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Abstract

We introduce a new hierarchy over monotone set functions,
that we refer to as MPH (Maximum over Positive Hyper-
graphs). Levels of the hierarchy correspond to the degree of
complementarity in a given function. The highest level of the
hierarchy, MPH-m (where m is the total number of items)
captures all monotone functions. The lowest level, MPH-1,
captures all monotone submodular functions, and more gen-
erally, the class of functions known as XOS. Every mono-
tone function that has a positive hypergraph representation of
rank k (in the sense defined by Abraham, Babaioff, Dughmi
and Roughgarden [EC 2012]) is in MPH-k. Every mono-
tone function that has supermodular degree k (in the sense
defined by Feige and Izsak [ITCS 2013]) is in MPH-(k+1).
In both cases, the converse direction does not hold, even in an
approximate sense. We present additional results that demon-
strate the expressiveness power of MPH-k.

One can obtain good approximation ratios for some natu-
ral optimization problems, provided that functions are re-
quired to lie in low levels of the MP?H hierarchy. We present
two such applications. One shows that the maximum welfare
problem can be approximated within a ratio of k + 1 if all
players hold valuation functions in MP7H-k. The other is an
upper bound of 2k on the price of anarchy of simultaneous
first price auctions.

1 Introduction

In a combinatorial auction setting, a set M of m items is
to be allocated among a set N of n buyers. Each buyer
7 € N has a valuation function that assigns a non-negative
real number v;(S) to every bundle of items S C M. A
well motivated objective is to find a partition of the items
X = (Xi,...,X,,) among the buyers so as to maximize
the social welfare, defined as the sum of buyers’ valuations
from the bundles they obtain SW (X)) = > .y v;(X;). The
model of combinatorial auctions is highly applicable to real-
world settings such as spectrum auctions and electronic ad-
vertisement markets.

Most of the existing literature on combinatorial auc-
tions has focused on the case where buyer valuations are
complement-free. Roughly speaking, this means that the
value for the union of two bundles of items cannot ex-
ceed the sum of the values for each individual bundle. Such
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valuations do not capture scenarios where certain items
produce more value when acquired in conjunction with
each other (such as a left and right shoe). Complement-
free valuations are arguably more well-behaved than gen-
eral combinatorial valuations in many aspects. From an
algorithmic perspective, complement-free valuations admit
constant-factor polynomial time approximation algorithms
(Feige and Vondrak 2006; Dobzinski and Schapira 2006;
Feige 2006), while general valuations are hard to approx-
imate even to within a factor that is sub-polynomial in
the number of items (Lehmann, O’Callaghan, and Shoham
1999). From a game-theoretic perspective, simple auctions,
such as running simultaneously a single-item first-price auc-
tion for each item, induce equilibria that achieve constant
factor approximations to the optimal welfare if all valu-
ations are complement-free (Syrgkanis and Tardos 2013;
Feldman et al. 2013; Hassidim et al. 2011; Christodoulou,
Kovécs, and Schapira 2008; Bhawalkar and Roughgarden
2011). In contrast, if valuations exhibit complements, the
worst-case inefficiency grows with the number of items
(Hassidim et al. 2011).

While the theory suggests that complementarities degrade
the performance of combinatorial auctions, they arise very
naturally in many economic scenarios. A prominent exam-
ple is the FCC spectrum auctions, where it is desirable to
win licenses for the same band of spectrum in adjacent ge-
ographical regions. The prevalence of complementarities in
practice calls for a better theoretical understanding of the ef-
fect of the level of complementarity on auction performance.

To this end, we introduce a new hierarchy of monotone
set functions called maximum over positive hypergraphs
(MPH), whose level captures the degree of complementar-
ity. A new hierarchy is useful if it has a strong expressiveness
power on the one hand, and algorithmic and economic impli-
cations on the other. We show that important classes of func-
tions are captured in low levels of our hierarchy (a detailed
exposition is deferred to Section 1.2). We then present al-
gorithmic and economic results that illustrate the usefulness
of our hierarchy. In particular, we develop an algorithm that
approximates the welfare maximization problem to within a
factor of k£ + 1, where k is the degree of complementarity.
We further show that an auction that solicits bids on each
item separately and allocates each item to the highest bidder
(at a cost equals to her bid) achieves a 2k-approximation to



the optimal welfare at any equilibrium of bidder behavior.

