = \mathcal{V}'(c_2) = \mathcal{V}(c_2) = \mathcal{V}(s') \). Since \(s' \) is on the path between \(s^* \) and \(c \), we also have \(\mathcal{V}'(s^*) = \mathcal{V}(s^*) \).

Finally, since we have proven that the leaf node \(c \) cannot affect the value of its ancestor node \(s^* \), it immediately follows that \(c \) cannot affect the root node either, a contradiction to the assumption made at the beginning of the proof. \(\square \)

Since Lemma 1 guarantees that a successor node \(c \) with \(\alpha_c \geq \beta_c \) cannot affect \(\mathcal{V}(\text{root}) \) (nor does any node in the subtree of \(c \)), it is safe for rollout algorithms to select successor nodes, at any node \(s \), only from the collection of successor nodes with \(\alpha_c < \beta_c \), denoted by

\[
A_s = \{ c \in C(s) \mid \alpha_c < \beta_c \}. \tag{4}
\]

Algorithm 3 presents a family of rollout algorithms that embodies this idea. Algorithms in this family keep performing rollouts until the value range \([v_{\text{root}}^-, v_{\text{root}}^+]\) is closed. In each round of rollout, the specific rollout trajectory depends on the SelectionPolicy() routine, which selects a successor node \(c^* \) from the subset \(A_s \) for the next move. The selection of \(c^* \) can be either based on deterministic rules or sampled from a probability distribution over \(A_s \). An algorithm instance of this family is fully specified once the SelectionPolicy routine is concretely defined.

To keep the storage coherent, Algorithm 3 updates the value range \([v_s^-, v_s^+]\) for each node \(s \) along the trajectory of rollout, in a bottom-up order. The value bounds are updated directly based on the minimax function defined by Eq.(1). It is not hard to see that the storage of Algorithm 3 is always in a coherent state after each round of the rollout. Finally, Algorithm 3 computes \(\alpha_c \) and \(\beta_c \) in an incremental way, as illustrated by Figure 1.

![Figure 1: Illustration of one downward step in the rollout process of Algorithm 3.](image)

Algorithm 3: A family of rollout algorithms.

1. \([v_s^-, v_s^+]\) ← \([−\infty, +\infty]\) for every \(s \in S \);
2. **while** \(v_{\text{root}}^- < v_{\text{root}}^+ \) **do**
 3. \(\text{rollout}(\text{root}, v_{\text{root}}^-, v_{\text{root}}^+) \);
4. **end**
5. return \(v_{\text{root}}^+ \)

Function rollout \((s, \alpha_s, \beta_s) \)

1. **if** \(C(s) \neq \emptyset \) **then**
 2. **foreach** \(c \in C(s) \) **do**
 3. \([\alpha_c, \beta_c] \leftarrow [\min\{\alpha_s, v_c^-\}, \min\{\beta_s, v_c^+\}] \);
6. **end**
7. \(A_s = \{ c \in C(s) \mid \alpha_c < \beta_c \} \);
8. \(c^* \leftarrow \text{SelectionPolicy}(A_s) \);
9. \(\text{rollout}(c^*, \alpha_{c^*}, \beta_{c^*}) \);
10. **end**
11. \(v_s^- \leftarrow \max_{c \in C(s)} v_c^- \) if \(s \) is Leaf
12. \(v_s^+ \leftarrow \min_{c \in C(s)} v_c^+ \) if \(s \) is Internal & MAX
13. \(\text{if} \) \(s \) is Internal & MIN
14. \(\text{if} \) \(s \) is Leaf
15. **return** \(v_s^- \) if \(s \) is Internal & MAX
16. **return** \(v_s^+ \) if \(s \) is Internal & MIN

In the following, we present some nice properties that are shared between all algorithms in the family of Algorithm 3. First, Lemma 2 shows that all data structures used in Algorithm 3 changes monotonically over time.

Lemma 2. Given any game tree \(T \), and under any selection policy (deterministic or randomized), for any \(s \in S \), the set of \(A_s \) in Algorithm 3 is non-increasing over time, and so do for the intervals \([v_s^-, v_s^+]\) and \([\alpha_s, \beta_s]\).

