Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

Chance-Constrained Probabilistic Simple Temporal Problems

Cheng Fang, Peng Yu, and Brian C. Williams *
Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139
{cfang,yupeng,williams } @mit.edu

Abstract

Scheduling under uncertainty is essential to many au-
tonomous systems and logistics tasks. Probabilistic
methods for solving temporal problems exist which
quantify and attempt to minimize the probability of
schedule failure. These methods are overly conserva-
tive, resulting in a loss in schedule utility. Chance con-
strained formalism address over-conservatism by im-
posing bounds on risk, while maximizing utility subject
to these risk bounds.

In this paper we present the probabilistic Simple Tem-
poral Network (pSTN), a probabilistic formalism for
representing temporal problems with bounded risk and
a utility over event timing. We introduce a constrained
optimisation algorithm for pSTNs that achieves com-
pactness and efficiency through a problem encoding
in terms of a parameterised STNU and its reformula-
tion as a parameterised STN. We demonstrate through a
car sharing application that our chance-constrained ap-
proach runs in the same time as the previous probabilis-
tic approach, yields solutions with utility improvements
of at least 5% over previous arts, while guaranteeing op-
eration within the specified risk bound.

Introduction

On a Woods Hole Oceanographic Institute mission, a vehi-
cle may be required to sample a methane plume occurring at
randomly distributed times of the day. Alternatively, when
scheduling for a car sharing network, the uncertain durations
of traversal through traffic should be considered when deter-
mining reservation lengths for cars.

In such applications, the cost of failing to meet timing
constraints is often difficult to quantify. The high investment
into such operations means that we must instead provide
probabilistic guarantees for timeliness, accounting for the
uncertain durations. In addition to robustness against con-
straint violation, the desirability of schedules may also de-
pend on the time assignments: the quality of shallow water
data may depend on the collection time due to the tidal cy-
cle, and car sharing networks may require the inactive times
of the cars to be low to maximise use of assets.
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Descriptions and corresponding solution methods for
such problems must thus have the following characteristics.
First, the description must allow the specification of an util-
ity function to be optimised. Second, the description must
recognise stochasticity in durations with a probabilistic rep-
resentation. Further, the problem description must allow rich
expressions of constraints. For example, we must be able to
describe requirements between the timing of two uncertain
events when we schedule a traversal with uncertain duration
to observe natural phenomena with uncertain timing. The
scheduler must thus maximise utility while providing prob-
abilistic guarantees of compliance with requirements.

Temporal planning has been extensively studied in the
operations research and artificial intelligence communi-
ties, with early works such as (Baker and Baker 1974;
Allen 1983; Valdes-Perez 1986). A Simple Temporal Net-
work (STN) (Dechter, Meiri, and Pearl 1991) is a variant
of these earlier works that strikes an effective balance be-
tween tractability, expressiveness and simplicity of formula-
tion. While there exists efficient methods for solving corre-
sponding Simple Temporal Problems (STPs), such problems
are unable to capture uncertainty in timing for events.

The Simple Temporal Network with Uncertainty (STNU)
extends the STN (Vidal and Fargier 1999), introducing set
bounded uncertainty. Events may be controllable, such that
the timing can be scheduled. Events may also be uncontrol-
lable, in which case there exists an unknown but set bounded
difference between the timing of the uncontrollable event
and the timing of an controllable event.

The STNU has also been extended with probabilistic rep-
resentation of the uncertainty (Tsamardinos 2002). In the
probabilistic extension, information regarding the distribu-
tion of uncontrollable events allows planning for outcomes
which are more likely. However, the previous probabilistic
formulation does not meet our requirements for two reasons:

1. The existing formulation takes a risk minimisation ap-
proach, leading to conservative solutions. In contrast, in
real-world applications, it is common to accept a bound
on the probability of failure and choose actions maximis-
ing an objective function; and

The existing formulation disallows constraints between
two uncontrollable timepoints. We are thus unable to
schedule a rendezvous between multiple agents with un-
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Figure 1: Graphical representations of elements in pSTNs.

controllable travel times, unable to schedule a traversal to
observe an event with uncertain timing, and unable to co-
ordinate start times of calibration procedures in time for
the arrival of collected samples.

