
Planning as Model Checking in Hybrid Domains

Sergiy Bogomolov
University of Freiburg

Germany
bogom@cs.uni-freiburg.de

Daniele Magazzeni
King’s College London

United Kingdom
daniele.magazzeni@kcl.ac.uk

Andreas Podelski
University of Freiburg

Germany
podelski@cs.uni-freiburg.de

Martin Wehrle
University of Basel

Switzerland
martin.wehrle@unibas.ch

Abstract

Planning in hybrid domains is an important and challenging
task, and various planning algorithms have been proposed in
the last years. From an abstract point of view, hybrid plan-
ning domains are based on hybrid automata, which have been
studied intensively in the model checking community. In par-
ticular, powerful model checking algorithms and tools have
emerged for this formalism. However, despite the quest for
more scalable planning approaches, model checking algo-
rithms have not been applied to planning in hybrid domains
so far. In this paper, we make a first step in bridging the gap
between these two worlds. We provide a formal translation
scheme from PDDL+ to the standard formalism of hybrid
automata, as a solid basis for using hybrid system model-
checking tools for dealing with hybrid planning domains. As
a case study, we use the SpaceEx model checker, showing
how we can address PDDL+ domains that are out of the scope
of state-of-the-art planners.

1 Introduction
Planning in hybrid domains is a challenging problem that
has found increasing attention in the planning community.
In addition to classical planning, hybrid domains allow for
modeling continuous behavior with continuous variables
that evolve over time. Such problems frequently occur in
practice, e. g., in robotics or embedded systems. Further-
more, real-world scenarios must take into account that ex-
ogenous events may happen, as a consequence or indepen-
dently of the plan actions. PDDL+ (Fox and Long 2006) is
the PDDL extension for modeling such domains through the
use of continuous processes and events.

Planning in hybrid domains is challenging because apart
from the state explosion caused by discrete state variables,
the continuous variables cause the reachability problem un-
decidable (Alur et al. 1995). From a practical point of view,
various planning algorithms and tools with different features
and limitations have emerged (Penberthy and Weld 1994;
McDermott 2003; Li and Williams 2008; Coles et al. 2012;
Shin and Davis 2005; Della Penna et al. 2009). How-
ever, only TM-LPSAT (Shin and Davis 2005) and UPMur-
phi (Della Penna et al. 2009) can deal with the full feature
range of PDDL+, and both suffer from scalability issues.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

From an abstract point of view, it is well known that hy-
brid planning domains are related to the formalism of hy-
brid automata (Henzinger 1996) studied in model checking.
In the last years, powerful model checking techniques and
tools based on, e. g., SMT (Cimatti et al. 2000) and sym-
bolic search (Frehse 2008; Frehse et al. 2011), have been
developed for this formalism. Apparently, algorithms based
on such techniques can possibly be beneficial for planning in
hybrid domains as well, and might particularly help to tackle
the limitations of currently available planning systems with
respect to the supported PDDL+ feature range. However, de-
spite the relationship of hybrid planning domains and hy-
brid automata, these techniques have not been applied for
planning in hybrid domains so far. The main obstruction to
this synergy is the lack of a common modeling language,
which makes it difficult to share benchmarks and to foster
the cross-fertilization between these two areas.

In this paper, we make a first step in bridging the gap
between these two worlds. We provide a formal transla-
tion from PDDL+ to the formalism of hybrid automata. The
translation provides an over-approximation of the PDDL+
semantics, which is sufficient to prove plan non-existence
in unsolvable domains. In addition, we identify a subset of
PDDL+ features for which our translation is exact and can
be applied for finding hybrid plans. In contrast to the class of
hybrid automata that has been used to define the semantics
of PDDL+ (Fox and Long 2006), our translation obeys the
standard semantics of hybrid automata. A case study with
the SpaceEx model checker (Frehse et al. 2011) shows con-
siderable improvements in scalability compared to the Colin
and UPMurphi planner, and extends the class of tractable
problems. Overall, our translation is supposed to build a
solid basis for using hybrid system model checking tools for
dealing with hybrid domains, thus extending the planning-
as-model-checking paradigm (Cimatti, Roveri, and Traverso
1998) to the domain of hybrid systems.

2 Preliminaries
In this section, we provide the background and a description
of the formal models we use throughout the paper.

2.1 The PDDL+ Language
PDDL+ supports the representation of domains with a mixed
discrete-continuous dynamics, providing a flexible model of

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2228



continuous change. In particular, it allows to model exoge-
nous events to reflect changes that are initiated by the envi-
ronment. PDDL+ is built on top of PDDL 2.1 and introduces
the new constructs of processes and events.

