Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

Heuristic Induction of Rate-Based Process Models

Pat Langley and Adam Arvay
Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland 1142, New Zealand

Abstract

This paper presents a novel approach to inductive process
modeling, the task of constructing a quantitative account of
dynamical behavior from time-series data and background
knowledge. We review earlier work on this topic, noting its
reliance on methods that evaluate entire model structures and
use repeated simulation to estimate parameters, which to-
gether make severe computational demands. In response, we
present an alternative method for process model induction
that assumes each process has a rate, that this rate is deter-
mined by an algebraic expression, and that changes due to
a process are directly proportional to its rate. We describe
RPM, an implemented system that incorporates these ideas,
and we report analyses and experiments that suggest it scales
well to complex domains and data sets. In closing, we discuss
related research and outline ways to extend the framework.

1 Background and Motivation

Reasoning about scientific domains is a high-level cogni-
tive task that is widely viewed as requiring considerable in-
telligence. Over the past three decades, research on com-
putational scientific discovery (Shrager and Langley 1990;
DZeroski and Todorovski 2007) has addressed a variety of
tasks that arise in the pursuit of knowledge. Efforts in this
paradigm are distinguished from mainstream work in data
mining and machine learning by producing content stated in
established scientific formalisms, ranging from componen-
tial models in particle physics to causal diagrams in genetics
and to reaction pathways in biochemistry.

Much of the research in this area has focused on equa-
tion discovery, which has played a key role in the history of
science and which has clear applications in many different
disciplines. However, this task often arises in the early stages
of a field’s development, before theoretical knowledge sup-
ports the creation of explanatory models that account for ob-
servations in deeper terms. The task of explanatory model
construction has received less attention from computational
researchers, but there has been some progress on this topic.

One important form of such tasks, known as inductive
process modeling (Langley et al. 2002), accepts generic
knowledge about processes that can occur in a domain and
time-series data for a number of variables. The aim is to find

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

537

a concrete model, including numeric parameters, that repro-
duces their trajectories over time and makes accurate pre-
dictions for new values. One can compile this model into
a set of differential equations, but it also explains observa-
tions in terms of underlying processes. This distinguishes the
paradigm from other work on modeling time series, includ-
ing alternative methods for finding differential equations.

In the sections that follow, we review drawbacks of pre-
vious efforts on inductive process modeling, focusing on
their computational expense and problems with parameter
estimation. In response, we present a new approach to pro-
cess model induction that adopts representational assump-
tions which let it carry out heuristic rather than exhaustive
search through the space of model structures, making it both
more efficient and more reliable. We also describe an im-
plemented system that incorporates these ideas, and we re-
port experimental studies that demonstrate its ability to iden-
tify relevant processes, handle noisy observations, and con-
struct accurate models that relate many variables. We con-
clude by discussing our framework’s relation to earlier work
and proposing responses to its limitations.

2 Critique of Process Modeling Research

Research on inductive process modeling has made continual
progress since its first appearance over a decade ago (Lang-
ley et al. 2002). Advances have included adding the ability to
incorporate hierarchical knowledge (Todorovski et al. 2005),
handle missing values (Bridewell et al. 2006), combine mod-
els without losing interpretability (Bridewell et al. 2005), in-
corporate constraints to reduce search (Bridewell and Lan-
gley 2010), and even learn such constraints from sample
models (Bridewell and Todorovski 2007). The framework
has been applied to model construction in ecology (Asghar-
beygi et al. 2006), hydrology (Bridewell et al. 2008), and
biochemistry (Langley et al. 2006). Despite this progress,
research has been hampered by three key features of the in-
duction algorithms used to date.

The first characteristic is that, even though process mod-
els are compositional in nature, current algorithms evaluate
only complete model structures. This evaluation involves
comparing a parameterized model’s predictions with ob-
served time series. Existing systems generate many model
structures up to a given complexity level, then parameter-
ize and evaluate each candidate in turn. This approach does

not support heuristic search through the space of model
structures. Runs on domains that involve small sets of vari-
ables and generic processes have produced a few thousand
model structures, which is computationally tractable. But the
number of structures grows exponentially with the number
of variables and generic processes, even with constraints,
which means the standard approach will not scale.

