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Abstract

Fault diagnosis of analogue linear systems poses many chal-
lenges, such as the size of the search space that must be
explored and the possibility of simulation instabilities in-
troduced by particular fault classes. We study a novel al-
gorithm that addresses both problems. This algorithm dy-
namically modifies the simulation model during diagnosis by
pruning parametrized components that cause discontinuity in
the model. We provide a theoretical framework for predicting
the speedups, which depends on the topology of the model.
We empirically validate the theoretical predictions through
extensive experimentation on a benchmark of circuits.

Introduction

Fault diagnosis of analogue systems is an important prob-
lem, given their prevalence in synthetic and natural domains.
For example, one heavily-studied domain is that of ana-
logue circuits, and enormous research has been directed to-
wards the testing and diagnosis of electronic devices (Ban-
dler and Salama 1985; Kabisatpathy, Barua, and Sinha 2005;
Milor 1998).

We focus on hard (catastrophic) faults, which character-
ize when the system exhibits significant (and often abrupt)
behavioral changes. For example, a hard fault in a circuit oc-
curs when the terminals of a component become stuck-open
or stuck-short. Hard faults contrast with parametric faults,
which characterize deviations of component parameters that
result in performance beyond acceptable limits.

Hard faults can be difficult to diagnose for two reasons.
First, the space of failure behaviours may be very large and
difficult to search. Second, hard faults can cause inference
techniques to display numerical instability: e.g., open cir-
cuits may cause singular matrices for the matrix inversion
operator, and short circuits may cause infinite conductance
values. As a consequence, numerical simulators, e.g., SPICE
(Nagel and Pederson 1973) or MODELICA, may become
unstable under particular fault conditions. To avoid these
problems, such modern solvers replace short-/open-circuits
with small/large resistances, respectively. In this paper, re-
sistances close to zero and large resistances are denoted as €
and &, respectively. While replacing zeroes and infinity with
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small and large numbers is less of a problem for a single sim-
ulation, it introduces a significant computational overhead
for the thousands of simulations necessary for examining
many combinations of parameter values. We show how we
can remove such components from the model, both speeding
up simulation and removing the source of instability.

This paper proposes a novel method for diagnosis of hard
multiple-fault instances in analogue systems. We adopt a
model for analogue systems based on a graphical topolog-
ical structure, in which nodes represent measurement points
and edges the components. We propose an approach for di-
agnosing hard faults that performs topological reductions of
the model during runtime inference, which results in sig-
nificant speedups compared to state-of-the-art approaches,
none of which employ such reductions (Korzybski 2008;
Liu and Starzyk 2002; Tadeusiewicz and Hatgas 2006).

This graphical model enables us to capture a wide range
of domains, e.g., mechanical, electrical, and thermal sys-
tems, through using a bond graph interpretation for the net-
work model (Karnopp, Margolis, and Rosenberg 2006).

The contributions of this paper are as follows: (1) we de-
sign an optimization method that dynamically optimizes the
diagnosis model during diagnostics inference based on re-
moving redundant system component models; (2) we theo-
retically characterize the speedups of our algorithm based
on system topology for a class of networks; (3) we empir-
ically validate our predictions using a novel benchmark of
analogue electrical circuits that represents a large class of
circuit topologies that occur in real-world systems; (4) we
show that the proposed optimization method improves the
diagnostic performance as predicted by the analytical model
by up to 2 orders of magnitude.

Concepts and Definitions

Figure 1 shows an electrical circuit that we use for illustrat-
ing the algorithms in this paper.
The circuit in figure 1 consists of a voltage source V7, two
switches SW1 and SW, two resistors R, and Ry, and a
current sensor I1. The two switches SW{ and SW, are
modeled as resistors whose values (0 for short-circuited and
oo for open-circuited) is specified by the user as user-defined
input (command).

An analogue linear system consists of an inter-connected
set of components. For example, in a circuit a component
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Figure 1: Simple circuit used as a running example

can be a resistor or capacitor, and connections are wires. We
represent a system model M in terms of the system variables
&, the component equations Y, and the connection topology
G. We describe each in turn below.

We define a variable for each system component ¢; € C
and component-connection z; € Z, as follows.

Definition 1 (Variables). We represent variable i, &;, as a
3-tuple (7;, D;,w;), where

* 7, € T represents the variable’s type, which can be effort,
Sflow, or connection;

* D, € D represents the (continuous-valued) variable’s do-
main, i.e., the possible values the variable can take on;

* w; € () represents the variable’s health status, or failure
mode.