Proof. It can be directly seen that the interval \([v_s^-, v_s^+]\) can never increase in Algorithm 3. By definition, i.e., Eq.(3), this implies the non-increasing monotonicity of \([\alpha_s, \beta_s]\), which in turn implies the monotonicity of \(A_s \), due to Eq.(4). \(\square \)

Lemma 2 suggests that once a node is excluded from \(A_s \), it cannot come back. In that sense, the rollout algorithms of Algorithm 3 is indeed using \(A_s \) to prune the game tree. On the other hand, one might worry that some algorithm
in this family could potentially be “stuck” at some point, when there is no candidate in the subset \(A_s\). It turns out that this can never happen, regardless of the selection policy the algorithm is using.

Lemma 3. Given any game tree \(T\), and under any selection policy (deterministic or randomized), Algorithm 3 always runs the rollout() procedure on node \(s\) such that \(A_s = \emptyset\) if and only if \(C(s) = \emptyset\).

Proof. It is sufficient to prove that if Algorithm 3 visits a non-leaf node \(s\) (i.e. \(C(s) \neq \emptyset\)), then \(A_s \neq \emptyset\). We prove this by showing that for any non-leaf node \(s\) that Algorithm 3 visits, there always exists at least one successor node \(c \in C(s)\) such that \([v_c^-, v_c^+] \in [v_s^-, v_s^+]\), i.e. \(c\) has a wider (or the same) value range than \(s\).

We only discuss the case when \(s\) is a non-root MAX node. The argument is similar in other cases. If \(s\) is an internal MAX node, according to Algorithm 3 we have \(v_s^+ = \max_{c \in C(s)} v_c^+\), so there exists a successor node \(c^*\) such that \(v_s^+ = v_c^+\). On the other hand, since \(v_s^- = \max_{c \in C(s)} v_c^-\), we have \(v_s^- \leq v_c^-\). Thus, \([v_c^-, v_c^+] \supseteq [v_s^-, v_s^+]\).

Given such a successor node \(c^*\), let \(t\) be the parent node of \(s\), according to Algorithm 3 we have \(\alpha_t = \max_{\{\alpha_t, v_t^-\}} \max \{\alpha_t, \alpha_c, v_c^-\} = \max \{\alpha_t, v_t^-\} = \alpha_c\). Similarly we also have \(\beta_t = \beta_s\). Because Algorithm 3 visits node \(s\), we must have \(\alpha_t < \beta_s\), thus \(\alpha_c < \beta_s\), thus \(c^*\) is in \(A_s\).

Finally, we observe that the family of Algorithm 3 is consistent, in the sense that all algorithm instances in the family always return the same result, and this policy-independent result of Algorithm 3 is always correct, as Theorem 1 shows.

Theorem 1. Given any game tree \(T\) and under any selection policy (deterministic or randomized), Algorithm 3 never visit a leaf node more than once, and always terminates with \(v_{\text{root}}^- = v_{\text{root}}^+ = V(\text{root})\).

Proof. First, we see that Algorithm 3 never visits a node \(c\) with \(v_c^- = v_c^+\), because in that case \(\alpha_c = \beta_c\). The first time Algorithm 3 visits a leaf node \(s\), it sets \(v_s^- = v_s^+ = R(s)\), so the algorithm never re-visits a leaf node, which means it will have to terminate, at its latest, after visiting every leaf node. According to Line 2, we have \(v_{\text{root}}^- = v_{\text{root}}^+\) at that time. Since the way Algorithm 3 updates the value bounds guarantees that they are always valid – that is, at any time we have \(v_s^- \leq V(s) \leq v_s^+\) for any node \(s\) – we know that \(v_{\text{root}}^- = v_{\text{root}}^+ = V(\text{root})\).\(\square\)

Note that Theorem 1 shows a stronger “consistency” property than that of some other rollout algorithms, such as UCT (Kocsis and Szepesvári 2006), which only guarantees to converge to \(V(\text{root})\) if given infinite time. In contrast, Algorithm 3 never re-visits a leaf even under a probabilistic rollout policy, thus always terminating in finite time.