Another drawback is that existing algorithms rely on re-
peated simulation to estimate parameters for each model
structure. They start with values selected randomly within a
given range for each parameter, simulate the parameterized
model, and calculate error with respect to observed values.
These methods use the error gradient to revise parameters,
simulate the new model, and continue until improvements
cease, indicating they have reached a local optimum. Hun-
dreds of iterations are not uncommon, so that repeated sim-
ulations to guide search through parameter space dominate
processing. In most runs, 99.99 percent of the CPU time is
taken by running simulations for parameter estimation.

Finally, even with this expensive iteration for parameter
estimation, the local optima found by traditional techniques
may not fit the observed time series very well. To ensure ar-
rival at reasonable parameters, they have resorted to repeated
restarts from different random values. For some parameter
spaces, ten restarts suffices to produce reasonable results, but
informal experiments suggest that, in some cases, more than
a hundred restarts are needed for reliable estimation. This
further adds to the computational burden and, again, it must
be borne separately for each distinct model structure.

Taken together, these features have made previous ap-
proaches to process model induction computationally ex-
pensive in the extreme, effectively limiting both the com-
plexity of the models and the size of the data sets they
can address. Moreover, even with extensive computation,
problems with local optima mean that existing methods are
not as reliable as one would desire. This suggests the need
for a new approach to finding process models that is more
tractable and reliable than existing alternatives.

3 Heuristic Induction of Process Models

To address these issues, we have developed a new approach
to inducing process models that, we maintain, should be far
more efficient and robust than its predecessors. In this sec-
tion, we present some assumptions that constrain the induc-
tion task substantially. After this, we describe RPM, an im-
plemented system that takes advantage of these assumptions
in its operation. Finally, we make some high-level theoreti-
cal claims about the framework.

3.1 Simplifying Assumptions

To make the model induction task more tractable, we first
restrict our notation, assuming that all processes concern
changes over time and that they effect these changes at a
specific rate. Chemical reactions are one obvious example of
this idea; a given reaction involves the same substances, but
its rate of operation can vary over time. Earlier work on in-
ductive process modeling has included purely algebraic pro-
cesses that describe instantaneous relations, which we hold
are contrary to the notion of a process.

538

Second, we assume that each process has one or more
associated derivatives and, moreover, that these are directly
proportional to its rate. For instance, a chemical reaction that
combines two substances, C and C, to produce a third, Cs,
has three derivative expressions of the form dC; /dt = kX R,
where R is the rate and k is a constant parameter. We can dis-
tinguish between variables that are inputs to a process, which
it consumes and thus have negative coefficients in their ex-
pressions, and variables that are outputs, which a process
produces and thus have positive coefficients. This does not
mean these variables always increase or decrease over time,
since other processes may also influence them.

Third, we assume that the rate of each process is deter-
mined by a parameter-free algebraic expression. In some
chemical reactions, this expression is the product of the con-
centrations of the input substances. For instance, the rate at
which two substances react, given concentrations C; and
Cs, might be C; x Cs, whereas one in which three sub-
stances react might be C7 x Cy x Cs3. We assume that rates
are always positive and inherently unobservable, so we can
adopt any measurement scale we like, avoiding the need for
coefficients. Some rate equations, like the ‘monod’ expres-
sion X/(k+ X) in biochemical models, include parameters.
For now, we will exclude these from our framework, but we
will return to them when discussing future research.

Fourth, we assume that, if a variable appears in the rate
expression for a process, then it must also appear in a deriva-
tive expression associated with that process. For instance, if
the rate equation for a process is X X Y, this means it must
include derivative expressions for both X and Y, possibly
along with ones for other variables. This rules out ‘gratu-
itous’ processes with terms that influence rates but are not
affected in turn. At first glance, this appears to cause dif-
ficulty for chemical reactions that involve catalysts, but we
can treat them as special cases in which the proportionality
coefficient for derivative equations are near zero.

The simple model for a predator-prey ecosystem in Ta-
ble 1 illustrates these ideas. Each process has an associated
rate expression, one specifying that the rate equals the prod-
uct of two variables and the others stating that it equals a sin-
gle variable. Each process also has one or more associated
derivatives that are directly proportional to the rate, with pa-
rameters detailing this dependence. Finally, every term that
appears in the rate expression for a process also appears in
some derivative expression. Generic processes take a simi-
lar form but utilize typed variables. These assumptions con-
strain considerably the process models that are possible, al-
though one can still state a large number of such structures.