1.1 The Maximum over Positive Hypergraph
(MPH) Hierarchy

Given a set M of m items, a set function v : 2 — Rt is
normalized if v(#) = 0 and monotone if v(T) > v(S) when-
ever S C T C M.! A normalized monotone set function is
necessarily non-negative. Throughout the paper we assume
that all set functions are normalized and monotone, unless
stated otherwise. In the context of combinatorial auctions,
we refer to the set functions as valuation functions.

A set function v is symmetric if v(S) = v(T") whenever
|S| = |T|. A hypergraph representation of a set function v :
2M _, R* is a (normalized but not necessarily monotone)
set function i : 2M — R that satisfies v(S) = > g h(T).
It is easy to verify that any set function v admits a unique
hypergraph representation and vice versa. A set .S such that
h(S) # 0 is said to be a hyperedge of h. Pictorially, the
hypergraph representation can be thought of as a weighted
hypergraph, where every vertex is associated with an item in
M, and the weight of each hyperedge e C M is h(e). Then
the value of the function for any set S C M, is the total
value of all hyperedges that are contained in S.

The rank of a hypergraph representation h is the largest
cardinality of any hyperedge. Similarly, the positive rank
(respectively, negative rank) of h is the largest cardinality
of any hyperedge with strictly positive (respectively, nega-
tive) value. The rank of a set function v is the rank of its
corresponding hypergraph representation, and we refer to
a function v with rank r as a hypergraph-r function. Last,
if the hypegraph representation is non-negative, i.e. for any
S C M, h(S) > 0, then we refer to such a function as a
positive hypergraph-r (PH-r) function.

We define a parameterized hierarchy of set functions, with
a parameter corresponding to the degree of complementarity.

Definition 1 (Maximum Over Positive Hypergraph-k
(MPH-k) class). A monotone set function v : 2M — Rt is
Maximum over Positive Hypergraph-k (MPH-k) if it can
be expressed as a maximum over a set of PH-k functions.
That is, there exist PH-k functions {v¢}ecr such that for
every set S C M,

v(S) = maxyer ve(S), (1)

where L is an arbitrary index set.
The MPH hierarchy has the following attributes:

1. Completeness. Every monotone set function is contained
in some level of the hierarchy (see below).

2. Usefulness. The hierarchy has implications that relate the
level in the hierarchy to the efficiency of solving optimiza-
tion problems. Specifically, we show implications of our
hierarchy to the approximation guarantee of the algorith-
mic welfare maximization problem (in Section 3.2) and
the price of anarchy of simultaneous single item auctions
(in Section 3.3).

'We use R for non-negative real numbers. That is, 0 is in-
cluded.

3. Expressiveness. The hierarchy is expressive enough to
contain many functions in its lowest levels (see Section 2).

We conclude this section with some basic properties of
the MPH hierarchy (for more properties, see Section 2).
The two extreme cases of MP7H-k functions coincide with
two important classes of valuations. Specifically, MPH-1
is the class of functions that can be expressed as the max-
imum over a set of additive functions. This is exactly the
class of XOS valuations (Lehmann, Lehmann, and Nisan
2001), which is a complement-free valuation class that has
been well-studied in the literature. This class contains all
submodular valuations, i.e. valuations that exhibit decreas-
ing marginal returns. On the other side, MP#H-m coincides
with the class of all monotone functions,? and so the hierar-
chy is complete. For intermediate values of k, MPH-k is
monotone; namely, for every k < k' it holds that MPH-
k C MPH-k'. We get the following hierarchy:

XO0S8 = MPH-1C - - C MPH-m = Monotone (2)