A health assignment (or mode) w € €2 is an assignment of
nominal or faulty operating conditions to all variables in €.
We represent the equations as follows.

Definition 2 (Equations ). We represent a linear analogue
system in terms of a set 3 of relations between effort z and
flow Z vectors of continuous-valued variables, using 7% =
Z, where T' is an n x n non-singular matrix and Z, 2z are
collections of variables in &.

For each health assignment (or mode) we assume that we can
specify a distinct set of equations. Hence, for each w € {2 we
specify an equation set 3, given by 1,2, = Z,, such that
XY= UweQ Zw'

For example, for circuits & € R™ is an (unknown) nodal
voltage vector, and Z € R™ is a measurable current-source
vector.

We represent the topology of a system using a graph G.

Definition 3 (Topology Graph). Given a model M with
components C = {c1,¢a, -+, ¢y}, and component connec-
tions (junctions) Z = {z1,29,:, 21}, where component ¢;
occurs between junctions z;, zx, we represent the topology
graph G(V, E) of M such that the vertices V' correspond to
connections in M and edges E correspond to components in
M.

Edges in G are also labeled with the type of the correspond-
ing components and their parameters.
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We assume that the system can operate in a set {2 of health
states (modes), which can consist of nominal or faulty oper-
ating conditions. Given a system that consists of a discrete
set of components with a corresponding set of health param-
eters COMPS, a health assignment w € € is an assignment
to all variables in COMPS.

Further, for each health mode we assume that we can
specify a distinct set of equations. Hence, for each w € ()
we specify an equation set ¥, given by T,,x,, = Z,, such
that 3 = U,eq 2o -

Given a flow vector Z, simulation of z,, involves comput-
ing the effort vector via 2, = T}, Lz,. Since ¥ is linear, we
can simulate efficiently.

Given an observation &, we estimate the health assign-
ment (i.e., solve a diagnostic problem) by computing an
optimal solution of a health estimation problem where the
health variables are discrete and the problem is split in two
parts: simulation and residual analysis.

In real-world applications, a straightforward simulation
function is not sufficient to adequately solve the diagnos-
tic problem. This is because models are imprecise, there is
sensor noise, health parameters are discrete, etc. Instead, we
compute a difference between & and a simulation Z (using
the residual function of Definition 4), and then identify the
mode that minimises this function.

Definition 4 (Residual Function). Given two m-
dimensional real vectors §,d e R™, a residual function
R:{%Z,a} » R(Z,a) maps Z and & into the real interval
[0; 00).

For the residual function R we typically use a statistical es-
timator. In this paper we use the absolute residual function:

(D

m
Rans(Z,6) = Y wi |2 — ay
i=1

where Z; and «; are the i*" components of the Z and & vec-
tors, respectively, and w; are weights (parameters).

Definition S (Health Estimation Problem). Given a diag-
nostic model M, an observation & and a residual function R,
the health estimation problem is to compute an assignment
Wmin to all variables in COMPS such that:

Wmin = argmin R(Z,,, &)
w

Efficiently solving the above health estimation problem is
the main goal of our framework.

Algorithms

In what follows we outline an algorithm for solving the prob-
lem given in definition 5. Our algorithm consists of (1) a
search algorithm that iterates over a subspace of the possi-
ble combinations of discrete values of heath variables, (2) a
model optimization algorithm that improves the model com-
plexity, and (3) simulation and residual algorithms that rank
the candidates and compute the optimal health assignment.
The primary goal of this section is to show how model opti-
mization (step 2) significantly improves the performance of
the simulation (step 3).
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Figure 2: Shorted R2 makes simulation of the circuit in fig-
ure 1 trivial as it shorts the voltage source V;

Algorithm 1: DIAGNOSISSEARCH(M, )

Input: M, model

Input: o, observation

Result: w, diagnosis

Local variable: h, health assignment, initially {}
Local variable: 5, simulation vector

Local variables: 7, rmin, residuals, 7, rmin € [0; 00)

T < 00

repeat
P < SIMULATESYSTEM(MAKEGRAPH (M, h))
r < COMPUTERESIDUAL(P, &)
if 7 < 7min then

Luﬂ—h

T < Tmin
until h « NEXTHEALTHASSIGNMENT (h,r) # @;
9 return w

NN R W N =

®

To illustrate the possibility to reduce complexity, consider
the running example where the simulator assumes a short-
circuit in Ry (see fig. 2). While a purely numerical simula-
tion approach is agnostic toward the existence of the short-
circuit (it is typically represented as a small resistor), a sym-
bolic preprocessing step can easily discover that a short-
circuit in R, leads to the voltage source V; being shorted,
thus making the whole simulation trivial and, hence, faster.