We introduce a chance-constrained probabilistic STP (cc-
pSTP). Rather than requiring consistency for all outcomes of
the probabilistic durations, we optimise schedules for which
the probability of failure can be bounded. We develop a so-
lution method for the cc-pSTP, with a new probabilistic rep-
resentation which addresses problems involving constraints
between uncertain events. We present theoretical results for
the soundness of the solution, as well as empirical results for
scalability, and improved utility.

Chance-Constrained pSTP

We first define the constraints and variables in our proba-
bilistic STN (pSTN). following earlier conventions (Vidal
and Fargier 1999). The definition is measure-theoretic to al-
low discussion of stochasticity without the details of the dis-
tributions. Thus, the discussion applies both to uncontrol-
lable durations with independent distributions, for example
the traversal time of a vehicle and the occurrence of natural
phenomena, and those with joint distributions, for example
two vehicles traveling along the same route at the same time.

Definition 1. (Probabilistic STN) Let:

e activated time-points b; € R be those assigned by the agent;

o received time-points e; € R be those assigned by the external
world;

e free constraints c,, (Free) be constraints of type (y —x) €
[loy, uzy), where x, y are time points; and

e uncertain duration (uDn) d,, : Q — R be random variables
describing the difference (y — x) = dgy (w), where y is a re-
ceived time point and x is an activated time point, for (Q, F, P)
a probability space with sample space ), o-algebra F and mea-
sure P.

Then, Nt = (X, X¢, Re, Ra) defines a pSTN, with

o X, ={b1,...,bp} the set of B € N activated time-points;
o X, = {el, ey eE} the set of E € N received time-points;
o R.={Cijis--sCicjo | the set of C € N Frees; and

o Ry={dij,...,digjg } the set of G € N uDns;

For ease of visualisation in examples, we use the conven-
tion set out in Figure . Note that consistency with respect to
a Free constraint is dependent on the outcomes of uDns in
addition to the choice of activated time-points. The problem
is thus initially a stochastic game.

The formulation above is similar to that of (Tsamardinos
2002). The difference lies in the treatment of stochasticity.
Previously, the received time points were random variables,
with distributions conditioned on the activated time points.
Instead, we characterise stochasticity by treating the proba-
bilistic durations as random variables. By posing the prob-
lem in terms of probabilistic durations, we are able to ad-
dress problems in which there exist Frees between two re-
ceived time-points. This was not possible with previous rep-
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resentations, even though such problems are prevalent. As
an example, a pSTN of an oceanographic mission is given:
Example 1. (Example pSTN) An autonomous underwater vehicle
(AUV) is tasked with taking water samples after an underwater vol-
canic eruption. Relative to the Start of Day at 8am, the timing of
the eruption is estimated to be normally distributed, with mean 60
minutes and standard deviation 5 minutes. The vehicle departs from
base to the volcano, and the traversal duration is normally dis-
tributed with mean 20 minutes and standard deviation 2 minutes.
The vehicle must arrive after the eruption, but no more than 120
minutes after the event, as the chemicals diffuse in water.

dep

[0,120]

erupt

The problem is encoded as a pSTN NV, with:

e Xy, = [SoD,dep|, SoD the start of the day at 8am, and dep the
meeting time;

o X, = [arr, erupt}, arr the time of arrival at site, and errupt
the eruption time;

e R.= {Ce’r'upt,a’r"r'}; Cerupt,arr Fequiring arr—erupt € [07 120]
such that the vehicle arrives in time;

* Ry = {ddepya’l‘r7 dSoD,erupta }: ddep,arr ~ N (20, 4) the
traversal duration, and dsop,erupt ~ N (60,25) the eruption
time relative to start of day;,

We consider now how pSTNs are used to frame temporal
problems whose solutions incur bounded risk of failure. We
return to the car sharing problem to motivate the need for
bounded risk. We wish to schedule such that all reservations
with the vehicle are completed as early as possible, so that
maintenance could be performed at a depot. However, con-
sider the effect of one late handover of the vehicle between
reservations. The next user must adjust for the loss in allo-
cated time, or risk returning the car late as well. A late return,
a very specific instance of temporal inconsistency, may thus
be considered a failure. We must thus schedule for the reser-
vations to be completed as early as possible, while avoiding
late handovers of the vehicle.