A simple example. Consider the following example,
which has an intuitive interpretation in the context of
FCC spectrum auctions. There are four items for sale,
{A1, A3, By, By}, corresponding to spectrum bands A and
B in each of two neighboring geographic regions 7 = 1, 2.
The value of any A; is 1, but a bidder has value 3 for getting
both A; and A,, due to the complementary relationship of
being in neighboring regions. The value of band B is similar
to A. However, bands A and B are substitutes, so if a bidder
obtains items from each band then he can derive value from
only one of them. This valuation can be represented as a hy-
pergraph with four nodes A1, As, By, B2, where the weight
of each single node is 1, the weight of the edges (A 1, A2)
and (Bj, Bs) are 1, the weight of the edges (A;, By) and
(As, By) are —1, and the weight of the hyperedge including
all four nodes is —1. This valuation can also be represented
as a maximum over positive hypergraph valuations of rank
2, using the following four graphs: Graph G assigns weight
0 to nodes B;, weight 1 to nodes A; and weight 1 to the edge
(A, As). Graph G5 is the same as G1, swapping A and B.
Graph G5 assigns weight 0 to nodes As and By, and weight
1 to nodes A; and B,. Graph G, assigns weight 1 to nodes
Ay and By, and weight 0 to nodes A; and Bs. Consider,
for example, the set { A1, A5 }. Its value is 3 according to the
hypergraph valuation, and indeed, it obtains maximum value
in G1, which assigns it value 3, as desired. This valuation is
therefore MPH-2.

Fractionally “Subadditive” Characterization of
MPH-k. In the full version of the paper, we show the
definition of MP#H-k functions has a natural analogue as
an extension of fractionally subadditive functions.

1.2 Related Work

Expressiveness. Since the maximum welfare allocation
problem is A/P-hard to approximate even with very poor ra-
tio (see for example (Lehmann, O’Callaghan, and Shoham

2Simply create a separate PH-|S| function for each set S with
a single hyperedge equal to the set S and with weight f(S). Then,
by monotonicity, the maximum of these functions is equal to the
initial valuation.



1999) for the case of single minded bidders — bidders that
want one particular bundle of items), there has been exten-
sive work on classification of monotone set functions. We
distinguish between two types of classifications. One is that
of restricted classes of set functions, and the other is inclu-
sive hierarchies that capture all monotone set functions.

Restricted classes of monotone set functions.
(Lehmann, Lehmann, and Nisan 2001) initiated a systematic
classification of set functions without complementarities
(e.g. gross-substitutes (Kelso and Crawford 1982), submod-
ular, XOS (Sandholm 1999), subadditive). Subsequent
research gave constant factor approximation algorithms for
these classes (1 — 1/e — ¢ in the submodular case (Feige
and Vondrék 2006), 1 — 1/e in the XOS case (Dobzinski
and Schapira 2006) and 2 in the subadditive case (Feige
2006)). These algorithms assume demand query access to
the valuation functions, though for the submodular case,
if one is satisfied with a 1 — 1/e ratio, then value queries
suffice (Vondrak 2008). The first level of our hierarchy, i.e.
MPH-1, coincides with the class of XOS functions.

(Conitzer, Sandholm, and Santi 2005) consider graphical
valuations: every item has a weight, and every pair of items
(edge of the graph) has a weight (positive or negative) and
the value of a set of items is the sum of weights of items and
edges within the set. We show that this class is in MPH-2.

(Abraham et al. 2012) consider the hierarchy of PH-k
valuation functions, as already defined, (which are obviously
contained in MPH-k) that allows only complements but no
substitutes (e.g. submodular functions cannot be expressed
in this hierarchy, and even some supermodular functions
cannot be expressed). They show that the maximum welfare
problem can be approximated within a ratio of k if all valu-
ation functions are in P#-k and they design truthful mech-
anisms that achieve approximation ratios that degrade loga-
rithmically with the numer of items m.

Complete hierarchies of monotone set functions.
(Feige and Izsak 2013) introduced a hierarchy parameter-
ized by the so-called supermodular degree (the lowest level
coinciding with submodular functions) and gave a greedy
(k + 2)-approximation algorithm for the welfare maximiza-
tion problem when functions are in the k-th level of the hier-
archy. We show that every level of the supermodular degree
hierarchy is strictly contained in the corresponding level of
the MPH hierarchy,whilst there are functions in MPH-2
that cannot even be approximated by functions of low super-
modular degree (e.g. functions of supermodular degree /m
approximate them only within a ratio of Q(y/m)).