Algorithm 1 provides a generic search method for solving
the health estimation problem in definition 5. The idea is to
search the space of all possible health variable combinations.
This space is exponential in the number of health variables
(components), and normally the search is limited to a subset
of all combinations. Examples of such subsets are all k-fault
combinations or the assignment sets generated by a greedy
search (Feldman, Provan, and van Gemund 2010b).

Algorithm 1 starts by assuming the default (user-defined)
health assignment h = {} which, in diagnostic context, rep-
resents the all-okay status of the system. Successive health
assignments are generated by the NEXTHEALTHASSIGN-
MENT subroutine.

Depending on the implementation of NEXTHEALTHAS-
SIGNMENT, algorithm 1 can perform different types of
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Algorithm 2: SIMULATESYSTEM(L)
Input: G, graph
Result: Z, voltage vector
Local variable: GG, graph
Local variable: N, nodal matrix
Local variable: j, current vector

1 G < OPTIMIZEGRAPH(G)
2 N < MAKENODALMATRIX(G)

3 7 < MAKECURRENTVECTOR(G)
4 Z< N7Yj
5 return Z

search such as breadth-first, depth-first, iterative deepening,
greedy (in this case NEXTHEALTHASSIGNMENT uses the r
parameter), random, and many others. Which policy is op-
timal depends, i.a., on the simulation and residual functions
(see def. 4) and the topology of the model. Choosing a search
policy (or a combination of such) is a topic of its own and
is not discussed in this paper. Our main focus is how the
complexity of the simulation function SIMULATESYSTEM
in line 3 affects the overall complexity of the optimization
algorithm.

The function MAKEGRAPH takes a set of component
models, a topology, and a health-variable guess h and gen-
erates a graph GG. G is fed to the simulation function SIMU-
LATESYSTEM. The graph represents a system of linear equa-
tions and the simulation subroutine, described in the section
that follows, uses linear algebra tools to compute the un-
known simulation variables.

Algorithm 2 outlines a system simulator that supports
only linear elements: dissipative elements (resistors), effort
(voltage) and flow (current) sources. Our approach is sim-
ilar to the one used in SPICE (Nagel and Pederson 1973).
The implementation of Algorithm 2 uses the Modified Nodal
Analysis (MNA) of Ho, Ruehli, and Brennan (1975), gener-
ating nodal matrices of size n x n where n is the number of
nets in the input netlist L.

The remaining steps of the algorithm are concerned with
performing the simulation. First, we generate the matrix [V
from the graph G (e.g., as described by Kielkowski (1994,
p- 18)). Note that this is the phase in which instability can oc-
cur due to particular fault classes, e.g., open-/short-circuits.

The time complexity of algorithm 2 is dominated by the
matrix inversion in line 3. The matrix inversion operation
is as complex as matrix multiplication (Cormen et al. 2001,
p. 757) and its complexity is O(n?) or O(n?¥°") when us-
ing the Strassen algorithm' (Press et al. 2002, pp. 105-107)
where the matrix NV is of size n x n.

The most important addition to algorithm 2 is the Op-
TIMIZEGRAPH call in line 1. The purpose of OPTIMIZE-
GRAPH is to reduce the number of nodes in G, thus reducing
the size of the nodal matrix V.

The task of algorithm 3 is to reduce the complexity of
simulation by removing from the model components (with

'There exist faster methods for sparse matrices but they are of
no practical significance for our algorithms.