Due to the possibly unbounded range of stochastic out-
comes, we may not be able to schedule such that temporal
consistency is guaranteed for all outcomes. The approach in
(Tsamardinos 2002) minimises the risk of temporal incon-
sistency. However, such an approach would not consider the
time at which the vehicle is returned to the depot, and this
over-conservatism would mean the vehicles could be out in-
definitely. In order to return the vehicles as early as possible,
we should accept a bounded probability of late returns, and
optimise the return times.

In general, we would wish to optimise the schedule with
respect to an objective function, subject to bounds on the
probability of temporal inconsistency: we try to make the
best schedule, tolerating rare cases in which the schedule can
not be met. This motivates a way to measure the riskiness of
a schedule with respect to temporal constraints as follows:
Definition 2. (pSTN schedule risk) Consider pSTN N
(Xb, Xe, Rc, Rq). Let a schedule S € RZ be a full assignment
of values to the controllable time-points Xy.



The risk of S with respect to some subset of the constraints

Am C R is:

ram (8) = P(Q4,,,5)
where Qa,,,s C € is the subset of the sample space such that for
every cij € Am, ifw € Qand x;j (W) — x5 (W) & [lij, wij] , then
w€ N4, s.

For any schedule, the risk of the schedule is defined as the
proportion of outcomes of the probabilistic durations which
result in at least one free constraint being violated.

We define chance-constrained pSTP (cc-pSTP), a prob-
lem formulation using the pSTN representation. A solution
to a cc-pSTP is a schedule which optimises the timing of
events with respect to an objective function, while bounding
the probability of temporal inconsistency. Objective func-
tions in optimal scheduling, for example (Khatib et al. 2001;
Rossi, Venable, and Yorke-Smith 2006), may be used with
our algorithm provided that they are continuously differen-
tiable. We define a cc-pSTP as follows.

Definition 3. (Chance-constrained pSTP)
Given:

o Nt = (X, X, Re, Ra), a pSTN;

e A, € [0, 1), an upper bound on the risk of failure, for the set R,
of Frees; and

e V :RB — R, an objective function dependent on assignments
to Xp;

Find:

o S5 € RB, a schedule of Xy, minimising V' ;

Subject to:

e 1. (SE) < Ay, the probability of inconsistency bounded by
Y

We construct the cc-pSTP for the AUV scenario below:

Example 2. (Example cc-pSTP) Recall Example 1, with N as
before. The departure should be as early as possible, to ensure
availability for later missions. We thus set objective V. = dep, to
minimise the time of departure. However, it should neither arrive
early nor be more than 2 hours late. The scientist has required the
schedule to satisfy both constraints in at least 99% of cases. Thus
we set A¢ to be 0.01.

In general, we may use arbitrary distributions for the
uDns, as long as we are able to evaluate the cumulative dis-
tribution functions (cdfs) for each uDn. We do not require
a description of the joint distribution. This will be elabo-
rated when we discuss the solution method. In this paper, we
assume continuously differentiable cdfs (e.g. normal, expo-
nential etc.), allowing the use of existing solvers.

We have thus formulated a problem involving probabilis-
tic durations, in which we attempt to schedule events to op-
timise an objective function while providing probabilistic
guarantees on the satisfaction of free constraints. We show
how the cc-pSTP may be solved in the next section.

Solution of cc-pSTPs

Given the problem statement above, we explain the solution
method for cc-pSTPs. Intuitively, we choose the most prob-
able set of outcomes of the uDns, and schedule activated
time points such that the timing constraints are satisfied for
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any combination of outcomes in this restricted set. The key
insight behind our approach is that by distributing the al-
lowable risk amongst the uncertain durations uDns, we can
set-bound the outcomes. This allows us to convert a pSTN
into a simple temporal network with uncertainty (STNU), a
well studied structure. We can then make use of results for
STNUs to reframe a cc-pSTP as a convex constrained opti-
misation problem solvable with standard optimisers.

Related work

We begin by noting that a cc-pSTP is an instance of a
stochastic optimisation problem. A family of methods re-
formulate the stochastic problem to a deterministic problem
by converting the stochastic constraints into deterministic
constraints. For example, optimising controls for stochastic
dynamical systems involves bounding the extent of devia-
tions from the mean, either by distributing the risk evenly
(Van Hessem and Bosgra 2006) or by optimising the distri-
bution of risk (Ono, Williams, and Blackmore 2013). The
process results in bounds on the state of the system, lead-
ing to reformulations as deterministic constraint optimisa-
tion problems.