The XOS class introduced in (Lehmann, Lehmann, and
Nisan 2001) is based on “OR” and “XOR” operations pre-
viously introduced in (Sandholm 1999), but with the restric-
tion that “OR” operations are applied on single items. Re-
moving this restriction and allowing operations on bundles,
one obtains an X'OS hierarchy parameterized by the size of
the largest bundle. While X OS-1 coincides with MPH-1,
MPH-Fk is strictly larger than X OS-k, i.e. ¥ OS-k is con-
tained in MPH-k, while there are functions in MPH-2
that cannot be approximated in X OS-k for any constant k.

Welfare approximation. The complement-free valua-
tions introduced in (Lehmann, Lehmann, and Nisan 2001)
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have also been studied in the game-theoretic context of equi-
libria in simultaneous single-item auctions. It has been es-
tablished that the Bayes-Nash and Correlated price of anar-
chy of this auction format, with a first-price payment rule,
are at most <5 in the XOS case (Syrgkanis and Tar-
dos 2013) and at most 2 in the subadditive case (Feld-
man et al. 2013). For the second-price payment rule, these
bounds become 2 for XOS (Christodoulou, Kovéacs, and
Schapira 2008) and 4 for subadditive (Feldman et al.
2013). These results build upon a line of work studying
non-truthful item auctions for complement-free valuations
(Bikhchandani 1999; Bhawalkar and Roughgarden 2011;
Christodoulou, Kovécs, and Schapira 2008; Hassidim et al.
2011; Paes Leme, Syrgkanis, and Tardos 2012). Equilibrium
analysis of non-truthful auctions has been applied to sev-
eral mechanism design settings (see (Caragiannis et al. 2012;
Lucier and Borodin 2010; Markakis and Telelis 2012)) and
recent papers give general frameworks for bounding the
inefficiency of mechanisms at equilibrium (Roughgarden
2012; Syrgkanis 2012; Syrgkanis and Tardos 2013).

2 Summary of Results

We obtain results on the expressiveness power of the MPH
hierarchy and show applications of it for approximating so-
cial welfare in combinatorial auctions.

Expressiveness. The first theorem establishes the expres-
siveness power of MPH.

Theorem 1. The M'PH hierarchy captures many existing
hierarchies, as follows:

1. By definition, MPH-1 is equivalent to the class XOS
(Lehmann, Lehmann, and Nisan 2001) and every function
that has a positive hypergraph representation of rank k
(Abraham et al. 2012) is in MPH-k.

2. Every monotone graphical valuation (Conitzer, Sand-
holm, and Santi 2005) is in M'PH-2. Furthermore, every
monotone function with positive rank 2 is in MPH-2.

3. Every monotone function that has a hypergraph repre-
sentation with positive rank k and laminar negative hy-
peredges (with arbitrary rank) is in M'PH-k.

4. Every monotone function that has supermodular degree

k (Feige and Izsak 2013) is in MPH-(k + 1).

We further establish that the converse direction does not
hold, even in an approximate sense, and conclude that the
MPH-E hierarchy is strictly more expressive than many ex-
isting hierarchies. Specifically, we show that MP?H-1 and
MPH-2 contain functions that cannot be approximated by
functions in low levels of other hierarchies.

Definition 2. We say that a set function f approximates a
set function g within a ratio of p > 1 if there are py and p2

such that for every set S p1 < % < po, and Z—f <np.

Proposition 2. There are functions in very low levels of the
MPH hierarchy that cannot be approximated well even at
relatively high levels of other hierarchies, as follows:

1. There exists a submodular function (i.e., supermodular
degree 0, M'PH-1) such that



(a) A graphical function cannot approximate it within a
ratio better than Q(m).

(b) A positive hypergraph function cannot approximate it
within a ratio better than m.

(c) A hypergraph function of rank k (both negative and
positive) cannot approximate it within a ratio better
than (%), for every k.

2. There exists a PH-2 function (i.e., MPH-2) such that
every function of supermodular degree d cannot approxi-

mate it within a ratio better than (m/d).

Applications. With the new hierarchy at hand, we are in
a position to revisit algorithmic and game-theoretic prob-
lems about welfare maximization in combinatorial auctions.
We obtain good approximation ratios for settings with valua-
tions that lie in low levels of the MP#H-k hierarchy. We first
provide a polynomial time algorithm for the welfare maxi-
mization problem when valuations are in MPH-k.

Theorem 3. If agents have MPH-k valuations, then there
exists an algorithm that gives k + 1 approximation to the
optimal social welfare. This algorithm runs in polynomial
time given an access to demand oracles for the valuations.