Algorithm 3: OPTIMIZEGRAPH(G)
Input: G = (V, E), graph
Result: G, optimized graph
Local variables: v, vertex, e, edge
Local variables: S, edge stack, P, set of edges
Local variable: stop, Boolean flag

repeat
stop < true
foreach e € F : ISDISSIPATIVEELEMENT(¢e) do
if Q(e) <e v Src(e) = DST(e) then
V < V \ DsT(e)
E<« FE~e
RECONNECT(E, SRC(e),DsT(e))
stop < false

9 if Q(e) = oo then
L E<Exe

® N AN B W N =

1 until stop = false;

PUSH(s, EFFORTSOURCE(E))

while ¢ < POP(s) # & do
PUSH(s, ADJACENTEDGES(G, ¢))
P« Pue

repeat

stop < true

foreach e € E do
if |e] <2 or e ¢ P then
L V « V \DsT(e)

E<«Exe

stop « false
until stop = false;
REMOVEORPHANEDVERTEXES(V, E)
return G = (V, E)

specific parameters) corresponding to hypothesized faults.
Algorithm 3 has two main parts: first all components that
are faulty (for example open- and short-circuited resistors)
are removed (lines 3—10) and, second, only those systems
that are closed through an effort source are retained (lines
12-24).

The auxiliary function ISDISSIPATIVEELEMENT(e) re-
turns true if and only if its argument e is a dissipative ele-
ment edge (resistor in the electrical domain). The function
Q(e) returns the resistance of e. The functions SRC(e) and
DsT(e) return the two respective vertices that are connected
to an edge e. Notice that it is customary that the represen-
tation of the simulation graph V' is directed, although the
orientation of the edges produces no difference in the simu-
lation results.

While edges that represent open-circuited resistors can be
simply removed from the graph (lines 9-10), after remov-
ing short-circuited resistors (lines 4-8), the adjacent wires
have to be reconnected. This is done by the RECONNECT
subroutine and the process is illustrated in figure 3. As re-
moving a short-circuit can cause another short-circuit (see
again fig. 3), the component removal loop in lines 3—10 has
to be repeated until no more removals are performed. This is
achieved by using the stop flag.

The second part of algorithm 3 (lines 12-22), removes
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Figure 3: Removing the short-circuited resistors Ry and Ry
in the left graph makes nodes Ny and N3 unnecessary. To
preserve the circuit we have to disconnect R; from Ny and
to connect it to /N4. Similarly, both ends of R3 have to be
connected to V4. At this moment, N, shorts R3 and R3 can
be removed.

all components that are not doubly-connected to an effort
source. This process first performs a Depth-First Search
(DFS) on the graph G (Sedgewick 2002, pp. 81-99). In our
case, the DFS starts from all voltage sources. The subrou-
tine EFFORTSOURCE returns all edges that are connected to
a positive terminal of an effort (voltage) source. These edges
are added to the stack s in line 12. The result of the DFS is
that all edges that can be reached from effort sources are
added to the set of edges P. The DFS uses the function AD-
JACENTEDGES to generate all edges that are neighbors of an
edge e.

The loop in lines 16-23 removes all edges that are not in
P, i.e., they are not connected to an effort source. This loop
also removes all hanging edges. The condition for a hanging
edge is in line 19. The expression |e| denotes the sum of the
degrees of the two vertexes incident to e. Similarly to the
first part of the algorithm, the loop in lines 18-22 is repeated
until no further truncation of the graph is possible.

Finally, all orphaned nodes (zero-degree nodes) are re-
moved by the helper subroutine REMOVEORPHANEDVER-
TEXES.

In what follows we outline the procedure for formally as-
serting the correctness of our algorithm.

Proposition 1 (Correctness). Given graphs G and G’ such
that G’ is obtained from G by applying algorithm 3, it fol-
lows that G and G’ have equivalent efforts and flows for the
remaining edges in G'.

Proof (Sketch). First we note that the set of edges of G’ is
a subset of the set of edges of G’ and the set of nodes of
G’ is a subset of the set of nodes of G'. Then we give Kirch-
hoff’s circuit laws for computing the effort and the in circuits
equivalent to the G and G’ graphs. Finally, the proof is di-
rect by showing that the eliminated nodes are zero terms in
the Kirchhoff’s formulas. O

The worst-case time complexity of algorithm 3 is
O(|E|?), i.e., it is polynomial in the number of edges. Some
time complexity in algorithm 3 can be traded for memory,
thus achieving near linear performance. The outer loops in
lines 1-11 and 16-23, for example, can be removed at the
cost of managing data structures that keep track of all graph
nodes that have to be merged and all orphaned or hanging
paths.
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Figure 4: Serial and parallel graph topologies

Predicted Topological Reduction

This section examines the type of topological reduction that
is possible for a typical model. We focus on two key topolo-
gies, serial and parallel sub-graphs, as shown in figure 4(a).
We assume we have a topology graph in which parallel
edges are allowed, e.g., for system redundancy. The size of a
graph G(V, E) is denoted in terms of the number of edges,
i.e., |G| = |E|. The size of G(V, E) is essential to the algo-
rithmic performance of algorithm 3 as it is equal to the size
of the nodal matrix.