Our notation borrows heavily from Forbus’ (1984) Qual-
itative Process theory. Rates also played a key role in his
framework, with an algebraic rate expression correspond-
ing to a set of indirect influences in a qualitative process.
Moreover, each equation that relates a derivative to a rate
maps onto a direct influence in a qualitative process. For-
bus’ framework could have multiple rates per process and
ours allows only one, but otherwise they are very similar.

A final issue concerns not the structure of process mod-
els but the data available to induce them. For reasons that
will become apparent shortly, we assume that observations

Table 1: A three-process model for a system involving the
predator Nasutum and the prey Aurelia that illustrates our
framework’s assumptions. Each process has a rate deter-
mined by an algebraic expression and includes one or more
derivatives that are proportional to this rate.

exponential_change[aurelial]

rate r = aurelia
parameters A = 0.75
equations d[aurelia] = A X r
exponential_change [nasutum]
rate r = nasutum
parameters B = -0.57
equations d[nasutum] = B X r
holling.predation[nasutum, aurelial]
rate r = nasutum X aurelia
parameters C = 0.0024
D = -0.011
equations d[nasutum] = C X r
d[aurelia] =D X r

are given for all variables to be included in candidate mod-
els. Some early work in the paradigm (e.g., Langley et al.
2002) took the same position, but many recent efforts (e.g.,
Bridewell et al. 2008) explicitly attempt to handle unob-
served terms. This is one reason they require simulation of
full models to estimate parameters, as it lets them calcu-
late values for such terms. This makes our approach more
limited, but early work on induction of decision trees and
Bayesian networks relied on analogous simplifications, and
we discuss ways to move beyond it later in the paper.

3.2 A Regression-Guided Process Modeler

We have incorporated these ideas into RPM, a new system
for inductive process modeling that uses the assumptions to
constrain search and make the discovery task tractable. The
system inputs a set of typed variables,' a subset of these vari-
ables to be predicted, a set of generic processes in the form
just described, and an observed time series for each variable.
The program returns a model stated as a set of differential
equations, one for each dependent variable, that predicts the
corresponding derivative as a linear combination of process
rates. If it cannot find acceptable equations for some vari-
ables, it returns a partial model.

Before it begins to search, RPM takes a number of ini-
tialization steps. First it uses the task variables to instantiate
the generic processes in all ways that are consistent with the
latters’ type constraints. For instance, suppose the modeling
task involves three variables, A, B, and C', where A has type
prey, B has type prey or predator, and C' has type predator.
Further suppose that the generic process holling_predation
includes two generic variables, X and Y, where the first has
type prey and the second predator. In this case, RPM would
generate three instances of holling_predation, one with X
bound to A and Y bound to B, one with X bound to 4 and

"Type constraints are disjunctive, in that a given variable may
have more than one possible type, say either predator or prey.

539

Y bound to C, and one with X bound to B and Y bound
to C. The result is a set of process instances, each with an
instantiated rate expression and derivative terms.

Next, the system estimates the derivatives for each depen-
dent variable on each time step. For this purpose, it uses the
‘center difference’ method, which calculates the derivative
for variable X at time ¢ as the average of X (t) — X (¢t — 1)
and X (t+1)— X (t). This produces a trajectory, over time, of
estimated derivatives for each dependent variable. RPM also
uses the observed time series to calculate rates for each such
process instance. If the third process instance just discussed
has the rate expression B x C, then RPM would multiply B
by C' at each time to obtain the associated process rate. The
assumption that rates are parameter-free algebraic functions
of observed variables lets it make this calculation for each
candidate process instance. The result is a trajectory, over
time, of the rate for each instantiated process.

RPM then iterates through the dependent variables, at-
tempting to find a differential equation for each one that pre-
dicts its observed changes as a function of process rates. For
each variable D, it considers only those process instances
P that include D as a dependent term, as others would not
make appropriate predictors. The system then examines, in
turn, each linear equation of the form D = a x P, using
linear regression to calculate the parameter a. If the r? for
any of these equations exceeds a user-specified threshold,
then RPM adds the best candidate to its model and exam-
ines the next dependent variable. If not, then it considers all
pairs of process instances, P, and P», in which D is a de-
pendent term and considers each linear equation of the form
D = a x Py + b x Ps,. For this it uses multiple linear regres-
sion to estimate the parameters a and b. Again, if some equa-
tion’s r2 exceeds the threshold, the system adds the best to
the model. Otherwise, it examines triples of processes, and
so on, continuing until reaching a user-specified maximum.