Our approximation algorithm first solves the configura-
tion linear program for welfare maximization introduced by
(Dobzinski, Nisan, and Schapira 2010). Solving this LP can
be done in polynomial time using demand queries. We then
round the solution to the LP so as to get an integer solution.
Our rounding technique is oblivious and does not require ac-
cess to demand queries. By analyzing the integrality gap, we
show that our rounding technique is nearly best possible.

The second setting we consider is a simultaneous first-
price auction — where each of the m items is sold via a
separate single-item auction. We quantify the welfare loss
in this simple auction when bidders have MPH-k valua-
tions and at every coarse correlated equilibrium of the com-
plete information setting (correlated price of anarchy) and
Bayes-Nash equilibrium of the incomplete information set-
ting (Bayes-Nash price of anarchy).

Theorem 4. For simultaneous first price auctions with
MPH-k valuations, both the correlated price of anarchy
and the Bayes-Nash price of anarchy are at most 2k.

Our proof technique extends the analysis for complement-
free valuations in (Feldman et al. 2013) and the smoothness
framework introduced in (Syrgkanis and Tardos 2013) to set-
tings with complementarities. We also establish an almost
matching lower bound in the full version of the paper.

Theorem 5. There exists an instance of a simultaneous first
price auction with single minded bidders in MPH-k in
which the price of anarchy is Q(k).

Remarks. Most of our expressiveness results showing that
a certain function belongs to MP7H-k are established by
showing that the function satisfies a certain requirement that
we refer to as the Positive Lower Envelope (PLE) condi-
tion. We also observe that, together with monotonicity, this
requirement becomes a sufficient and necessary condition
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for membership in MPH-k. This observation motivates the
definition of a new hierarchy, referred to as PLE. The class
PLE-k contains MPH-k, but also includes non-monotone
functions. While monotonicity is a standard assumption in
the context of combinatorial auctions, PLE can be applica-
ble outside the scope of combinatorial auctions. In the full
version of the paper, we analyze the expressiveness of PLE
functions and the observation that our approximation results
extend to non-monotone PLE functions.

Extensions. One of the main open problems suggested by
this work is the relation between hypergraph valuations of
rank k and MPH-k valuations. We conjecture that:

Conjecture 6. Every hypergraph function with rank k (pos-
itive or negative) is in MPH-O(k?).

We make partial progress toward the proof of this conjec-
ture, by confirming it for the case of symmetric functions.
For non-symmetric, observe that for the case of laminar neg-
ative hyperedges, we show an even stronger statement in
item (3) of Theorem 1.

Theorem 7. Every monotone symmetric hypergraph func-
tion with rank k (positive or negative) is in MPH-O(k?)

For symmetric functions, we conjecture a more precise
bound of [£] [££L], suggested by a computer-aided sim-
ulation based on a non-trivial LP formulation. For the spe-
cial cases of symmetric functions of ranks £ = 3 and 4, we
show that they are in MPH-4 and MPH-6, respectively,
and that this is tight. We use an LP formulation whose op-
timal solution is the worst symmetric function possible for
a given rank, and its value corresponds to the level of this
worst function in the MPH hierarchy. We bound the value
of this LP, by using LP duality (in the full version).

3 Proofs

In this section we include a part of our proofs. Due to space
constraints, we defer the other proofs to the appendix.

3.1 Some proofs of expressiveness (Thm. 1 and 7)

Positive lower envelope technique. Proving that a partic-
ular set function f : 2" — R* is in MPH-k requires con-
structing a set of PH-k valuations that constitute the index
set £ over which the maximum is taken. In what follows
we present a canonical way of constructing the set £. The
idea is to create a PH-k function for every subset .S of the
ground set M. The collection of these P7#-k functions, one
for each subset, constitutes a valid MPH-k representation
if they adhere to the following condition.

Definition 3 (Positive Lower Envelope (PLE)). Let f :
2M s R* be a monotone set function. A positive lower en-
velope (PLE) of f is any positive hypergraph function g such
that, (M) = f(M) and forany S C M: g(S) < f(S) (no-
overestimate).