Definition 6 (Contraction Operators). Given a graph
G(V,E) and an edge e = {v,w}, the graph G'(V', E’) =
G(V,E) w eissuchthat E' = E\{euF}, V' = V\u, F
is the set of all edges that are parallel to {v,w}, and each
edge {z,v} € E such that x # w is replaced with an edge
{z,w}eE".

Given a graph G(V,E) and an edge e, the graph
G'(V',E') = G(V,E) ~ eissuch that E' = E\e, V' =
V\{W uwv} where v is incident to ¢ and W is the set of
singly connected vertices in E\v.

We have chosen the symbols « and & to visually resem-
ble the set exclusion operator \ as the two contraction oper-
ators decrease the size of G. The graph contraction ratio, for
graphs with at least on edge, is:

Y G e +1G ~ €]
ecEl
= 2
g 2|GP2

The variable p in eq. 2 adds-up the effect of applying ~ and
~, to each edge in E. Note that p € [0; 1]. The denominator
in eq. 2 is simply |G(V, E)|-times the number of edges in
G(V,E). The coefficient is 2 in the denominator because
we have two contraction operators: % and . In graphs with
a single loop, p = 0, i.e., the sum of the sizes of all contracted
graphs is zero.

Lemma 1. The following two statements are true:

1. The total graph contraction for a serial graph G(V, E)
with edges E = {{Zla Z2} ) {227 23} PR {Zn—la Zn}} is
p=3

2. The total graph contraction for a parallel graph G(V, E)
with edges E = {{z1,22},{21,22},...,{21, 22} } is p =
1
5.

Proof (Sketch). In a graph G(V, E) with serial topology,
there are exactly G(V, E) = |E| = n edges as illustrated

2We plan to address additional sub-graphs in future work.
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in figure 4(a). Choose any edge e. Applying v to e removes
only e from the original graph G(V, E) and results in:

Y@ wel=n(n-1)

ecE

3)
On the other hand, applying ™ to e, regardless of the choice
of e results in a singly-connected graph:

Y@ ~el=n

ecE

4)

n+n(n-1)

Substituting eq. 3 and eq. 4 into eq. 2 gives us p = ——

which simplifies to p = % The correctness of statement 2
can be proven in a similar manner. O

We now prove a theorem that predicts how algorithm 3
affects a class of random graphs; in the following section we
empirically validate our theoretical predictions. Our random
graphs depict serially connected circuits with random con-
nections. We generate our random graphs by adding random
edges to a serially connected graph such as the one shown
in figure 4(a). This structure of augmenting regular graphs
with random edges is the standard method for random-graph
generators, and is known to closely match the structure of
real-world systems (da F. Costa et al. 2007).

In the following, we denote the average graph degree of a
graph G(V, E) as d = 2|E|/|V].

Theorem 1. The total graph contraction for a serially-
connected generated graph G(V, E) is p = kd.

Proof (Sketch). We decompose G(V, E) into two graphs:
G(V,E")and G(V, E") where E’ is the set of random edges
and G(V, E") is a serially connected graph. This decompo-
sition is possible due to the way G(V, E) is constructed. Let
G(V, E") consists of C' components (the computation of C
is shown in Erd6s and Rényi (1960)). We can now show
that the overall reduction p = k1p’ + kop” will be the av-
erage of reducing G(V, E") and G(V, E"). From lemma 1,
pl = % Finally, both k; and ko are proportional to d, hence
p = kidp' + kydp". As there is no dependency between &/,
kY, p',and p" (p” depends on C only), then we can conclude
that p is proportional to the average graph degree. [

Although there is an analytical method to obtain p for
generated graphs, we compute it experimentally which also
shows the absolute improvement in computational complex-
ity due to the symbolic preprocessing. We do this in the fol-
lowing section.

Experiments

Algorithms 1-3 are implemented as a part of the (deleted for
anonymity) diagnostic framework.

Benchmark

No benchmark for analogue linear circuits exists, to the best
of our knowledge, unlike digital circuit benchmarks, e.g.,
(Brglez and Fujiwara 1985). Consequently, we have gener-
ated the circuits that we need.



