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Abstract

Core-guided approaches to solving MAXSAT have proved to
be effective on industrial problems. These approaches solve
a MAXSAT formula by building a sequence of SAT formulas,
where in each formula a greater weight of soft clauses can be
relaxed. The soft clauses are relaxed via the addition of block-
ing variables, and the total weight of soft clauses that can
be relaxed is limited by placing constraints on the blocking
variables. In this work we propose an alternative approach.
Our approach also builds a sequence of new SAT formulas.
However, these formulas are constructed using MAXSAT res-
olution, a sound rule of inference for MAXSAT. MAXSAT
resolution can in the worst case cause a quadratic blowup
in the formula, so we propose a new compressed version
of MAXSAT resolution. Using compressed MAXSAT reso-
lution our new core-guided solver improves the state-of-the-
art, solving significantly more problems than other state-of-
the-art solvers on the industrial benchmarks used in the 2013
MAXSAT Solver Evaluation.

Introduction
Maximum Satisfiability (MAXSAT) is an optimisation ver-
sion of satisfiability (SAT) that its most general form con-
tains both hard clauses and weighted soft clauses. Solving
such a weighted partial MAXSAT (WPM) formula involves
finding a truth assignment that satisfies the hard clauses
along with a maximum weight of soft clauses. Many indus-
trial applications can be naturally encoded in MAXSAT, and
successful application areas include bioinformatics (Strick-
land, Barnes, and Sokol 2005; Graça et al. 2012), plan-
ning (Cooper et al. 2006; Zhang and Bacchus 2012), and
scheduling (Vasquez and Hao 2001).

The most successful approachs to solving larger indus-
trial problems has been core-guided approaches (Morgado
et al. 2013) where a sequence of unsatisfiable cores are ex-
tracted using a SAT solver. The idea is to solve MAXSAT
problems by solving a sequence of SAT decision problems.
These SAT decision problems are obtained via relaxations of
the original problem. A drawback of this approach is that the
relaxation requires adding new cardinality constraints to the
formula at each step, making the problem harder to solve at
each iteration.
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In this work we stay within the framework of the core-
guided approach. However, we avoid using cardinality con-
straints and instead use cores to construct a derivation of the
empty clause (a refutation) using MAXRES, a sound rule of
inference for MAXSAT. Every MAXRES refutation has the
effect of relaxing the formula, i.e., making the formula sat-
isfiable at a lower cost, without needing blocking variables
or cardinality constraints. The MAXRES rule can, however,
introduce a large number of additional clauses, called com-
pensation clauses, and in the worst case each refutation can
increase the size of the formula quadratically. To address this
problem we propose a compressed MAXSAT resolution rule
that introduces auxiliary variables to avoid this blowup.

Our approach allows us to significantly improve on the
performance of weighted MAXSAT solvers on industrial
instances from the 2013 Evaluation of Max-SAT Solvers
(Argelich et al. 2013). Our approach is the first to efficiently
employ the MAXRES rule for solving modern industrial
WPM problems, and our solver outperforms all WPM solvers
that participated in the 2013 Evaluation on the industrial in-
stances, solving 126 more instances than the best competing
WPM solver on these benchmarks.

Background
A satisfiability problem φ consists of a set of Boolean vari-
ables X and a set of clauses C, C = {C1, . . . ,Cm}. A literal
l is either a variable xi ∈ X or its negation xi. A clause C
is a disjunction of literals (l1 ∨ ⋯ ∨ ln). We denote the set
of variables in the formula φ by vars(φ). An assignment I
of the variables vars(φ) is a mapping vars(φ) ↦ {0,1}. A
clauseC is satisfied by an assignment, I(C) = 1, iff I(l) = 1
for some l ∈ C, otherwise C is falsified by I and I(C) = 0.
A set of clauses C is satisfied by an assignment, I(C) = 1,
iff all clauses in C are satisfied by I . We use ◻ to denote an
empty clause containing no literals; I(◻) = 0 for all I . A
unit clause is a clause containing only one literal. A solution
of φ is an assignment satisfying all clauses of φ.

A weighted clause is a pair (C,w), where C is a clause
and w is the weight of C, w ∈ N, that gives the cost of
violating C. Clauses with w = ∞ are called hard clauses;
otherwise, the clause is a soft clause. A WPM consists of a
set of Boolean variables X and a set of weighted clauses,
φ = {(C1,w1), . . . , (Cm,wm)}. A special case of WPM
is Partial MAXSAT, PM, where the problem weights are in
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the set {1,∞}. We denote the set of soft clauses in φ by
softCls(φ) and the set of hard clauses by hardCls(φ).