Before presenting the characterization, we need the fol-
lowing definition. A function f : 2M — R¥ restricted to
a subset S, S C M, is a function fg : 2° C RT with
fs(S") = f(S") forevery S’ C S.



Proposition 8 (A characterization of MPH). A function
fis in MPH-k if and only if it is monotone and fs admits
a lower envelope of rank k for every set S C M.

We provide a proof sketch of the second part in Thm. 1,
that any monotone function of positive rank 2 is in MPH-2

Proof. Let v : 2 — R* be a monotone set function of
positive rank 2 and let G, be the hypergraph representation
of v, where the vertices of G,, are the items of M. By Propo-
sition 8 it suffices to show that every S C M has a positive
lower envelope of rank 2 (abbreviated as PLE-2). Consider
an arbitrary S C M. We construct a positive lower envelope
for S by induction. Starting with an empty set of vertices, we
iteratively add the vertices of S, one at a time. Let u; € S
denote the vertex added at iteration 4, and .S; C .S denote the
resulting subset. The inductive invariant that we maintain is
that each S; has a PLE-2. The base case of the induction
is S7, and there the inductive hypothesis holds because v is
nonnegative. We now prove the inductive step. Namely, we
assume that S; 1 has a PLE-2, and prove the same for .S;.
Let N; (P;, respectively) denote the set of negative (posi-
tive, respectively) hyperedges in GG, that contain u; and are
contained in S;. (As v has positive rank 2, the hyperedges
in P; have rank at most 2.) Consider an auxiliary bipartite
graph H with members of N; as one set of vertices, mem-
bers of P; as the other set of vertices, and edges between
e € N; and ¢/ € P, iff ¢ C e (namely, the negative hy-
peredge contains all items of the positive hyperedge). These
edges have infinite capacities. Add two auxiliary vertices,
s connected to each member of N; by an edge of capacity
equal to the (absolute value of the) weight of the correspond-
ing hyperedge in GG,,, and ¢ connected to each member of P;
by an edge of capacity equal to the weight of the correspond-
ing hyperedge in GG,,. We claim that there is a flow F from s
to ¢ saturating all edges of s. This follows from the max flow
min cut theorem, together with the facts that v is monotone
and all positive hyperedges have rank at most 2. Given this
claim (whose proof appears in the full version), we add to
the PLE-2 of S;_ only the the members of P; (hence posi-
tive edges of rank at most 2), but each of them with a weight
reduced by the amount of flow that goes from it to ¢ (accord-
ing to the saturated flow F'). The flow F' gives us a way of
charging every negative hyperedge that is discarded against
a reduction in weight of positive hyperedges contained in it,
and this implies that the result is indeed a PLE-2 for S;. ®

Next we provide a proof sketch of Thm. 7, that any mono-
tone symmetric hypergraph-r function is in MPH-O(r?).

Proof. Let f be a normalized monotone symmetric set func-
tion of rank r, and let h be its hypergraph representation.
Consider the following monotone symmetric set function g
defined by the positive hypergraph representation p: p(S) =
fU)/(3)if [S| = R, and p(S) = 0 o.w., for R = 3r2. As
all four functions f, h, g, p are symmetric, we shall change
notation and replace f(S) by f(|S|). As special cases of this
notation, f(U) is replaced by f(n), and f(¢) by f(0).

We claim that g is a lower envelope for f. There are three
conditions to check. Two of them trivially hold, namely,

876

9(0) = £(0) = 0, and g(n) = (2)p(R) = f(n). The re-
maining condition requires that g(k) < f(k) for every 1 <
k < n — 1. This holds for £ < R, since g(k) = 0, whereas
f(k) > 0. Hence the main content of our proof is to estab-
lish the inequality g(k) < f(k) forevery R < k <n — 1.
The proof proceeds by means of contradiction: suppose
there is some f that serves as a negative example, namely,
that for this f thereis R < k < n—1 for which g(k) > f(k).
We can show that if such an example exists then there exists
one where k = n — 1 (details appear in the full version).
Thus it suffices to show that g(n — 1) = ("5") f(n)/ (%)
n=B f(n) < f(n — 1) for any f that is hypergraph-r.
We will consider the (not necessarily monotone) degree
r polynomial F(z) = >7_, (%)h(i), that matches f(x) at
integral points {0, ...,n}. Let M = maxo<z<n |F(z)| and
let 0 < y < n be such that |F(y)| = M. By Markov’s
inequality regarding bounds on derivatives of polynomi-
als (Markov 1890), we can show that maxo<z<n |[F'(z)| <