In summary, RPM carries out a sequential form of greedy
search through the space of process models, in that once
it selects an equation for one variable, it cannot change its
mind. This means that, if more than one equation produces
acceptable 72 values, the system may make an incorrect
choice that will cause it difficulty later. Nevertheless, greedy
search is highly efficient when its heuristics guide search
down useful paths, and more efficient induction of process
models is one of our primary concerns.

Knowledge about processes modulates search for indi-
vidual equations in four complementary ways. First, RPM
groups generic processes into types, such as predation and
organism loss. Different processes in the same class relate
the same number and types of variables but differ in their
algebraic rate expressions. RPM only considers models that
contain at most one process instance of each type with the
same arguments. Suppose we have two generic predation
processes that relate a predator population X with a prey
population Y, one with rate X x Y and another with X/Y".
Suppose we have two variables, A and B, the first a preda-
tor and the second a prey. This gives two process instances
— predation(A, B) with rate A x B and predation(A, B)
with rate A/B — which RPM treats as mutually exclusive,
ensuring no model structure contains more than one.

Second, generic processes may include numeric con-
straints on the parameters that appear in proportionality
equations. For instance, predation processes specify that the
predator’s coefficient must be positive, whereas that for the
prey must be negative, indicating predation causes the preda-
tor’s population to increase and the prey’s to decrease. Once
RPM finds an equation for a variable with an acceptable fit,
it checks the equation’s parameters to see if they satisfy its
associated processes’ constraints. If not, then it abandons the
equation and continues to look for other candidates. In cases
where an organism may be either a predator or a prey, the
system will find two equations that fit the data equally well,
but only one will have parameters with the correct signs.

Third, if RPM incorporates a process P into the equation
for one dependent variable, say D;, that includes another
variable, say D, then it must include P in all equations that
it later considers for predicting D». These constraints reduce
the number of process combinations RPM considers when
searching for later equations. In some cases, given the user-
specified limit on the number of processes allowed, it fully
determines an equation’s form, eliminating search entirely.

Finally, to make such constraints more effective, the sys-
tem utilizes information about earlier equations to decide
which variable to focus on next. For each variable not yet
incorporated into the model, it calculates the number of pro-
cesses in which it already appears. RPM then selects the one
that takes part in the most processes (breaking ties at ran-
dom), as it will have more terms in its equation determined.
This is similar to selection of the most constrained variable
in work on constraint satisfaction. Unless the data set can be
partitioned into subsets of variables that do not interact, this
heuristic further reduces the search needed to find equations.

Together, these techniques limit greatly the number of
model structures that RPM entertains during its discovery
efforts. They make the difference between tractable heuristic
search and the intractable methods used in previous systems.

3.3 Theoretical Claims

Based on our earlier observations, we can make a number of
theoretical claims about the new approach to process model
induction and our implementation of its ideas.

e RPM should duplicate previous methods’ abilities to
identify the structure of process models and distinguish
irrelevant processes from ones that, taken together, ac-
count for the observed trajectories.

e Because the system estimates parameters for each equa-
tion separately, and without relying on repeated simula-
tion of complete models, it should be far more efficient
computationally.

e RPM’s reliance on multiple linear regression, a statistical
technique with an ability to tolerate noise and low vari-
ance, should let it avoid local optima at the equation level
and find parameters that fit the data well.

e Heuristic search through the structure space should let the
system scale well to models of high complexity, provid-
ing they are sparsely connected in that each variable is
influenced by only a few processes.

540

If these claims hold true, then RPM should be far more ef-
fective at inducing process models than systems that have
previously addressed this challenging class of problems.

4 Evaluation of the Approach

A complexity analysis of the new approach is encouraging
even in the worst case. Let V' be the number of variables,
P the number of generic processes, S the number of sam-
ples, k the maximum number of variables in a process, and
J the maximum number of processes in an equation. The to-
tal number of process instances I = P x V!/(V — K)!, but
RPM only considers process instances in which a given vari-
able appears, meaning the number in play for each equation
isatmost I’ = Px (VI/(V-K)I-(V-1)!/(V-K-1)!).
This gives J' = I'l/(J! x (I' — J)!) as the maximum num-
ber of equations considered for each variable, leading to
SxV xJ as the total time complexity. Assuming k = 3 and
j = 3, which are reasonable values, J' is approximated by
P3 x V74, giving an effective complexity of S x P3 x V&4,
However, this analysis ignores our heuristics’ role in guid-
ing the selection of variables and search for equations, so we
have also studied our method’s empirical behavior.