Example 1 We use a running example through-
out the paper. In our example, we consider the
ATMOSTONE(x1, . . . , x5) constraint that ensures that
at most one variable among x1, . . . , x5 is true. In addition,
we have a set of soft unit constraints of the form (xi,1),
i = 1, . . . ,5, each incurring a cost of one if xi is false.
We encode the ATMOSTONE constraint as a set of hard
clauses: ∪5

i,j=1,i≠j{(xi ∨ xj ,∞)}. The full formula, which
we will refer to in subsequent examples as Ψ, is Ψ =
softCls(φ) ∪ hardCls(φ) with softCls(φ) = ∪5

i=1{(xi,1)}
and hardCls(φ) = ∪5

i,j=1,i≠j{(xi ∨ x2,∞)}.
An assignment I is feasible for φ iff I satisfies all hard

clauses of φ. The cost of I is the sum of weights of clauses
that it falsifies: cost(I) = ∑w∶(C,w)∈φ∧I(C)=0w. I is an opti-
mal assignment for φ iff it is a feasible assignment of min-
imal cost. The cost of φ is equal to the cost of an optimal
assignment and is denoted by cost(φ).

Example 2 Consider I with I(x5) = 1 and I(xi) = 0
(1 ≤ i ≤ 4) in our example Ψ. I is a feasible assignment
for Ψ as it satisfies all hard clauses of Ψ. I violates four soft
clauses of Ψ so cost(I) = 4. Note that any assignment that
sets more than one variable to 1 violates a hard clause, so
any feasible assignment has cost 4 or more. Hence I is an
optimal assignment and cost(Ψ) = 4.

To simplify notation, we omit weights for hard clauses.
We use C↔` to denote the set of clauses {(`,C)} ∪
⋃l∈C{(l, `)}. These clauses make the literal ` equivalent to
C. We also use cnf (∑i xi ≤ b) to denote a CNF encoding
of the cardinality constraint ∑i xi ≤ b.
Definition 1 (MAXRES (Larrosa and Heras 2005))
Consider two clauses (x ∨ A,w1) and (x ∨ B,w2), where
A and B are disjunctions of literals. Let m = min(w1,w2).
The weighted MAXSAT resolution rule is:

(x ∨A,w1) (x ∨B,w2)
(A ∨B,m)

(x ∨A,w1 −m) (x ∨B,w2 −m)
(x ∨A ∨B,m) (x ∨A ∨B,m)

where (x∨A,w1) and (x∨B,w2) are the premises, the first
inferred clause is a soft version of the ordinary resolvant.
The remaining “clauses” are called compensation clauses.

In MAXRES the premises are removed from the formula
and the resolvant and compensation clauses are added. Note
that A and B are conjunctions of literals, so the compensa-
tion “clauses” might not be clauses. However, they can be
converted to a set of clauses using a special conversion rule.
If A is empty then A is regarded as a false literal and A
is a true literal (similarly for B). False literals can be re-
moved from an inferred clause, and the clause vanishes if its
weight is zero, it is a tautology, it contains a true literal, or
it is subsumed by a hard clause (ignoring the weights). The
MAXSAT rule was shown to be sound in (Larrosa and Heras
2005).

We also need the notion of MAXSAT reducibility from
(Ansótegui, Bonet, and Levy 2013). φ1 is MAXSAT re-
ducible to φ2 if, for any assignment I ∶ var(φ1) → {0,1},
we have cost(I(φ1)) = cost(I(φ2)).

A MaxRes Core-based algorithm
Before we describe our new MAXRES based algorithm for
solving PM problems we define a restricted version of the
MAXRES rule when w1 = w2 or w1 = ∞.

Definition 2 (Restricted MAXRES) When w1 ∈ {w2,∞}
(x ∨A,w1) (x,w2)

(A,w2), (x ∨A,w1 −w2), (x ∨A,w2)
If w1 = w2 the clause (x∨A,w1−w2) vanishes, and if w1 =
∞ it simply preserves the hard premiss. We call (A,w2) the
resolvant and (x ∨A,w2) the compensation clause.

The restricted form follows directly from applying
MAXRES to the premises specified under the given restric-
tions (the other two compensation clauses either contain the
true literal B or have weight zero); hence its soundness fol-
lows from the soundness of MAXRES.

Algorithm 1 gives our method for solving an unweighted
PM problem φ. Later on we will generalize it to the weighted
WPM case. The algorithm works by solving a sequence
of SAT problems, similar to other SAT-based MAXSAT
solvers (Ansotegui, Bonet, and Levy 2009; Manquinho,
Silva, and Planes 2009; Heras, Morgado, and Marques-Silva
2011; Davies and Bacchus 2013). At each iteration we rea-
son about a formula φi starting with φ0 = φ. If φi is satis-
fiable then the SAT solver returns a model which must be
an optimal assignment for φ. Otherwise, it returns an unsat-
isfiable core, κi ⊆ φi. Using κi we convert φi into a cost
equivalent formula φi+1 by modifying the clauses in κi and
then applying MAXRES to derive an empty clause (steps 6-
8). We then proceed to the next iteration.