22 0rIf y is an integer then monotonicity of f (and hence
of F on integer points) implies that M = f(n). However,
y need not be integer. In that case ¢ < y < ¢ + 1 for some
0 <i<n-—1 Let m = max[|F(%)|,|F(i + 1)|] Then
M < m+ maxicocin [|F'@)] < f(n) + SM. As
n > R > 3r% we obtain that M < 3f(n)/2. On the other

hand, f(n - 1) = F(?’L - 1) > f( ) maxo<z<n F/(l‘) 2
f(n) = 22M > f(n) — 2 f(n). Since R = 3r2 we have
that f(n—1) > (1 — g)f( n) =g(n —1), as desired. ®

3.2 Algorithmic Welfare Maximization (Thm. 3)

In this section we consider the purely algorithmic problem,
ignoring incentive constraints. While constant factor ap-
proximations exist for welfare maximization in the absence
of complementarities (see (Dobzinski, Nisan, and Schapira
2010; Feige 2006)), it is not hard to see that complementari-
ties can make the welfare problem as hard as independent set
and hence inapproximable to within an almost linear factor.
Our hierarchy offers a linear degradation of the approxima-
tion as a function of the degree of complementarity. At a
high level, our algorithm works as follows: define the con-
figuration linear program (LP) (introduced in (Dobzinski,
Nisan, and Schapira 2010)) by introducing a variable z; g
for every agent ¢ and subset of items S. Given the valuation
function v; of each agent ¢, the configuration LP is:

2is Ti,s - vilS)

s.t. Ygris <1l VieN
Yisjes®Tis <1 VieM

2is>0 Vie N,SCM

maximize

3)

The first set of constraints guarantees that no agent is allo-
cated more than one set and the second set of constraints
guarantees that no item belongs to more than one set. This
LP provides an upper bound on the optimal welfare. To find
a solution that approximates the optimal welfare, we first
solve this LP (through duality using demand queries (Nisan
and Segal 2006)) and then round it (see below).



Rounding the LP. First each agent ¢ is assigned a ten-
tative set S} according to the probability distribution in-
duced by the variables x; 5. Note that this tentative al-
location has the same expected welfare as the LP. How-
ever, it may be infeasible as agents’ sets might overlap. We
must resolve these contentions. Several approaches for do-
ing this when there are no complementarities were proposed
and analyzed in (Dobzinski, Nisan, and Schapira 2010;
Feige 2006). However, these approaches will fail badly in
our setting, due to the existence of complementarities. In-
stead, we resolve contention using the following technique:
We generate a uniformly random permutation 7 over the
agents and then at each step ¢ for 1 < ¢ < n, assign agent
i = m(t) items S; = S!\ {Uf,(:t;(ll)) Sy}, i.e., those items in
his tentative set that have not already been allocated.

The following proposition bounds the welfare guarantee
of the above contention resolution algorithm.

Proposition 9. If agents have MPH-k valuations, then
the random permutation rounding algorithm produces (in
expectation) an allocation that approximates the maximum
welfare within a ratio no worse than k + 1.

Proof. First, note that the solution is feasible, since every
item is allocated at most once. We upper bound the approx-
imation guarantee. The sum of values of tentative sets pre-
serve, in expectation, the value of the optimal welfare re-
turned by the configuration LP. Consider an arbitrary agent
and his tentative set 7. This set attained its value according
to some positive hypergraph H that has no edges of rank
larger than k. Consider an arbitrary edge of H contained in
T, and let r < k be its rank. We claim that its expected con-
tribution (expectation taken over the random choices of the
other agents and the random permutation) towards the final
welfare is at least 1/(r 4 1) of its value. The expected num-
ber of other agents who compete on items from this edge is
at most 7 (by summing up the fractional values of sets that
contain items from this edge). Given that there are ¢ other
competing agents, the agent gets all items from the edge
with probability exactly tz-sl-l As the expectation of ¢ is at

most r, the expectatlon of “_—1 is at least +1 (by convexity)

and hence at least kT—l as the valuation function is MPH-k.
The proof follows from linearity of expectation. ]