Name N variables |[COMPS|
N-SERIAL 3-202 11-608 3-202
N-PARALLEL 3-202 9-407 3-202
N-MIXED 3-102 18-513 6204
N-MESH 3-12 48-723 18-288
N-TREE 3-5 57-6253 27-3125

Table 1: Circuit benchmark

o oot

(a) serial (b) parallel

T,

g o

(dj mesh

(c) mixed

(e) tree

Figure 5: Scalable circuits with regular topology used for
performance analysis

Table 1 shows a number of regular circuits. These topolo-
gies can be scaled by setting a variable IV, producing a range
of circuit sizes.

All benchmark circuits have a single voltage source that
cannot fail. The N-SERIAL circuits, shown in figure 5(a),
consist of IV resistors connected in series. Similarly, the N-
PARALLEL circuits in figure 5(b) consist of NV resistors con-
nected in parallel. The N-MIXED topology is a combination
of N-SERIAL and N-PARALLEL as shown in figure 5(c).
The N-MESH circuits consist of 2 x N2 resistors arranged
in a rectangular grid as shown in figure 5(d). Finally, the N-
TREE circuits are complete N-ary trees of depth N. They
are shown in figure 5(e).

For N-SERIAL, d = 2. For N-PARALLEL, d = N + 1. For
N-MIXED, d = (4N +2)/(N + 2) which approaches 4 for
larger N. The N-MESH circuits have average graph degree
d = (4N?+2)/(N?+2) which approaches 4 when increasing
N even faster than N-MIXED.

In addition to the regular circuits from the preceding
section we have created 6370 ‘“generated” circuits that
have realistic topological properties. We generate these cir-
cuits by adapting the random graph algorithm proposed by
Sedgewick (2002, p. 42). We modify the original algorithm
to ensure multiple graph components for sparse graphs.

We generate graphs by specifying the vertex/edge ratio .
The relation between the graph generation parameter r and
the average graph density d is given by |E| = N + C - 1,
where C is the number of connected components in G. From
the fact that |[V| = N it follows that d = 2Nr+ C - 1/N.
For our experiments we have chosen 0.1 < r < 0.4 which
translates to 2.06 < d < 2.9.
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Figure 7: 11-SERIAL k-fault performance

Results

Figure 6 shows the ratio of the CPU time of the optimized
versus the non-optimized algorithm. The performance gain
due to the graph preprocessing is close to 2.02, does not de-
pend on the circuit size, and is almost constant (there is some
measurement noise).

The performance gain for N-PARALLEL is the same as for
N-SERIAL. Not surprisingly, algorithm 3 helps only a little
in the connected topologies of figure 5(c) and figure 5(d).
For these two dense topologies, we have measured a perfor-
mance gain of at most 9%. The reason for this is that a single
faulty component decreases the size of the nodal matrix by
one.

The most significant benchmark performance gain due to
algorithm 3 is for k-fault simulations where k£ > 1. The per-
formance of the diagnostic search decreases exponentially
with k, except when k approaches NV because then the nodal
matrix is almost degenerate, hence easier to decompose. On
the other hand, multiple faults increase the frequency with
which significant parts of the nodal graphs are pruned. For
example, when k = 2, an open-circuit close to the voltage
source in N-SERIAL makes /N simulations use a 2 x 2 ma-
trix instead of the normal N x V.

The performance gain due to k-fault simulations is shown
in figure 7. In order to simulate k-fault combinations, we
have chosen a small N = 11. The performance gain in-
creases for larger k and reaches a factor of 5.12 for k = 12.

Figure 8 shows the average algorithm complexity with
random circuits. On the x-axis we have the number of nodes
in the topology graph. The y-axis is the number of edges
coefficient r. The z-axis shows the ratio of the time of the
diagnosis with and without algorithm 3.



Figure 8: Performance gain for random circuits of various
size and with varying density
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Figure 9: The design of the satellite EPS is highly redundant
to increase reliability

Figure 8 shows that the performance gain due to algo-
rithm 3 does not depend on the circuit size, i.e., it is almost
constant. What determines the performance gain is the edge
density. For 7 = 0.1 we have almost twice speed improve-
ment and it decreases to ~ 1.25 for r = 0.4. The performance
gain is bounded from below by the performance gain of the
N-SERIAL topology due to the nature of random graph gen-
eration algorithm.