Generating φi+1 involves three steps. First every soft
clause (Cj ,1) in the new core κi is converted into a unit
soft clause by making Cj equivalent to a brand new literal
bij (Algorithm 2). This allows us to replace (Cj ,1) with the

unit soft clause (bij ,1). Second, using the returned set of
new variables we add the hard clause that is their disjunc-
tion (step 6 of Algorithm 1). And third, we apply a series of
restricted MAXRES inferences resolving the new unit soft
clauses, (bij ,1) against the new hard clause that is their dis-
junction (Algorithm 3).

Algorithm 1 PMRes

Input: φ = {C1, . . . ,Cm}
Output: (I, cost(φ)), where I is an optimal assignment

1 i = 0, φ0 = φ
2 while true do
3 (issat, κi, I) = SolveSAT(φi ∖ {∪i

j=1(◻,1)})
4 if issat return (I, i)
5 (φ∗,B) = ReifyCore(φi, κi)
6 φ+ = φ∗ ∪ {(∨b∈Bb)}
7 φi+1 = ApplyMaxRes(φ+,B)
8 i = i + 1
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Algorithm 2 ReifyCore
Input: φ,κ
Output: φ,B

1 B = {}
2 for (Cj ,1) ∈ softCls(κ) do
3 φ = (φ − {(Cj ,1)}) ∪ (Cj ↔ bij) ∪ {(bij ,1)}
4 B = B ∪ {bij}
5 return φ,B

Algorithm 3 ApplyMaxRes

Input: φ,{b1, b2, . . . , bp}
Output: φ

1 for i = 1, . . . , p do
2 {Restricted MAXRES [(bi ∨⋯ ∨ bp,1/∞), (bi,1)]}
3 φ = φ − {(bi ∨ bi+1 ∨⋯ ∨ bp,1), (bi,1)}
4 if i < p then
5 φ = φ ∪ {(bi+1 ∨⋯ ∨ bp,1)}
6 φ = φ ∪ {(di ↔ (bi+1 ∨⋯ ∨ bp))} ∪ {(bi ∨ di,1)}
7 else
8 φ = φ ∪ {(◻,1)}
9 return φ

Consider Algorithm 3. It resolves the hard clause (b1 ∨
⋯ ∨ bp) with the unit soft clauses (b1,1), . . . , (bp,1) from
the core deriving the empty clause (◻,1) using p appli-
cations of restricted MAXRES. The first step is to resolve
(b1 ∨ ⋯ ∨ bp) and (b1,1) obtaining (b2 ∨ ⋯ ∨ bp,1) and
(b2 ∨ b3 ∨⋯ ∨ bp,1) and removing (b1,1)1. In the sec-
ond step we resolve (b2 ∨ ⋯ ∨ bp,1) and (b2,1) obtain-
ing (b3 ∨ ⋯ ∨ bp,1) and (b3 ∨ b4 ∨⋯ ∨ bp,1) and remov-
ing both premises. Each subsequent step is similar. Finally,
when i = p we resolve (bp,1) and (bp,1) to obtain (◻,1).

It should be noted that all the unit soft clauses (bi,1)
as well as all the intermediate soft clauses of the form
(bi ∨ ⋯ ∨ bp,1) generated by the i−1th application of
MAXRES (added by step 5 of the algorithm) are subse-
quently removed: they are consumed by the next (ith) ap-
plication of MAXRES (removed by step 3 of the algorithm
during its next iteration). The only clauses remaining af-
ter all MAXRES steps have been preformed are the initial
hard clause (b1 ∨ ⋯ ∨ bp), the soft empty clause (◻,1),
and the compensation clauses each of which has the form
(bi ∨ bi+1 ∨⋯ ∨ bp,1), 2 ≤ i < p.

The compensation “clauses” are not in clausal form and
(Larrosa and Heras 2005) propose a special rule for convert-
ing them into clausal form. However, their rule generates
many additional clauses. Our approach is to introduce new
variables di with di ↔ (bi+1 ∨⋯∨ bp). With di we can then
covert each compensation “clause” (bi ∨ bi+1 ∨⋯ ∨ bp,1)
into a true clause (bi ∨ di,1). Step 6 of the algorithm pre-
forms these two steps and adds the converted compensation
clause to the formula.

In sum, the p resolution steps in Algorithm 3 removes all
unit soft clauses (bi,1) and adds the following clauses to the
formula:⋃2≤i<p{(bi∨di,1)∪(di ↔ (bi+1∨⋯∨bp))} along
with (◻,1).

1Since (b1 ∨ ⋯ ∨ bp) is hard it is preserved, but in subsequent
steps both premises will be soft and will be removed by MAXRES.