Two Rollout Policies: \(\alpha\beta\) and MT-SSS*\)

Since the rollout family of Algorithm 3 uses an \(\alpha\beta\) window to prune tree nodes during the computation, one may wonder how the classic game-tree pruning algorithms are compared to Algorithm 3. In this section we show that two simple “greedy” policies in the family of Algorithm 3 are equivalent, in a strict way, to an “augmented” version of the classic \(\alpha\beta\) and MT-SSS* algorithm, respectively.

To establish the strict equivalence, we introduce a variant of the classic alphabeta procedure, as Algorithm 4 shows, which differs from the alphabeta procedure of Algorithm 1 only in two places: (1) The classic alphabeta procedure in Algorithm 1 only returns a single value of \(g\), but the alphabeta2 procedure in Algorithm 4 transmits a pair of values \(\{g^-, g^+\}\) between its recursive calls. (2) The classic alphabeta procedure in Algorithm 1 initializes the \((\alpha, \beta)\) window directly with the received argument \((\alpha, \beta)\), while the alphabeta2 procedure in Algorithm 4 will further trim \([\alpha, \beta]\) with the value range \([v_c^-, v_c^+]\).

Before comparing these two versions more carefully, we first establish the equivalence between the alphabeta2 procedure, as well as the MT-SSS* algorithm based on the alphabeta2 procedure, with two simple rollout policies of the algorithm family proposed in the last section. Specifically, Theorem 2 shows that the alphabeta2 procedure is equivalent to a “left-first” policy of Algorithm 3, in the sense not only that they have the same footprints in leaf evaluation, but also that given any coherent storage (not necessarily an “empty” storage), they always leave identical content in their respective storages when terminating. This means they are still equivalent in a reentrant manner, even when used as subroutines by other algorithms.

Theorem 2. Given any game tree \(T = (S, C, V)\) and any coherent storage \(M = \{(v_s^-, v_s^+)\mid s \in S\}\), Algorithm 3 always evaluates the same set of leaf nodes in the same order as the “augmented” \(\alpha\beta\) algorithm (Algorithm 4) does, if Algorithm 3 is using the following selection policy:

\[c^* = \text{the leftmost } c \text{ in } A_s.\] (5)

Moreover, let \(M_{\text{rollout}}\) and \(M_{\alpha\beta}\) be the storage states when Algorithm 3 and Algorithm 4 terminate, respectively. We have \(M_{\text{rollout}} = M_{\alpha\beta}\) when the policy of Eq.(5) is used.

Proof idea. Due to page limit we only give some intuition here. To see the equivalence between the two algorithms, consider the moment when the execution of Algorithm 3 at a node \(s\) is about to end (for example, imagine we are at Line 16). According to the rollout paradigm, the algorithm will now update the value bounds of all ancestor nodes of \(s\), then re-start another rollout round from the root. Under the specific policy of Eq.(5), the rollout process will always select, at each layer of the tree, the leftmost active node \(c\). Here, by active we mean \(\alpha_c < \beta_c\). Notice that \(s\) is chosen in the current round of rollout, which means all nodes at the left side of \(s\) (in the same layer) are already “inactive”. Since Lemma 2 shows that the \([\alpha, \beta]\) window is non-increasing for any node, the current node \(s\) would still be chosen in the next round of rollout as long as it is active at that time.

The key insight of the proof is to see that, in Algorithm 3, we can indeed locally compute at node \(s\) its window \([\alpha_s, \beta_s]\) of the next round, without bothering to update any ancestor node of \(s\) through back-propagation. This observation enables us to make lossless decision at node \(s\): If we “foresee” that \(\alpha_s < \beta_s\) in the next round, we can immediately start
a new rollout from node s (rather than from the root node), as the rollout from the root will go through s anyway; Otherwise if $\alpha_s \geq \beta_s$ in the next round, we just leave node s and continue the back-up phase, in which case we know that the rollout will never come back to s later. Note that the nodes below s can also play this trick, “pretending” that it is running a single round of rollout in the view of s and other ancestors. Extending this to the whole tree, we essentially re-write the original rollout algorithm into a backtracking algorithm. Further combined with some other optimizations, we finally arrive at the alphabeta2 procedure in Algorithm 4.