We draw inspiration from this literature because these
methods allow probabilistic guarantees. Alternatives include
sampling-based methods in the same vein as the Pegasus
POMDP method (Ng and Jordan 2000), using particles to
simulate the effects of disturbances and initial uncertainty
with applications in control and robotics (Blackmore et al.
2010). However, the assessment of risk in such methods only
converges in the limit as the number of particles increase -
they can not guarantee bounds on the probability of failure.

We further note that the temporal reasoning community
has developed a set bounded approach leveraging the struc-
ture of simple temporal problems. The STNU solution meth-
ods offer computational efficiency and correctness guaran-
tees, and we leverage these to efficiently solve pSTNS.

Though not probabilistic, STNU is similar to the pSTN.
Uncertainty is represented with set-bounded contingent du-
rations (Ctg) g,y € [l4y, Usy|. These are differentiated from
Frees because they are variables with values assigned by
the environment. Ctgs describe the relationship of (y — z),
where y is a received time point and x is an activated time
point. A STNU is defined as N' = (X, X, R, Ry) with
Xy, Xe, R as in pSTN and R, the set of Ctgs such that
Ry ={9i1j1s > Yicjc } for some G € N.

A rich set of methods exist for offline, online and incre-
mental solutions to STNU controllability, e.g. (Vidal and
Fargier 1999; Morris 2006; Shah et al. 2007) as well as the
disjunctive extensions (Peintner, Venable, and Yorke-Smith
2007; Shah and Williams 2008; Conrad, Shah, and Williams
2009; Venable et al. 2010). By mapping underlying pSTNs
into STNUs, following the paradigm in robust stochastic
programming, we leverage the literature on offline robust
scheduling of STNUs. We do so by distributing the allow-
able risk. This allows us to consider only a subset of out-
comes for the uDns, represented by Ctgs. We then optimise
a schedule with respect to the utility, while remaining robust
to the restricted set of outcomes.
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Solution method
In our approach, we make use of the idea of strong control-
lability for STNUs (Vidal and Fargier 1999). Informally, if
a STNU is strongly controllable, then there exists an sched-
ule which is consistent for all outcomes of the contingent
durations. Formally:
Definition 4 (Strong Controllability). Consider STNU N =
<Xqu67RC7Rg>- Let 25 = [liljl’uiljl} X [lizjzvuizjz} X X
ligjcs Wicic) the space of possible values for the set of contin-
gent durations Ctgs in R.

We say that N is strongly controllable if there exists a schedule
Sp such that for any wg € g, all constraints in R. are satisfied.

To determine strong controllability of STNUs, frees are
introduced between activated time points to replace frees in-
volving received time points (Vidal and Fargier 1999). The
new constraints allow us to reason without dealing directly
with the received time points. The problem is reduced from a
game against an uncooperative environment to a constrained
optimisation problem solvable with existing packages.

We repeat the general reductions from (Vidal and Fargier
1999) to develop our algorithm. Consider STNU N =
(Xp, Xe,Re, Ry). Let R, C R, be the set of Frees in-
volving a received time point. These are the only constraints
which depend on variables not controlled by the agent, and
thus need to be reframed.

We consider the lower and upper bounds separately and
first perform our analysis for lower bounds. For each lower
bound ¢ € R_, we obtain one of three cases in Figure :
Case 1 (only the end timepoint is a received time point)

titwi—t;j >a
Case 2 (only the start timepoint is a received time point)
ti — t]’ — Wy Z a
Case 3 (both start and end are received time points)
ti—|—wi—t]-—wj Za

where w; is the duration of the Ctg starting at time point
t; and bounded by [l;, u;], with w; similarly defined.

In each case, we replace the original Free with a new Free:
Casel t; —t; >a—1;
Case 2 t; —tj Za—i—uj
Case 3 tiftj Zafl»;#»uj‘

The corresponding reductions for the upper bounds can
be written similarly by multiplying both sides by -1.