Example 3 The first column in Table 1 shows an execution
of Algorithm 1 on our example formula Ψ. We describe
the first iteration of the algorithm. Suppose the first core
returned by SAT solver is κ1 = {(x1,1), (x2,1)}. Algo-
rithm 2 removes the original soft clauses in the core (x1,1),
(x2,1), adds reification clauses, (x1 ↔ b1), (x2 ↔ b2),
new unit soft clauses (b1,1), (b2,1) and the hard clause
(b1, b2) specifying that at least one of the clauses in the
core must be falsified. We show the new unit clauses (b1,1),
(b2,1) in gray as they will be removed by Algorithm 3. Al-
gorithm 3 then constructs a MAXRES refutation by resolv-
ing the unit soft clauses (b1,1) and (b2,1) against the new
hard clause (b1, b2). The MAXRES refutation derives a new
empty clause with weight 1, (◻,1) and reduces the cost of
the remaining formula by 1. This completes the first itera-
tion and we obtain a new cost equivalent formula by Theo-
rems 1–3. This procedure is repeated three more times until
we obtain φ4 (after processing κ4) which is satisfiable and
so the algorithm terminates at this point. The first column of
Table 1 shows these subsequent iterations.

We prove correctness of the algorithm by proving that
each transformations φ satisfies the MAXSAT reducibility
condition. We start with Algorithm 2.

Theorem 1 Let φi be the transformed formula at the i-th
step and φ∗ be the formula returned by Algorithm 2 at line 5.
Then φi is MAXSAT reducible to φ∗.

Proof: Consider an atomic transformation that Algorithm 2
performs for a soft clause C. It removes C from the for-
mula and introduces hard clauses C ↔ b and a soft unit
clause (b,1). Consider an assignment I for variables in φi.
We know that cost(I(φi ∖ {C})) = cost(I(φ∗ ∖ {(C ↔
b), (b,1)})) as these parts are identical. If I(C) = 0 then
C is satisfied by I . Therefore, I implies b = 0 and the soft
clause (b,1) is satisfied. If I(C) = 1 then C is falsified by
I . Therefore, I implies b = 1 and (b,1) is also falsified. ◀

Since at least one of the soft clauses of κi must be falsified
by any feasible assignment, it follows from Theorem 1 that
∪b∈B{(b,1)} is an unsatisfiable core of φ∗.

Theorem 2 Let φ+ be a formula obtained at line 6. Then φ+
is MAXSAT reducible to φ∗.

Proof: As ∪b∈B(b,1) is a core then in any solution one of
the clauses the in core must be set to false. Hence, (∨b∈Bb) is
implied by φ∗. As this clause is the only difference between
two formulas, φ+ is MAXSAT reducible to φ∗. ◀
Theorem 3 Let φ+ be a formula at line 6 and φi+1 be a
formula returned by Algorithm 3 at line 7 Then φi+1 is
MAXSAT reducible to φ+.

Proof: Algorithm 3 performs two atomic operations. First,
it applies a special case of the MAXRES rule which is sound.
Second, it introduces reification variables for disjunctions of
literals. This operation is cost preserving as the new vari-
ables are functions of the variables of φ+. ◀

Theorem 4 Algorithm 1 is sound and complete.
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PMRes PM1

First core: κ1 = {(x1,1), (x2,1)} κ1 = {(x1,1), (x2,1)}
ReifyCore Relax((x1) ↔ b1), ((x2) ↔ b2), (b1,1), (b2,1), (b1 ∨ b2);(((((((x1,1), (x2,1) ((((

(({(x1,1)(x2,1)}
ApplyMaxRes {(x1 ∨ b11,1), (x2 ∨ b12,1)}(b1 ∨ d2,1), (d2 ↔ b2); (◻,1) b11 + b12 = 1

Second core: κ2 = {(b1 ∨ d2,1), (x3,1)} κ2 = {(x1 ∨ b11,1), (x2 ∨ b12,1), (x3,1)}
ReifyCore Relax

((x3) ↔ b3), ((b1 ∨ d2) ↔ b6), (b3,1), (b6,1), (b3 ∨ b6);((((((((b1 ∨ d2,1), (x3,1) {(((((((
(((x1 ∨ b11,1), (x2 ∨ b12,1) ,���(x3,1)}

ApplyMaxRes {(x1 ∨ b11 ∨ b21,1), (x2 ∨ b12 ∨ b22,1), (x3 ∨ b23,1)}(b3 ∨ d6,1), (d6 ↔ b6); (◻,1) b21 + b22 + b23 = 1

Third core: κ3 = {(b3 ∨ d6,1), (x4,1)} κ3 = {(x1 ∨ b11 ∨ b21,1), (x2 ∨ b12 ∨ b22,1), (x3 ∨ b23,1), (x4,1)}
ReifyCore Relax

((x4) ↔ b4), ((b3 ∨ d6) ↔ b7), (b4,1), (b7,1), (b4, b7);((((((((b3 ∨ d6,1), (x4,1) {(((((((x1 ∨ b11 ∨ b21,1) ,(((((((x2 ∨ b12 ∨ b22,1) ,((((((((x3 ∨ b23,1), (x4,1)}
ApplyMaxRes {(x1 ∨ b11 ∨ b21 ∨ b31,1), (x2 ∨ b12 ∨ b22 ∨ b32,1), (x3 ∨ b23 ∨ b33,1), (x4 ∨ b44,1)}(b4 ∨ d7,1), (d7 ↔ b7); (◻,1) b31 + b32 + b33 + b34 = 1