The linear correlation coefficient of the speedup shown in
figure 8 and the average graph degree is —0.89 which vali-
dates the analysis in section . The negative sign in the corre-
lation is due to the fact that  defined as the number of graph
vertices per edge while d is reciprocal to r, i.e., d is defined
as the number of edges per graph vertex.

We have a modeled the Electrical Power System (EPS) of
a real-world satellite (Feldman et al. 2013). It consists of,
amongst others, 96 heating elements (modeled as resistors),
112 switches (modeled as resistors whose resistor changes
as a result of a user-supplied command), and approx. 1000
equations. Most components have at least two fault modes,
in addition to the nominal one. The many switching com-
ponents and the designed cold-redundancy lead to a large
number of normally open-circuit or short-circuit elements
at any given time. As a result, algorithm 3 leads to a per-
formance speedup factor of at-least 38.9, and that is for the
single fault assumption. For the double-fault assumption we
have a performance gain of 194 times.

The reason for the very good performance of the symbolic
reduction is in the highly regular and redundant design of the
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satellite EPS as is illustrated in figure 9. Consider, for exam-
ple, the topology of the power distribution and heater net-
work. The electrical heaters provide double redundancy and
are grouped in lines of six. A fault assumption eliminates a
whole line of resistors which, given, the cubic complexity of
the simulation algorithm translates to the substantial savings
that we have measured in our experiments.

The performance gain of symbolically pruning faulty
components is even more expressed when assuming double-
fault hypotheses (the latter increases diagnostic accuracy
which is outside the scope of this work) or when using diag-
nostic inference as a subroutine in a more complex algorithm
such as active testing (Feldman, Provan, and van Gemund
2010a). The double-fault assumptions decrease the size of
the nodal matrix with more than 20% and there are many
cases in which the nodal matrix becomes of trivial size (e.g.,
two faulty main distribution switches).

Related Work

Analog systems diagnosis is a well-studied area, and a va-
riety of approaches have been developed, based on meth-
ods such as off-line numerical test-generation (Duhamel
and Rault 1979), bond graph approaches (Samantaray et
al. 2006), machine learning (Aminian and Aminian 2000),
“intelligent” methods (Dague et al. 1992; Fenton, McGin-
nity, and Maguire 2001), and MODELICA fault models
(Minhas et al. 2014). The domain of analogue systems
that has received the most attention is that of fault diag-
nosis of analog circuits, e.g., (Bandler and Salama 1985;
Kabisatpathy, Barua, and Sinha 2005; Milor 1998). Al-
though much progress has been made, most prior work ad-
dresses only single-fault cases. Achievements towards auto-
matic multiple-fault diagnosis are documented in, i.a., (Ko-
rzybski 2008; Liu and Starzyk 2002); however, many aspects
of the problem are still open, and no fully-automatic method
exists for multiple-fault generic analog circuit diagnosis.

In general, parametric-fault simulation-after-test (SAT)
methods must be used to address the non-linear diagnos-
tic equations. When the parameters differ only slightly be-
yond their tolerance ranges, the equation can be linearized
(Tadeusiewicz and Hatgas 2006). For more significant dif-
ferences, more accurate results for this task are needed.
These include methods for solving nonlinear equations, e.g.,
the Newton-Raphson method or its variants (Cherubal and
Chatterjee 1999; Navid and Willson, Jr. 1979), modified
nodal approaches (Ho, Ruehli, and Brennan 1975), evolu-
tionary algorithms (Augusto and Almeida 2000), or least
square methods (Hongkui and Pengnian 1988).

Researchers have studied dynamic discontinuities in bond
graphs (Mosterman and Biswas 1996). This paper comple-
ments the approach of Mosterman and Biswas by provid-
ing an algorithmic framework for dealing with structural (or
parametric) discontinuities. Our approach is fully applicable
to bond graphs (Mosterman and Biswas 1999).

Conclusions

In this paper we study the advantages of dynamically
modifying the simulation model for steady-state analysis



in diagnosis. We show that speedups due to pruning of
parametrized components that cause discontinuity in the
model depend on the topology of the model, and empirically
justify this theoretical prediction through extensive experi-
mentation on a benchmark of circuits. Further, our method
does not decrease the diagnostic accuracy.

We observe most computational savings in real-world cir-
cuits where, due to standard redundancy for fault-tolerance,
there are many unpowered and shorted sub-circuits that can
be pruned. We also observe that the computational perfor-
mance increases with the number & of k-fault combinations.
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