The complete proof consists of a series of equivalent transformations of algorithms, which can be found in our full paper (Huang 2014).

It is easy to see from Theorem 2 that the MT-SSS* algorithm, if using the “augmented” alphabeta2 procedure, can also be implemented by a sequence of rollouts with the “left-first” policy, although such a rollout algorithm will not belong to the family of Algorithm 3. Interestingly, however, it turns out that the “augmented” MT-SSS algorithm can be encompassed by the rollout paradigm in a more unified way. In fact, Theorem 3 shows that the MT-SSS* algorithm is strictly equivalent to another policy of the same rollout family of Algorithm 3. Instead of selecting the leftmost node as the rollout policy of α-β does, the rollout policy of MT-SSS* selects the node with the largest β_c.

Theorem 3. Given any game tree $T = (S, C, V)$ and any coherent storage $M = \{v^L_s, v^U_s\}_{s \in S}$, Algorithm 3 always evaluates the same set of leaf nodes in the same order as the “augmented” MT-SSS* algorithm (Algorithm 2 + Algorithm 4) does, if Algorithm 3 is using the following selection policy:

$$c^* = \text{the leftmost } c \in \{c \in A | \text{arg max } \beta_c\} \quad (6)$$

Moreover, let M_{rollout} and $M_{\text{SSS*}}$ be the storages when Algorithm 3 and Algorithm 4 terminate, respectively. We have $M_{\text{rollout}} = M_{\text{SSS*}}$, when the policy of Eq.(6) is used.

Proof idea. Again we only give the proof ideas here, and the complete proof can be found in our full paper (Huang 2014). Since Theorem 2 already proves the strict equivalence between the alphabeta2 procedure and the “leftmost” policy, it directly follows that the MT-SSS* algorithm is equivalent to repeatedly calling $rollout(root, v^+_{root} - 1, v^+_{root})$ until the range $[v^-_{root}, v^+_{root}]$ is closed.

Now we only need to prove that the “minimal-window rollouts” under the left-most policy (i.e. Eq.(5)) is equivalent to the “full-window rollouts” under the max-β policy (i.e. Eq.(6)). It is not hard to see that in the minimal-window rollouts, every active successor node must have $v^c_s \geq v^+_{root}$, thus we can conclude that the leftmost policy essentially choose the leftmost active node with $v^c_s \geq v^+_{root}$, achieves what we want. The key insight is to see that full-window rollouts under the max-β policy will do exactly the same.

Specifically, let s be the current node at some moment during the rollouts. By induction we can assume that s has $v^c_s \geq v^+_{root}$, which means s must have at least one successor node c with $v^c_s \geq v^+_{root}$. In fact, all such successor node c will have the same $\beta_c = v^c_{root}$. This is because by definition β_c equals the minimum among the upper bounds of nodes between the root and the node c and by induction this minimum upper bound must the root’s, i.e. v^c_{root}. It then immediately follows that the max-β policy will have to choose the leftmost one of these successor nodes (which has $v^c_s \geq v^+_{root}$) in this case.

Algorithm 4: A variant of the alpha-beta procedure, which returns a pair of value bounds.

```python
1 return alphabeta2 (root, -\infty, +\infty)
2 Function alphabeta2 (s, \alpha, \beta)
3 do retrieve \{v^L_s, v^+_{s}\};
4 \[\alpha_s, \beta_s \leftarrow \text{max}\{\alpha, v^L_s\}, \text{min}\{\beta, v^L_s\};\]
5 end if \alpha_s \geq \beta, then return \{v^L_s, v^+_{s}\};
6 if s is a Leaf node then
7 \[\{g^-, g^+\} \leftarrow [R(s), R(s)];\]
8 else if s is a MAX node then
9 \[\{g^-, g^+\} \leftarrow [-\infty, -\infty];\]
10 for each c \in C(s) do
11 \[\{g^-, g^+\} \leftarrow \text{alphabeta2} (c, \alpha_s, \beta_s);\]
12 \[\{g^-, g^+\} \leftarrow \text{max}\{g^-, g^c_s\}, \text{max}\{g^+, g^c_s\};\]
13 \[\alpha_s, \beta_s \leftarrow \text{max}\{\alpha_s, g^c_s\}, \beta_s;\]
14 end
15 else if s is a MIN node then
16 \[\{g^-, g^+\} \leftarrow [+\infty, +\infty];\]
17 for each c \in C(s) do
18 \[\{g^-, g^+\} \leftarrow \text{alphabeta2} (c, \alpha_s, \beta_s);\]
19 \[\{g^-, g^+\} \leftarrow \text{min}\{g^-, g^c_s\}, \text{min}\{g^+, g^c_s\};\]
20 \[\alpha_s, \beta_s \leftarrow \text{min}\{\alpha_s, g^c_s\};\]
21 end
22 \[\{v^L_s, v^+_{s}\} \leftarrow \{g^-, g^+\};\]
23 store \{v^L_s, v^+_{s}\};
24 return \{g^-, g^+\}
```