Fourth core: κ4 = {(b4 ∨ d7,1), (x5,1)} κ4 = {(x1 ∨ .. ∨ b31,1), (x2 ∨ .. ∨ b32,1), (x3 ∨ b23 ∨ b33,1), (x4 ∨ b34,1), (x5,1)}
ReifyCore Relax

((x5) ↔ b5), ((b4 ∨ d7) ↔ b8), (b5,1), (b8,1), (b5 ∨ b8);((((((((b4 ∨ d7,1), (x5,1) {((((((((x1 ∨ b11 ∨ .. ∨ b31,1) ,((((((((x2 ∨ b12 ∨ .. ∨ b32,1) ,(((((((x3 ∨ b23 ∨ b33,1) ,����(x4 ∨ b34,1)}
ApplyMaxRes {(x1 ∨ .. ∨ b41,1), (x2 ∨ .. ∨ b42,1), (x3 ∨ .. ∨ b43,1), (x4 ∨ b34 ∨ b44,1), (x5 ∨ b45,1)}(b5 ∨ d8,1), (d8 ↔ b8); (◻,1) b41 + b42 + b43 + b44 + b45 = 1

Table 1: An execution of Algorithm 1 on the running example.

Proof: Suppose the algorithm returns solution I at step
i + 1. As the algorithm terminates at step i + 1 then
φi ∖ {∪ij=1(◻,1)} is a satisfiable formula. Hence, the sat-
isfying assignment I for φi ∖ {∪ij=1(◻,1)} is also an as-
signment of φi of cost i. From Theorems 1–3 it follows
that φi is MAXSAT reducible to φ. Hence, cost(I(φi)) =
cost(I(φ)) = i. There does not exist an assignment of a
smaller cost as we have derived i empty clauses. ◀

Theorem 5 The number of soft clauses at the i-th step of
Algorithm 1 is ∣softCls(φ)∣, including i empty clauses. The
number of hard clauses at the i-th step of Algorithm 1 is
∣hardCls(φ)∣ +O(∑ik=1 ∣softCls(κi)∣2)).
Proof: Algorithm 3 does not change the number of soft
clause ∣softCls(φ)∣ as it replaces O(∣softCls(κi)∣) clauses in
a core with O(∣softCls(κi)∣) − 1 compensation clauses. and
one empty clause. Algorithm 3 produces O(∣softCls(κi)∣)
clauses of the form (x ∨ A,1). For each of these clauses
we introduce a variable d and O(∣softCls(κi)∣) clauses to
encode the equivalence A ↔ d. Hence, the total number of
introduced hard clauses is O(∑ik=1 ∣softCls(κi)∣2)). ◀
Special cases. We can improve our approach by recognizing
some cases were a new reification variable does not need to
be introduced. This obviously occurs when we have a unit
clause: ((`) ↔ b) would simply introduce a new name for `.
We apply this optimization at line 3 of Algorithm 2 (avoid-
ing replacing (Cj ,1) by (bij ,1)) and at line 6 of Algorithm 3
when i = p−1 (avoiding creating a new variable dp−1 and in-
stead adding (bp−1∨bp) to φ. We also optimize cores of size
two. If κi = {(C1,1), (C2,1)} it can be seen that our ap-
proach would introduce two reification variables (Ci ↔ bi),
i = {1,2} and the one compensation clause (b1, b2,1). How-
ever, other than the clauses introduced by reification, this
compensation clause is the only one that contains the reifi-

PMRes with optimizations

First core: κ1 = {(x1,1), (x2,1)}
Call ReifyCore and ApplyMaxRes with optimizations: (x1 ∨ x2,1), (◻,1)

Second core: κ2 = {(x1 ∨ x2,1), (x3,1)}
Call ReifyCore and ApplyMaxRes with opts: (x1 ∨ x2 ∨ x3,1), (◻,1)

Third core: κ3 = {(x1 ∨ x2 ∨ x3,1), (x4,1)}
Call ReifyCore and ApplyMaxRes with opts: (x1 ∨ x2 ∨ x3 ∨ x4,1), (◻,1)

Fourth core: κ4 = {(x1 ∨ x2 ∨ x3 ∨ x4,1), (x5,1)}
Call ReifyCore and ApplyMaxRes with opts: (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5,1), (◻,1)

Table 2: A run of Alg. 1 with optimizations on Example 3.

cation variables. This clause is equivalently to the clause
(C1,C2,1), and so for cores of size two we directly intro-
duce it and omit reification. These simple optimizations al-
lows us to solve our running example without introduction
any auxiliary variables (see Table 2).