4.1 Empirical Behavior on Natural Data

To demonstrate RPM’s relevance to natural science, our ini-
tial runs focused on published data about a simple predator-
prey ecosystem (Veilleux 1979). These involve 26 sam-
ples of two protozoa — Nasutum and Aurelia — with the
former preying on the latter, as their populations vary
over time. Earlier methods for inductive process modeling
have reported reasonable results on these time-series data
(Bridewell et al. 2008). Our purpose here was not to claim
superiority, but simply to show that our new mechanism for
constructing process models produces accurate and plausi-
ble explanations for actual scientific data.

When provided with these data and two generic processes,
one for predation and another for exponential loss/growth,
RPM induces the model shown earlier in Table 1. This
maps onto the equation daurelia] = 0.75 x aurelia +
—0.011 x nasutum X aurelia, for which 72 is 0.84, and
d[nasutum] = 0.0024 x nasutum X aurelia + —0.57 x
nasutum, for which r2 is 0.71. Figure 1 plots the observed
trajectories and the simulated ones produced when we pro-
vided these equations to a differential equation solver. The
model does not reproduce the observed trajectories perfectly,
but it does capture the peaks and troughs, offset slightly. This
result is encouraging, as RPM evaluates equations based on
prediction of observed derivatives, not on the trajectories
themselves, as did its predecessors. If reproducing trajecto-
ries is important, one could use gradient descent through pa-
rameter space with estimated coefficients as starting points.

4.2 Induction with Irrelevant Processes

We also desire to demonstrate that RPM does not confuse
relevant process instances with irrelevant ones when search-
ing the space of model structures. To this end, we provided
the system with eight additional generic processes for the
predator-prey domain. These differed from the original ones
in the algebraic expression that determines each process rate.

—@— Aurelia (observed) —@— Nasutum (observed)
—&— Aurelia (simulated) —#— Nasutum (simulated)

300

ion

200

Populati

=

o

t=1
1

1 " 16 18 2 2 2

Time
Figure 1: Observed and simulated trajectories for a predator-
prey system involving the protozoa Nasutum and Aurelia.

We included four alternative algebraic forms for individ-
ual loss/growth of an organism and another four alternative
forms for predation. On runs with the natural data for Nasu-
tum and Aurelia, as well as on synthetic data generated using
the X and X x Y rate terms, RPM found the same process
models as before. This suggests the system can distinguish
relevant processes from irrelevant ones effectively.

Because we are centrally concerned with efficient induc-
tion, we also measured RPM’s run time when presented with
different numbers of irrelevant processes. Figure 2 plots the
CPU seconds required as a function of the number of generic
processes, starting with two relevant ones and adding two ir-
relevant ones on each increment. The growth in computation
time appears to be greater than linear, but the overall behav-
ior still scales reasonably well with the number of irrelevant
processes and much better than our worst-case analysis.

4.3 Handling Noise and Complex Models

In addition, we examined RPM’s ability to handle noisy ob-
servations. This is especially important given the system’s
focus on finding equations that predict estimated derivatives,
as taking differences between succssive observed values can
magnify noise substantially. For instance, when we added
five percent noise to synthetic data for the five predator-
prey system, 0.28 was the highest 72 value found for any
derivative, and RPM could distinguish only some of the tar-
get equations from alternative forms. However, when we
smoothed the observed values using locally weighted regres-
sion (Cleveland 1979), the system found all target equations
without difficulty, even when the noise level was ten percent
and we provided the irrelevant processes described above.
This suggests that preprocessing with simple and inexpen-
sive smoothing techniques will suffice for the approach to
handle substantial amounts of observational noise.
Moreover, because we wanted to demonstrate that our ap-
proach can induce process models that involve many vari-
ables, we ran RPM on a synthetic predator-prey data set
with 20 organisms. The target model corresponded to a lin-
ear food chain in which organism 20 preys on organism 19,
which in turn preys on organism 18, and so forth, with or-
ganism 1 at the bottom. The model augmented these 19 pre-
dation processes with an exponential growth process for or-
ganism | and an exponential loss process for organism 20.