Let RZ be the collection of Frees obtained from the re-

duction. The importance of the reductions lies in the result,
proved in (Vidal and Fargier 1999):

Algorithm 1: Approximating cc-pSTP
input : N = (X;, X, Re, Ra)
output : X, bounds on R4, F' chance-constraint function,
and R_ reductions

1 X, 0, R; « 0;

2 for each d.y, € R4 do

30| X e [Xoiloys Uayl s

4 B F « [F;Fdxy;l—dey];

5 for each c.y € R. do

6 a, b < lower and upper bounds for ¢, respectively;

7 ifr € Xc ANy € X. then

8 Let dy;z, di; be uDns ending in x and y, [l, u.]
and [ly, uy| corresponding bounds on uDns;

9 R « Ry U{tj —ti+1, —u, > a};

10 ;R;e}?gu{ftj+t,‘fuy+lzz—b};

11 else if y € X. then

12 Let d;, be uDn ending in y, [, uy] corresponding
bounds on uDns ;

13 Ry < Ry U{t; —xz+1, >a};

14 ¥R;<_R;U{_tj+m_'[,l/y2_b};

15 else if x € X, then

16 Let d¢,» be uDn ending in z, [l., us] corresponding
bounds on uDns;

17 R;eR;U{yftifUIZa};

18 | Ro < RoU{—y+t;i+1l.>—bh

Theorem 1. If there exists a schedule Sp satisfying all con-
straints in (R, \ Ry ) U Ry, then the STNU is strongly con-
trollable. Further, given any combination of outcomes for R,
the set of contingent durations, Sg is consistent with respect
to all elements in R the set of Free constraints.

Theorem 1 allows robust scheduling. If the uncertain du-
rations are set-bounded and the corresponding STNU is
strongly controllable, then we can schedule the activated
time points to be temporally consistent for all outcomes of
the uncertain durations. In general, we need to set the bounds
on the uDns ourselves. The process is analogous to deciding
the sets of scenarios for which we must prepare.

Recall that in a cc-pSTP, we have an upper bound for the
probability of temporal inconsistency. We distribute this al-
lowable risk over the set of uDns. For each uDn, we then
consider a subset of its possible outcomes according to the
risk allocated, turning each uDn into a corresponding Ctg.
This gives us a STNU to check for strong controllability.

For an intuition, start by considering the uDns in the
pSTP. For any uDn d;, we choose a set-bound for the out-
come of the uDn, and treat it as a contingent constraint g;.
For example, consider uDn d ~ N (2,1). With 95% proba-
bility, the outcome lies in interval [0, 4]. If we found assign-
ments to activated time points consistent for all outcomes in
[0, 4], we know the temporal constraints will be satisfied in
95% of cases if d is the only uDn in the pSTN.

We thus derive a system of constraints for a cc-pSTP,
summarised in Algorithm 1. The first for-loop of Algorithm
1 adds two decision variables denoting lower and upper



bounds for every uDn, and collects the cdf Fdzy associated
with each uDn. The cdfs are used to calculate the probabil-
ity mass lost by restricting the outcome of the uDns. Note
that both the cdf evaluating the probability mass discarded
by the lower bound and the complement cdf evaluating that
discarded by the upper bound are recorded.

In the second for-loop, the algorithm applies reductions to
the uDns in the pSTN. The reductions are based on those for
strong controllability. However, instead of fixed lower and
upper bounds, the reductions performed allow the lower and
upper bounds to be decided by the solver.

The reductions are similar to those proposed in
(Tsamardinos 2002). The key innovation is accounting for
free constraints between two received time points, disal-
lowed in previous work. By representing stochasticity with
uncertain durations, we can naturally map from the STNU
structure and transcribe Case 3 in a probabilistic context.

We can now define an approximate cc-pSTP with the new
decision variables and constraints from Algorithm 1.