A compressed MAXRES algorithm
By Theorem 5, Algorithm 1 introduces a quadratic number
of hard clauses at each step. Looking more closely at the
sequence of restricted MAXRES rules in Algorithm 3 we can
find a further optimization to reduce this to a linear number.

Example 4 Suppose we find the first core
{(x1,1), (x2,1), (x3,1), (x4,1), (x5,1)}. We intro-
duce reification variables, b1, . . . , b5, for these clauses,
respectively. We consider an execution of the first two steps
of ApplyMaxRes routine on this core:

(1)
(b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5,∞) (b1,1)
(b2 ∨ b3 ∨ b4 ∨ b5,1), (b1 ∨ b2 ∨ b3 ∨ b4 ∨ b5,1)

(2)
(b2 ∨ b3 ∨ b4 ∨ b5,1) (b2,1)
(b3 ∨ b4 ∨ b5,1), (b2 ∨ b3 ∨ b4 ∨ b5,1)

It is easy to see that compensation clauses have many over-
lapping literals and hence can be compressed.
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Theorem 6 Let (b1 ∨ d1), . . . , (bk ∨ dk) be the sequence of
the compensation clauses produced by Algorithm 3. Then,
di = (bi+1 ∨ di+1).
Proof: Suppose, we have a core (b1,1) ∨ ⋯ ∨ (bk,1)
and an implied clauses (b1 ∨ ⋯ ∨ bk). We prove the the-
orem by induction. Base case, i = 1,2. We start by re-
solving b1 and (b1 ∨ ⋯ ∨ bk,∞). We obtain two clauses:
(b2 ∨ ⋯ ∨ bk,1) and the first compensation clause (b1 ∨
d1,1) = (b1 ∨ b2 ∨⋯ ∨ bk,1), d1 ↔ (b2 ∨ ⋯ ∨ bk). Then
we resolve b2 and (b2 ∨ ⋯ ∨ bk,1). We obtain two clauses:
(b3 ∨ ⋯ ∨ bk,1) and the second compensation clause (b2 ∨
d2,1) = (b2 ∨ b3 ∨⋯ ∨ bk,1), d2 ↔ (b3 ∨ ⋯ ∨ bk). Hence,
d1 = (b2 ∨ ⋯ ∨ bk) = (b2 ∨ (b3 ∨ ⋯ ∨ bk)) = (b2 ∨ d2). The
induction step is similar to the base step. ◀

Using Theorem 6, we can more compactly encode the
compensation clauses by replacing {(di ↔ (bi+1∨⋯∨bp))}
on line 6 in Algorithm 3 with {(di ↔ (bi+1 ∨ di+1))}.
Theorem 7 The number of hard constraints at the i-th
step of Algorithm 1 with compression is ∣hardCls(φ)∣ +
O(∑ik=1 ∣softCls(κi)∣).
Proof: Using compression, we only need a constant num-
ber of clauses to encode each compensation clause. ◀

Connection to the PM1 algorithm
In this section, we discuss how our algorithm relates to the
original core-based algorithm, PM1, by Fu and Malik (Fu
and Malik 2006). For completeness we recap the PM1 algo-
rithm and point out the main conceptual differences between
PM1 and PMRes. Algorithm 4 gives the pseudo code for
PM1. The main routine finds a core at each step. The sub-
routine Relax adds a new Boolean variable to each clause in
the core and a cardinality constraint ∑bij∈Bi bij = 1 allowing
one of the clauses in the core to be relaxed.

Algorithm 4 PM1
Input: φ = {C1, . . . ,Cm}
Output: (I, cost(φ)), where I is an optimal assignment

1 i = 0
2 while true do
3 (issat, κi, I) = SolveSAT(φi)
4 if issat return (I, i)
5 (φi+1) = Relax(φi, κi)
6 i = i + 1

Algorithm 5 Relax
Input: φ,κ
Output: φ

1 B = {}, κr = {}
2 for Cj ∈ softCls(κ) do
3 κr = κr ∪ {(Cj ∨ bij)}
4 B = B ∪ {bij}
5 φ = (φ − softCls(κ)) ∪ κr ∪ cnf (∑bi

j
∈B b

i
j = 1)

6 return φ

The main difference between our algorithm and PM1 is
that we do not use new variables in the clauses and cardinal-
ity constraints to relax each core. Instead, we use MAXRES
to shift the cost to an empty clause.

Example 5 Table 1 shows an execution of PM1 in the right
column.

Theorem 8 The number of soft constraints at the i-th step
of Algorithm 4 is ∣softCls(φ)∣. The number of hard con-
straints at the i-th step of Algorithm 4 is ∣hardCls(φ)∣ +
O(∑ik=1 ∣softCls(κi)∣).
Proof: The number of soft constraints does not change dur-
ing search. The number of hard constraints depends on the
CNF encoding of the cardinality constraints which requires
a linear number of clauses using a standard sequential coun-
ters encoding. ◀

From Theorems 5 and 8, it follows that our new algorithm
and PM1 introduce a similar number of new clauses.