541

—=— Number of generic processes
—4— Number of variables

CPU seconds

0.54

0.0

1‘0 ' ' ' ' 20
Task complexity
Figure 2: RPM’s processing time as a function of the number
of generic processes, given five variables, and as a function
of the number of variables, given two generic processes.

RPM identifies correctly the structure of the target model
from noise-free data involving 236 samples. The system
generates 400 process instances, but it considers only 1,483
equation structures during search because those found for
early variables constrain both which processes to incorpo-
rate and which variables to examine next. Earlier systems
that carry out nonheuristic search through the structure space
would have great difficulty finding models of this complex-
ity. We also systematically varied the number of variables
and recorded CPU time. Figure 2 shows this grows at a rea-
sonable rate, indicating the heuristics provide average-case
behavior far better than our worst-case analysis.

4.4 Comparison to SC-IPM

Finally, we ran a comparison between RPM and SC-IPM
(Bridewell and Langley 2010), an earlier system for induc-
ing process models from time series, on synthetic data gen-
erated from a known target. The target model involved three
organisms that interact through two predation processes in a
single food chain, with one process for growth and another
for loss at either end. We provided both systems with 100
observations for each of these simulated variables and anal-
ogous background knowledge about generic processes.
SC-IPM has two parameters that RPM lacks: the num-
ber of model structures it considers and the number of
times it restarts gradient descent during parameter estima-
tion. Higher values improve the system’s chances of finding
a good model but also increase its processing time. We held
the first parameter constant at 600, which seemed sufficient
to ensure SC-IPM examines the target structure, and varied
the second from 10 to 150 restarts. In each case, we recorded
run time and mean squared error on the training data.
Figure 3 plots SC-IPM’s performance on these dimen-
sions, along with the time and error for ten RPM runs. The
results are umambiguous. RPM finds very accurate models
reliably, whereas SC-IPM induces ones with comparable ac-
curacy rarely even on its most expensive runs. Moreover,
although both are written in Lisp, RPM finds these mod-
els more than 83,000 times faster than even the most rapid
SC-IPM runs. Rather than examining 600 model structures,
RPM considered only 21 equations, each of which it fit using
multiple linear regression rather than gradient descent.

3.0 []
= A RPM
g ® SC-IPM (10 restarts) e H O
[2.04 B SC-IPM (30 restarts) °
T © SC-IPM (75 restarts) =
§ V SC-IPM (150 restarts) °
o
7]
% 1.04 ‘ .8?
Q
]
= s g %
: -]
001 A AA | 8

T T T
10° 102 10*

CPU seconds

10

Figure 3: Processing time vs. error for RPM and SC-IPM
with different number of restarts for gradient descent search.

These experimental results, taken together, offer support
for our claims that the new approach induces accurate pro-
cess models in a computationally tractable manner. The sys-
tem responds well to irrelevant processes, noisy observa-
tions, and substantial model complexity, and it compares
very favorably to a representative earlier system in both re-
liability and processing time.

5 Related Research

The approach to inductive process modeling we have re-
ported here incorporates ideas from earlier efforts, but it
also introduces novel features that distinguish it from prede-
cessors. The framework draws directly from Forbus’ (1984)
early work on qualitative process theory, which also encodes
scientific accounts as sets of interacting processes. Our re-
liance on quantitative processes is not unique; the represen-
tational innovation lies in reformulating processes in terms
of algebraic expressions that determine rates and in terms of
derivatives that are proportional to these rates. The resulting
class of models still have broad coverage, but they are far
more amenable to computational discovery.

We have already discussed earlier work on inductive pro-
cess modeling, but not related research on discovering dif-
ferential equation models from time series. We will not re-
view traditional work on system identification, which as-
sumes functional forms and focuses on parameter estima-
tion. However, DZeroski and Todorovski’s (1995) LaGrange
system searches the space of functional forms, and the
closely related LaGramge (Todorovski and DZeroski 1995)
uses grammatical knowledge to inform this search. Bradley
et al’s (2001) PRET addresses the same task, analyzing
qualitative regularities in data to limit the structures it con-
siders. Genetic programming methods (e.g., Koza et al.,
2001; Schmidt & Lipson, 2009) use evolutionary search
techniques, with more recent systems sampling data to avoid
overfitting, but they search a larger space of differential
equations, making them less scalable and more likely to pro-
duce uninterpretable models. LaGrange comes closest to our
approach, constructing equations for each derivative as lin-
ear functions of algebraic expressions, but, like other sys-
tems, does not incorporate processes to constrain search.