Definition 5. (Approximate cc-pSTP) We solve an approximate cc-
PSTP as follows:
Given:

e Nt A, € [0,1], and V as in Definition 3 ; and
e X,, F,and Rc_ from Algorithm 1
Find:
e Sp € RB, schedule to X, minimising V; and
o LU € R*“ lower and upper bound values on uDns

Subject to:

° ZqueF F;(LU;) < Ay, F; and LU; the it" entries in F and
LU respectively; and

e St and LU satisfying constraints (RC \ RZ) URZ, Ry subset
in R. involving received times

In the approximate cc-pSTP, we deal with the difficulty
in bounding the risk of a schedule through the reductions
from Algorithm 1. In addition to a schedule to the activated
time points, we are required to choose the lower and upper
bounds for the uDns. The choice of the schedule and the
bounds must satisfy two sets of constraints:

e The chance constraint, ensuring the choice of bounds for
uDns do not eliminate too much probability mass. We sum
the probability mass beyond the bounds for each uDn, and
apply Boole’s Inequality to restrict the probability of any
uDn outcomes outside our restricted set. Note that Boole’s
Inequality does not require independence between uDns:
this is why we only require the cdfs for each uDn.

e The reduction constraints, enforcing strong controllabil-
ity when uDns are restricted to set-bounded intervals.
The constraints ensure that the bounds for uDns and the
solution schedule is chosen together such that, for any
outcome of uDns in the restricted intervals, the solution
schedule will be valid with respect to the free constraints.

Example 3. (Approximate solution to cc-pSTP) For Example 2,
we bound dgep,arr and dsop,erupt and find assignment to dep
such that the Free constraint is satisfied. By encoding the prob-
lem as a cc-pSTP and solving with SNOPT (Gill, Murray, and
Saunders 2005), the bounds are respectively [14.421,29.747] and
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[36.282,72.196], such that the total probability mass discarded is
1%. The departure is accordingly scheduled for 57.775 minutes af-
ter the start of day.

For the approximate cc-pSTP, we have the result below:

Theorem 2. Let Sj; be the schedule found by solving the
approximate cc-pSTP. Then rr_(S5) < Ay.

Intuitively, a schedule returned by solving the approxi-
mate problem will be temporally inconsistent with proba-
bility at most A;. A schedule returned by solving the ap-
proximate problem is thus also a schedule which satisfies
the chance constraint in the original problem.

We present the intuition behind the proof. Observe that
a solution schedule to the approximate cc-pSTP is valid for
any outcomes of the uDns lying in the selected bounds. Fur-
ther, the probability mass lost by selecting the particular
bounds is less than that allowed by the chance constraint.
Thus, the cases in which the solution schedule is not valid
lies in the space outside the bounds, which have probability
less than A, in the original problem.

Note that Boole’s inequality bounds the probability of
failure, and thus some conservatism is introduced. The so-
lutions are thus not guaranteed to be optimal. Even so, we
show empirically that the approach still produces significant
improvements in utility over the existing state of the art.

The approximate cc-pSTP is in a form solvable with exist-
ing solvers. The reductions comprise the majority of the con-
straints, and are linear over decision variables S and LU.
The only source of nonlinearity is the chance-constraint.

Experiment and results

In this section, we perform benchmarks on how the difficulty
of finding solutions changes with increasing number of un-
certain durations and tighter chance-constraints. We further
check the correctness of the feasible solutions with respect
to the probabilistic guarantees, as well as the quality of solu-
tions with respect to the utility function. Lastly, we examine
how the computational runtime scales with increasing num-
ber of uncertain durations.

We benchmark our algorithms on scenarios inspired by
car sharing, similar to Zipcars (Burkhardt and Millard-Ball
2006). In each scenario we schedule for a 6 hour period,
with the number of cars ranging from 1 to 20, each with up
to 5 users. For each user, up to three goal locations were
generated based on a simplified open source map of Boston.

A pSTN was generated for each scenario. The traversal
activities were modelled as normally distributed uncertain
durations, with the means of uDns determined by length and
speed limits of the roads taken, and standard deviations at
5% of the mean. A total of 1800 pSTNs were generated. To
allow comparison to prior art, we ensured that no Free con-
straints existed between received time-points, as such prob-
lems are not handled by previous methods.

For each pSTN, we constructed three cc-pSTPs, with
chance-constraints 10%, 20% and 40%. We want to com-
plete all activities as soon as possible, and thus set the time
of the last reservation as the objective function in each case.