In (Ansotegui et al. 2012), the authors point out that the
PM1 algorithm introduces symmetries over the blocking
variables bji . These symmetries allow multiple ways of re-
laxing the same set of soft clauses. A set of symmetry break-
ing constraints was proposed to address this problem. On
some benchmarks the number of symmetry breaking clauses
is very large and exhausts memory while on others there
were very effective. An advantage of our approach is that we
do not have these types of symmetries. Further research is
need to identify whether our approach also introduces sym-
metries over the reification variables.

Weighted PMRes
Algorithm 1 can be easily extended for the weighted case
in a similar way as PM1 is extended to WPM1 (An-
sotegui, Bonet, and Levy 2009; Manquinho, Silva, and
Planes 2009). We recap the main idea behind this extension.
Consider a core κ = ((C1,w1), . . . , (Ck,wk)). Let m =
min(Ci,wi){wi}. The idea is to split the clauses (Ci,wi)
that have weight greater than m into two clauses: (Ci,m)
and (Ci,wi −m). Then, we keep only the clauses of weight
m in the core so that κ = ((C1,m), . . . , (Ck,m)). As all
weights are the same this reduces the problem to the un-
weighted case and we can apply Algorithm 1 to process κ.
The only change is that we derive a weighted empty clause
(◻,m) rather than (◻,1).

Related work
The MAXRES rule that we use in the paper was proposed
by (Larrosa and Heras 2005), and the authors proved it to
be sound. The question of completeness remains open, and
in (Bonet, Levy, and Manya 2007) an alternate a sound and
complete MAXRES rule was proposed. In the context of it-
erative SAT solving, the closest work (Heras and Marques-
Silva 2011) uses read-once resolution to avoid introduc-
ing cardinality constraints in some cases. In this work, the
solver relies on the resolution proof of SAT solver to build
a MAXRES proof. This works in cases when the resolution
proof is read-once. Another line of work uses MAXRES and
its variants in branch and bound solvers (Heras, Larrosa, and
Oliveras 2008; Kugel 2010; Li et al. 2009). These solvers
employ restricted amounts of MAXRES inference to com-
pute lower bounds. Unfortunately, these solvers are not com-
petitive on industrial instances and we do not consider them.
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In contrast, we introduce reification variables in a way
that allows us (a) to use a more restricted form of MAXRES
that generates a tractable number of compensation clauses,
and (b) to represent the non-clausal compensation “clauses”
much more compactly.

Experimental evaluation
In this section, we preform an experimental evaluation of
our proposed algorithm. We run our experiments on a clus-
ter of AMD Opteron@2.2 GHz machines restricted to 2.5Gb
or RAM and 1800 sec. of CPU time. We used all industrial
instances from the 2013 Evaluation of Max-SAT Solvers
competition. We compare our solver with those state-of-the-
art weighted partial MAXSAT solvers that performed best
on these instances during the latest evaluation (Argelich
et al. 2013): wpm13

1 (Ansótegui, Bonet, and Levy 2013),
wpm2 (Ansótegui, Bonet, and Levy 2013), wpm1 (Jan-
ota 2013) and msunc (Morgado, Heras, and Marques-Silva
2012). All solvers were provided in the binary or source
code by the authors.2 We replaced the base SAT solver, min-
isat (Een and Sorensson 2003), in wpm1 by glucose (Au-
demard, Lagniez, and Simon 2013) to improve its perfor-
mance. Note that our hardware is considerably slower than
machines used in the competition. Therefore, the evaluated
solvers solved less instances when compared to their results
in the competition (Argelich et al. 2013).

We implemented our algorithm using the wpm1 imple-
mentation by Mikola Janota as our base. Our solver is called
eva. We use glucose as the SAT solver and preprocess hard
clauses using standard subsumption technique before we
start the search. In the experiments eva refers to Algorithm 1
with optimizations for reducing the number of introduced
reification variables described above. evac is obtained by
adding compression of the compensation clauses to eva. We
also implemented the stratification and hardening techniques
from (Ansótegui, Bonet, and Levy 2013) in eva for solving
weighted partial MAXSAT instance. These improvements
are not relevant for the unweighted instances. Tables 3–5
show the number of solved instances and the average time
for each family.

First, we observe that eva outperforms all state-of-the-art
solvers in the aggregate number of solved instances. It solves
821 instances in total while the solvers wpm2, msunc and
wpm13

1 solve 761, 733 and 728 instances, respectively. How-
ever, we observe that eva performs poorly on some families.
For example, on the sean-safarpour family eva solves half
as many instances as wpm1. We looked into the execution
of the algorithm and found that large cores containing thou-
sands of clauses must be discovered to solve the problem.
Algorithm 3 introduces a number of clauses quadratic in the
size of the core, causing a memory problem. Enhancing eva
with the idea of compression resolves this issue. evac is the
best solver across all industrial instances by solving 877 in-
stances in total. It is also faster than eva on many families of

2We would like to thank Carlos Ansotegui, Maria Luisa Bonet,
Joel Gabas, Jordi Levy, and Joao Marques-Silva, Antonio Mor-
gado, Federico Heras for providing binaries and Mikolas Janota
for providing the source code of their solvers.

problems even if these algorithms solve about the same num-
ber of benchmarks, e.g. su, close solutions or timetabling
families. Our results demonstrate that the idea of processing
each core with MAXRES performs better than adding cardi-
nality constraints in almost all of the benchmarks.