We should also note that Srividhya et al. (2007) report
a related approach to inducing differential-equation models

542

for biochemical pathways, which we discovered only after
developing RPM. This uses knowledge about types of re-
actions to generate candidate equation structures, which it
then fits to estimated derivatives of chemical concentrations.
Their method also invokes multiple linear regression to find
coefficients and pursues greedy search for model structures.
Their system also favors equations with fewer terms, but it
does not use heuristics to order variables or require that later
equations be consistent with earlier ones. It also relies on
chemical constraints about numbers of molecules in reac-
tions, making it less general than our framework.

6 Limitations and Future Work

Our experimental results suggest that the new approach to
process model induction can find accurate and plausible
models in reasonable amounts of time. However, this behav-
ior relies on some assumptions that we should aim to relax
in our future analyses and implementations.

The framework’s requirement that processes comprise an
algebraic rate expression and derivatives proportional to this
rate is useful but not very limiting. However, the assump-
tion that rate expressions be parameter-free, which it uses
to calculate rates from variables, means it cannot encode
some models that earlier systems considered. In future work,
we plan to weaken this restriction by allowing one parame-
ter per rate equation and using the reliable LMS algorithm
to estimate their values. One parameter per process means
each linear differential equation has at most one free param-
eter per term. For a given equation, the extended RPM could
make an initial guess about these parameter values, then use
the LMS method to iteratively revise them, using 72 as an
error metric. This should let us handle many parameterized
rate expressions, including the monod function that is used
widely in ecology and biochemistry.

We should also explore replacing the greedy search
method through the space of model structures with beam
search. Experience with RPM suggests that, when observed
trajectories are reasonably flat, multiple equations have sim-
ilar 2 scores. Beam search would let the system retain mul-
tiple equations for each variable, delaying decisions about
which to retain until it has acquired information about equa-
tions for other variables. This should also reduce reliance on
the 2 threshold, which we currently tune manually to a level
appropriate for the data set being analyzed.

We have seen that RPM’s adoption of heuristic search lets
it induce reasonably complex models, but it still uses an ex-
haustive method to find individual equations, at least in its
early stages. True scalability to hundreds or thousands of
equations will also require heuristic construction of differ-
ential equations for each dependent variable. The natural re-
sponse is to adapt greedy forward-search techniques for fea-
ture selection (Blum and Langley 1997), but relations among
process rates, which can share variables, make r2 an unreli-
able metric for the usefulness of individual terms. We must
identify more informative guides to support effective heuris-
tic search through the space of component equations.

Finally, we must extend the framework to induce process
models even when some variables remain unobserved. We
assumed fully observable domains because, combined with

parameter-free rate expressions, it let our mechanism use
linear regression to find each equation in a model separately
from others. This was the key source of RPM’s scalabil-
ity to complex models, but in future work we should move
beyond this restriction. Following Bridewell et al. (2006),
we can handle occasional missing values using an iterative-
optimization scheme, but the more challenging case con-
cerns entirely unobserved variables. Our assumption that
derivatives depend on linear combinations of process rates
should let us extend that approach to such cases, but whether
it retains good convergence properties is an open question.

7 Concluding Remarks

In this paper, we critiqued earlier research on inductive
process modeling, which involves constructing differential
equation accounts of time series from knowledge about
generic processes. We also presented a new approach to this
task, and its implementation in the RPM system, that builds
on some important assumptions. These included associating
with each process a rate that is determined by a parameter-
free algebraic equation, along with one or more derivatives
that are directly proportional to this rate. We argued that this
constrained framework should be more tractable computa-
tionally and more robust on parameter estimation.

We presented a complexity analysis that shows the new
approach should scale reasonably to induction tasks that in-
volve irrelevant processes and target models with many vari-
ables. More important, we showed encouraging experimen-
tal results on both natural and synthetic data. In the latter
case, we demonstrated that RPM can ignore irrelevant pro-
cesses, handle noisy data when aided by standard smoothing
techniques, and scale well enough to induce process models
with 20 variables. In addition to these promising findings,
we outlined steps to overcome our simpliying assumptions
that should broaden the coverage and applicability of the
modeling framework’s future implementations.