The cc-pSTPs were solved by three methods: a) evenly
distributing the risk analogous to (Van Hessem and Bosgra



Number of activities to schedule
<10 11 -20 21 — 30 > 31
. Even distribution solutions | 0 0 0 0
Risk 10% cc-pSTP solutions | 143 16 1 1
. Even distribution solutions | 0 0 0 0
Risk 20% cc-pSTP solutions | 146 17 1 1
. Even distribution solutions | 28 0 0 0
Risk 40% cc-pSTP solutions | 151 19 1 1
Risk minimisation solutions | 161 22 2 1
Total number of Scenarios | 428 230 165 977
Table 1: Solutions found for different parameters
Method P(Success) (£1 — o) 10*
10% cc-pSTP 0.9012 + 0.0018 » cc-pSTP
20% cc-pSTP 0.8059 £+ 0.0051 o ° ;viinri::(st a
40% cc-pSTP | 0.6250 =+ 0.0198 - :
Min. Risk 0.9372 4+ 0.1801 é’
£ 10
Table 2: Empirical verification of correctness of solution. 3
2006); b) by our risk allocation method; and c) by the risk 10
minimising method (Tsamardinos 2002) for comparison. P
Solutions were obtained with SNOPT (Gill, Murray, and 04 50 100 150 200 250
Activities

Saunders 2005), a nonlinear optimisation solver designed
for problems with a large number of linear constraints. Table
summarises the difficulty of finding solutions for different
numbers of activities.

As expected, the proportion of feasible problems de-
creases as the number of activities increase. The same
amount of risk must be shared amongst a higher number
of activities. Thus, as the number of uncertain durations in-
crease, we must be more cautious when bounding each un-
certain duration. We must thus consider a larger subset of
outcomes, making robust scheduling harder.

Note that even distribution of risk results in almost no so-
lutions. The risk minimisation method has the largest num-
ber of solutions: if a solution exists, it will be found regard-
less of the risk of the solution. Risk allocation find a compa-
rable number of solutions because there is flexibility in how
the uncertain durations are bounded, restricted only by the
chance-constraint.

The soundness of solutions with respect to the chance-
constraints were tested via Monte Carlo sampling. For each,
50000 samples of the joint outcomes of the uDns were tested
for consistency with Free constraints, given the assignments
to activated times. Table summarises results for the chance-
constrained method and the risk minimisation method. Note
that the chance-constrained solutions were correct, whereas
the variance of the risk minimisation method means no guar-
antees on the probability of success can be provided for its
solutions.

The flip side of robustness is conservatism. For scenarios
where solutions are found via the chance-constrained meth-
ods and the risk minimisation methods, we compare the util-
ity of solution. On average, the 10%, 20%, and 40% cc-pSTP
schedules resulted in last activated time point occurring re-
spectively 5.37%, 6.58% and 6.82% earlier than the risk-
minimisation methods. These represent significant savings
over the risk-minimisation method, which is too conserva-
tive in achieving robustness.
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Figure 3: Computation time as a function of the number of
activities in the scenarios.

Tests were also performed on scalability, with results
summarised in Figure . The runtimes for risk allocation cc-
pSTP empirically scale in polynomial time with the increas-
ing number of constraints, although even problems with over
200 activities took less than 90 seconds with a 2.4GHz pro-
cessor. The risk minimisation method scales similarly to
the cc-pSTP method, although the outliers take significantly
longer. The polynomial complexity is due to the use of
SNOPT for the reduced problems: the sequential quadratic
programming method solves a series of quadratic programs,
each of which is polynomial time in the number of variables.

The empirical validation confirms the soundness of the
cc-pSTP with respect to the chance constraint. Further, the
results show that the solution method scales well in time for
relatively complicated problems. Lastly, it confirms that, by
accepting varying levels of risk, we can derive better solu-
tions than purely risk-averse behaviour.

Contributions

Robust scheduling is crucial in deployable systems. Previ-
ous work focused on purely risk averse scheduling, lead-
ing to unnecessary conservatism. In this paper, we defined
the pSTN structure, as an alternative generalisation of ST-
PUs to that proposed in (Tsamardinos 2002). We further
identified the need for a chance-constrained rather than risk
minimisation approach to robust execution of pSTNs. By
analysis with the new pSTN structure, we leveraged exist-
ing work in the STPU literature to provide solution method
for static scheduling of cc-pSTNs. We empirically validated
the soundness of the method with respect to the chance
constraints on real world inspired-problems, and demon-
strated the extra utility gained by the approach over the risk-
minimisation approach.
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