Conclusions
In this work we made the following main contributions.
First, we proposed a novel algorithm for solving weighted
partial MAXSAT problems based on the MAXRES rule. This
is the first efficient approach based on MAXRES that can
compete with modern MAXSAT solvers on industrial bench-
marks. Second, we proposed a compressed version of the
MAXRES rule that can reduce the number of clauses needed
to encode the compensation clauses that MAXRES produces
by a factor of n, where n is the number of soft clauses. Fi-
nally, we implemented the proposed algorithm and showed
its efficiency on the industrial instances from the 2013 Eval-
uation of Max-SAT Solvers. Our new solver outperforms
previous state-of-the-art solvers by a large margin in the total
number of problems it can solve and shows the best perfor-
mance on 16 out of 27 families of benchmarks.

evac eva wpm1 wpm13
1 msunc wpm2

# avg t # avg t # avg t # avg t # avg t # avg t
haplotyping 97 53.2 97 50.8 81 59.9 91 115.8 52 336.8 94 139.2

packup-wpms 95 46.7 90 34.8 46 37.7 89 17.5 27 223.1 42 403.5
pref. planning 29 93.6 29 102.4 11 5.5 27 56.3 27 79.0 29 34.6

timetabling 11 313.1 10 410.6 7 113.6 7 456.6 8 290.9 7 450.1
upgradeability 100 54.4 100 53.9 100 56.6 100 6.4 100 137.2 95 681.3

wcsp.dir 14 2.4 14 2.9 7 167.1 14 130.9 11 37.1 13 5.7
wcsp.log 14 151.4 14 18.1 6 0.0 12 155.4 11 26.4 14 59.3

Total 360 64.8 354 58.8 258 55.3 340 62.2 236 179.7 294 339.5

Table 3: WPMS Industrial instances
evac eva wpm1 wpm13

1 msunc wpm2

# avg t # avg t # avg t # avg t # avg t # avg t
aes 1 1.0 1 15.0 0 0.0 0 0.0 1 573.0 1 1694.0

bcp-fir 50 39.9 45 22.8 46 50.7 49 28.4 49 19.3 49 41.9
simp 16 73.4 16 58.9 11 14.8 15 147.2 15 158.2 14 51.1

su 31 58.8 31 73.8 17 43.5 26 142.5 29 135.4 30 53.1
bcp-msp 14 354.0 13 441.0 3 10.0 5 50.8 28 247.0 20 296.5
bcp-mtg 40 0.8 40 1.1 38 132.3 40 9.3 40 1.6 29 150.8
bcp-syn 29 57.6 28 34.6 16 27.8 26 75.7 27 108.0 23 226.1

circuit-trace 4 222.0 4 331.5 1 1157.0 4 284.8 4 235.5 4 171.5
close solutions 44 123.3 39 153.2 31 90.3 22 160.0 24 315.1 10 413.1

des 36 346.1 16 470.5 27 436.6 19 175.6 27 446.0 21 188.2
haplotype 5 5.4 5 5.6 5 5.6 5 5.4 4 97.3 5 107.2

packup-pms 40 53.8 40 53.5 37 58.8 40 10.4 37 460.9 31 519.2
nencdr 35 149.3 35 172.7 21 610.0 30 302.6 47 415.8 48 406.5

nlogencdr 43 226.5 40 157.7 25 160.5 30 100.7 50 156.6 50 284.8
pbo-routing 15 0.1 15 0.1 15 0.4 15 9.1 15 1.3 15 10.9
protein ins 4 405.3 4 551.0 1 2.0 2 172.5 3 551.0 11 563.9

Multiple path 32 177.7 31 155.0 0 0.0 15 39.6 27 191.7 47 272.1
One path 49 84.3 48 79.8 0 0.0 27 80.9 50 90.7 50 15.9

Total 488 120.9 451 113.5 294 148.0 370 91.1 477 198.0 458 219.8

Table 4: PMS Industrial instances
evac eva wpm1 wpm13

1 msunc wpm2

# avg t # avg t # avg t # avg t # avg t # avg t
circuit-deb. 3 14.3 2 17.0 3 14.3 2 677.0 2 36.0 1 1440.0

sean-saf. 36 285.2 14 75.0 35 313.5 16 215.4 18 116.9 8 349.4

Total 39 264.4 16 67.8 38 289.9 18 266.7 20 108.8 9 470.6

Table 5: MaxSat Industrial instances
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