The “augmented” $\alpha-\beta$ and MT-SSS*

Given the strict equivalence between the rollout algorithms of Algorithm 3 and classic tree-search algorithms based on the alphabeta2 procedure, we now examine the relationship between the two variants of $\alpha-\beta$ presented in Algorithms 1 and 4. As mentioned before, the alphabeta2 procedure in Algorithm 4 captures every aspect of the original alpha-beta procedure in Algorithm 1 except for two differences.

The alphabeta procedure in Algorithm 1 returns a single value of g, while the alphabeta2 procedure in Algorithm 4 returns a value pair $\{g^-, g^+\}$. From the pseudo-code one can check that $g = g^- = v^L_s$ when it is a fail-high and $g = g^+ = v^+_{s}$ when it is a fail-low, otherwise $g = g^- = v^L_s$ when it is a fail-low. This is consistent with the well-known protocol of the original $\alpha-\beta$ algorithm. The difference is that the alphabeta2 procedure tries to update both bounds even in fail-high and fail-low cases. As a result, we can expect that in some cases
the alphabeta2 procedure will result in a storage with tighter value bounds than the one of the classic alphabeta procedure.

Meanwhile, the classic alphabeta procedure in Algorithm 1 initializes the \((\alpha, \beta)\) window directly with the received argument \((\alpha, \beta)\), while the alphabeta2 procedure in Algorithm 4 will further trim \([\alpha_s, \beta_s]\) with the value range \([v_{\alpha}^s, v_{\beta}^s]\). In other words, even given the same storage, the alphabeta2 procedure may have a tighter pruning window than its counterpart.

While the second difference may look like a small trick at the implementation level, we believe that the “single-bound v.s. double-bound” disparity is an inherent difference between the two versions. Since the storage-enhanced \(\alpha-\beta\) algorithm requires maintaining a pair of bounds anyway (even for the “single-bound” version), it makes sense to update both of them effectively at run time.

Interestingly, the “single-bound” version of the alphabeta procedure performs exactly as well as its “double-bound” version if they are working on an empty storage with only one pass. This is directly followed from the well-known fact that the classic alphabeta procedure is per-instance optimal in all directional algorithms (Pearl 1984). However, when used as subroutines, they will behave differently. It turns out that the MT-SSS* algorithm using the alphabeta2 procedure can outprune the one based on the single-bound version.

Theorem 4. Given any game tree \(T\), let \(L_{ssss}^*\) be the sequence of leaf nodes evaluated by the original MT-SSS* algorithm that calls Algorithm 1, and let \(L_{ssss}^\ast\) be the sequence of leaf nodes evaluated by the “augmented” MT-SSS* algorithm that calls Algorithm 4, then \(L_{ssss}^*\) is a subsequence of \(L_{ssss}^\ast\).

Related Work

In terms of the techniques used in this paper, the idea of maintaining pairs of value bounds in an in-memory tree (and updating the bounds in a bottom-up manner) was proposed by Hans Berliner in the B* algorithm (Berliner 1979). More recently, Walsh, Goschin, and Littman (2010) proposed the FSSS algorithm, a rollout algorithm that updates the value bounds \([v_-, v_+]\) in the same way as Algorithm 3, in order to have a theoretical guarantee of its performance when used in reinforcement-learning applications. An algorithm with similar idea was also proposed in the context of game-tree evaluation (Cazenave and Saffidine 2011).