Acknowledgements

This research reported here was supported in part by ONR
Grant N00014-11-1-0107. We thank Will Bridewell, Saso
Dzeroski, Rich Morin, Son To, and Ljupo Todorovski for
discussions that led to the approach we have described.

References

Asgharbeygi, N.; Langley, P.; Bay, S.; and Arrigo, K. 2006.
Inductive revision of quantitative process models. Ecological
Modelling 194:70-79.

Blum, A.; and Langley, P. 1997. Selection of relevant fea-
tures and examples in machine learning. Artificial Intelli-
gence 97:245-271.

Bradley, E.; Easley, M.; and Stolle, R. 2001. Reasoning
about nonlinear system identification. Artificial Intelligence
133:139-188.

Bridewell, W.; Bani Asadi, N.; Langley, P.; and Todorovski,
L. 2005. Reducing overfitting in process model induction. In
Proceedings of the Twenty-Second International Conference
on Machine Learning, 81-88. Bonn, Germany.

543

Bridewell, W.; Langley P.; Racunas, S.; and Borrett, S. R.
2006. Learning process models with missing data. In Pro-
ceedings of the Seventeenth European Conference on Ma-
chine Learning, 557-565. Berlin:Springer.

Bridewell, W.; and Langley, P. 2010. Two kinds of knowledge
in scientific discovery. Topics in Cognitive Science 2:36-52.

Bridewell, W.; Langley, P.; Todorovski, L.; and Dzeroski, S.
2008. Inductive process modeling. Machine Learning 71:1—
32.

Bridewell, W.; and Todorovski, L. 2007. Learning declarative
bias. In Proceedings of the Seventeenth Annual International
Conference on Inductive Logic Programming, 63-77. Corval-
lis, OR:Springer.

Cleveland, W. S. 1979. Robust locally weighted regression
and smoothing scatterplots. Journal of the American Statisti-
cal Association 74:829-836.

Dzeroski, S.; and Todorovski, L. (Eds.) 2007. Computational
discovery of communicable scientific knowledge. Berlin:
Springer.

DZeroski, S.; and Todorovski, L. 1995. Discovering dynam-
ics: From inductive logic programming to machine discovery.
Journal of Intelligent Information Systems 4:89-108.

Forbus, K. D. (1984). Qualitative process theory. Artificial In-
telligence, 24, 85-168.

Koza, J. R.; Mydlowec, W.; Lanza, G.; Yu, J.; and Keane,
M. A. 2001. Reverse engineering of metabolic pathways from
observed data using genetic programming. Pacific Symposium
on Biocomputing 6:434-445.

Langley, P.; Sanchez, J.; Todorovski, L.; and DZeroski, S.
2002. Inducing process models from continuous data. In Pro-
ceedings of the Nineteenth International Conference on Ma-
chine Learning, 347-354. San Francisco: Morgan Kaufmann.

Langley, P.; Shiran, O.; Shrager, J.; Todorovski, L.; and Po-
horille, A. 2006. Constructing explanatory process models
from biological data and knowledge. Artificial Intelligence in
Medicine 37:191-201.

Schmidt, M.; and Lipson, H. 2009. Distilling free-form natu-
ral laws from experimental data. Science 324:81-85.

Shrager, J.; and Langley, P. (Eds.) 1990. Computational mod-
els of scientific discovery and theory formation. San Mateo,
CA: Morgan Kaufmann.

Srividhya, J.; Crampin, E. J.; McSharry, P. E.; and Schnell,
S. 2007. Reconstructing biochemical pathways from time
course data. Proteomics 7:828-838.

Todorovski, L.; Bridewell, W.; Shiran, O.; and Langley, P.
2005. Inducing hierarchical process models in dynamic do-
mains. In Proceedings of the Twentieth National Conference
on Artificial Intelligence, 892-897. Pittsburgh: AAAI Press.

Todorovski, L.; and Dzeroski, S. 1997. Declarative bias in
equation discovery. In Proceedings of the Fourteenth Interna-
tional Conference on Machine Learning, 376-384. Nashville,
TN: Morgan Kaufmann.

Veilleux, B. G. 1979. An analysis of predatory interaction be-

tween paramecium and didinium. Journal of Animal Ecology
48:787-803.