An integrality gap of k — 1 + is known for hypergraph
matching in k-uniform hypergraphs (see (Chan. Y. H 2012)
and references therein). These instances are special cases of
welfare maximization with MPH-k valuations. Hence, our
rounding technique in Proposition 9 is nearly best possible.
Recall also that even for single-minded bidders with sets of
size up to k, it is A/P-hard to approximate the welfare max-
imization problem to a better factor than (%%) 3

3.3 Welfare at Equilibrium (Thm. 4)

In this section we study welfare guarantees at equilibrium of
the simultaneous item auction, when all agents have MPH-

3Follows by an approximation preserving reduction from k-
set packing from (Lehmann, O’Callaghan, and Shoham 1999), to-
gether with a hardness result of (Hazan, Safra, and Schwartz 2006).
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k valuations. In a simultaneous item (first-price) auction, ev-
ery bidder ¢ € [n] simultaneously submits a bid b;; > 0 for
every item j € [m]. We write b; = (b;1, ..., biy,) for the
vector of bids of bidder 4, and b = (b1, ...,b,) for the bid
profile of all bidders. Every item is allocated to the bidder
who submits the highest bid on it (breaking ties arbitrarily),
and the winning bidder pays his bid. We let X;(b) denote the
bundle allocated to bidder ¢ under bid profile b, and we write
X (b) = (X1(b), ..., X,(b)) for the allocation vector under
bids b. When clear in the context, we omit b and write X
for the allocation. A bidders’ utility is assumed to be quasi-
linear; i.e., u;(b;v;) = v;(X;(b)) — ZjEXi(b) b;;. Given a
valuation profile v we let X * be the welfare-maximizing al-
location and OPT(v) its social welfare.

In this part we assume that the valuations of the players
are common knowledge and we provide a weaker efficiency
guarantee. We defer the tighter analysis and the extension
to the incomplete information setting to the full version.
A Nash equilibrium is a profile of (possibly random) bids
B = (By,..., By), such that no player’s utility can increase
by deviating to another bid. To quantify the inefficiency of
a simultaneous item auction, we will use the price of anar-
chy (PoA) measure, which is the maximum ratio (over all
valuation profiles) of the optimal welfare over the welfare
obtained at any Nash equilibrium.

OPT(Vv)
POA = mMaXy, B: B ismixed NE Eo~ps[SW(X (D))"

“4)

Bounding the PoA. We provide a proof that the PoA
of the auction is at most 4k, when bidders have MPH-k
valuations. Let B be a randomized bid profile that consti-
tutes a Nash equilibrium under valuations v. For each item
J € [m], let P; = max; B;; be the price of item j; P; is a
random variable induced by the bid profile. Consider what
would happen if bidder 7 deviated from B and instead bid
bi; = 2k - E[P;] on all the items j € X} and O on the
other items. By Markov’s inequality bidder ¢ wins each item
j € X} with probability at least 1 — 5. Let v} be the PH-k
lower envelope with respect to set X (recall bidders have
MPH-k valuations). Then, v;(X}) = v (X}) and, for any
X: € X/, vi(X;) > vf(X;). Since v} is a PH-k valua-
tion, each hyperedge of v; has size at most k; it then fol-
lows by the union bound that bidder ¢ wins all items in any
such hyperedge with probability at least % Therefore, the
value that the player derives from this deviation is at least
$0(X}) = 3vi(X}). Hence, his utility from the deviation
is at least $v;(X}) — 2k - Z]GX: E[P;]. By the Nash con-
dition his utility at equilibrium is at least this high.
Summing the above bound over all bidders ¢, the sum of
bidders’ utilities at equilibrium is at least OPT(v) — 2k -
>_jeim) B[P Since total utility is welfare minus revenue:

(v) =2k Y E|

JE€[m]

E[SW(B;v)| - Y E[P] > OPT

j€m]
Since every player has the option to drop out of the auc-

tion, his expected utility is non-negative. Therefore, the ex-
pected total payment at equilibrium is bounded above by the



welfare.Substituting this in the above inequality gives that
2k - E[SW (B;v)] > 30PT(v), which establishes an upper
bound of 4k on the PoA, as desired.
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