Weinstein, Littman, and Goschin (2012) further adapted the FSSS algorithm into the game tree model and proposed a rollout algorithm that outprunes the \(\alpha-\beta\) algorithm. Their algorithm also uses an \((\alpha, \beta)\) window to filter successor nodes, but the window is manipulated in a different way from the algorithm family proposed in this paper. Furthermore, there is no domination between MT-SSS* and their algorithm, while in this paper we argue that \(\alpha-\beta\) and MT-SSS* themselves can be unified under the rollout framework of Algorithm 3.

Chen et al. (2014) have recently presented a rollout algorithm that captures the idea of the MT-SSS* algorithm. Their algorithm uses the null window \((v_{\alpha}^\text{root} - 1, v_{\beta}^\text{root})\) to filter nodes, and thus does not manipulate the window at all during rollouts. Besides, they did not formally characterize the relationship between MT-SSS* and their null-window rollout algorithm. Interestingly, the analysis of this paper suggests that their algorithm is not exactly equivalent to the original MT-SSS* algorithm.

Conclusion

Results from this paper suggest that the rollout paradigm could serve as a unified framework to study game-tree evaluation algorithms. In particular, Theorems 2 and 3 show that some classic minimax search algorithms could be implemented by rollouts. This observation implies that we could collect information in a single rollout for both minimax pruning and MCTS sampling. In light of this, we may design new hybrid algorithms that naturally combine MCTS algorithms with traditional game-tree search algorithms.

For example, by Theorem 3 we see that MT-SSS* corresponds to a rollout algorithm that prefers successor node with the largest “absolute” upper-influence-bound \(\beta_c\), which is powerful in completely pruning nodes without compromising correctness. But the values of \(\beta_c\) propagate upwards slowly in large game trees. As a result, most nodes in the upper layers of the tree may be left with the non-informative bound \(+\infty\) at the early running stage of the algorithm, in which case the MT-SSS* policy is essentially blind. On the other hand, the UCT score can be seen as an upper bound “with some confidence”, which is able to provide informative guidelines with much less rollouts, but could respond slowly to the discriminative knowledge collected in the search, probably due to its “amortizing” nature (Ramanujan, Sabharwal, and Selman 2012).

In light of this complementary role between \(\beta_c\) and the UCT score, one possible way to combine the ideas of UCT and MT-SSS* is to select successor nodes based on a prioritized rule considering upper bound information with different confidences. Such an algorithm may first check the upper bound with the absolute confidence (i.e., \(\beta_c\)). When there is a tie, the algorithm turns to consider bounds with less confidence, and selects the node with the largest UCT score. Given a game tree, we expect that such an algorithm will first follow the UCT score at the beginning, as essentially all tree nodes have the same upper bound \(\beta_c = +\infty\) at that time. The hope is that the UCT score may be more likely to guide the rollouts to good “successor nodes” than the blind tie-breaking rule of the original MT-SSS* algorithm does, and thus better “ordering” the search/rollout trajectories. If these preferred nodes turn out to be sub-optimal, their absolute upper bounds \(\beta_c\) will later drop below \(\alpha_c\), turning the rollout to other candidates immediately. In the end, the algorithm will completely shift to the MT-SSS* mode. It may be an interesting future work to test the performance of this hybrid algorithm in real-world benchmarks.

Meanwhile, it would also be interesting to see how the observations in this paper generalize to other models. For example, it seems that Algorithm 3 could be adapted to an “incremental” rollout algorithm when incorporating admissible heuristic function at internal nodes (essentially an iterative-deepening setting). Moreover, one could also consider the problem in more general state-space topologies (such as DAG) and/or value functions including operators other than
max and min (such as the Weighted-Sum operator formulated in stochastic games).

Acknowledgements
The author thanks Thomas Moscibroda (Microsoft Research) and Aske Plaat (Leiden University) for their inspiring comments on this work.

References