Definition 1 (Planning Instance). A planning instance
is a pair I = (Dom,Prob), where Dom =
(Fs,Rs,As,Es,Ps, arity) is a tuple consisting of a finite
set of function symbols Fs , a finite set of relation symbols
Rs , a finite set of (durative) actions As , a finite set of events
Es , a finite set of processes Ps , and a function arity map-
ping all symbols in Fs ∪ Rs to their respective arities.

The triple Prob = (Os, Init , G) consists of a finite set
of domain objects Os , the initial state Init , and the goal
specification G.

For a given planning instance Π, a state of Π consists
of a discrete component, described as a set of propositions
P , and a numerical component, described as a vector of
real variables v. Instantaneous actions are described through
preconditions (which are conjunctions of propositions in P
and/or numeric constraints over v, and define when an ac-
tion can be applied) and effects (which define how the action
modifies the current state). Instantaneous actions and events
are restricted to the expression of discrete change. Events
have preconditions as for actions, but they are used to model
exogenous change in the world, therefore they are triggered
as soon as the preconditions are true. A process is responsi-
ble for the continuous change of variables, and is active as
long as its preconditions are true.

Durative actions have three sets of preconditions, repre-
senting the conditions that must hold when it starts (denoted
by pre` and prenum` to distinguish between preconditions
on propositions and on numeric constraints, respectively),
the invariant that must hold throughout its execution (propo-
sitional invariant pre↔ and numeric invariant prenum↔ ), and
the conditions that must hold at the end of the action (prea
and prenuma ). Similarly, a durative action has three sets of
effects: effects that are applied when the action starts (eff+` ,
eff−` , effnum` denoting predicates that are added, deleted, and
numeric effects, respectively), effects that are applied when
the action ends (eff+a , eff−a , effnuma ) and a set of continu-
ous numeric effects effnum↔ which are applied continuously
while the action is executing. A graphical representation of
a durative action is shown in Fig. 1.

pre`∪ prenum` pre↔∪ prenum↔ prea∪ prenuma

eff+`∪ eff−`∪ effnum` effnum↔ eff+a∪ eff−a∪ effnuma

A

Figure 1: PDDL durative action

A durative action A has a duration dur(A) which can ei-
ther be fixed in the model or left to the planner decision.

2.2 Hybrid Automata
Hybrid automata (Henzinger 1996) are subject to active re-
search. Intuitively, hybrid automata are finite state automata
extended with continuous variables that evolve over time.

Definition 2 (Hybrid Automaton). A hybrid automaton is
a tupleH = (Loc,Var , Init ,Flow ,Trans, I ), where Loc is
a finite set of locations, Var = {x1, . . . , xn} is a set of real-
valued variables, Init(`) ⊆ Rn is the set of initial values for
x1, . . . , xn for all locations `. For each ` ∈ Loc, Flow(`) is
a relation over the variables in Var and their derivatives

ẋ(t) = Ax(t) + u(t), u(t) ∈ U ,

where x(t) ∈ Rn, A is a real-valued n × n matrix and
U ⊆ Rn is a closed and bounded convex set. Trans is a
set of discrete transitions (`, g, ξ, `′), where ` and `′ are the
source and target locations, g is the guard of t (given as a
linear constraint), and ξ is the update of t (given as an affine
mapping). I (`) ⊆ Rn is an invariant for all locations `.

The semantics of hybrid automata is defined as follows.
A state of H is a tuple (`,x) consisting of a location ` ∈
Loc and a point x ∈ Rn. More formally, x is a valuation of
the continuous variables in Var . Let T = [0,∆] be a time
interval for some ∆ ≥ 0. A trajectory of H from state s =
(`,x) to state s′ = (`′,x′) is defined by a tuple ρ = (L,X),
where L : T → Loc and X : T → Rn are functions that
define for each time point in T the location and values of the
continuous variables, respectively. The trajectory ρ starts in
(`,x), ends in (`′,x′), and obeys the following constraints:

• The sequence of time points in ρ where the location is
changed (according to L) increases strictly monotoni-
cally, starts with time point 0 and ends with time point ∆.

• There are no location changes not defined by L (i. e., lo-
cations are not changed during the continuous evolution).

• For all t ∈ T , the continuous variable evolution is consis-
tent with the differential equation and invariant of L(t).

A network N = {H1, . . . ,Hm} of hybrid automata is a
set of hybrid automata. The semantics ofN is defined based
on the semantics of single hybrid automata, with the follow-
ing extensions. Every automaton in N is associated with a
finite set of synchronization labels, including a special la-
bel τ in all label sets. The discrete component of a state s of
N is defined as a vector of locations that denotes the current
locations of every component in N . Similarly, in addition
to single automata, a trajectory of N maps time points to
vectors of locations of each automaton. For a time point t,
changes in the location vectors in a trajectory can either be
caused by a single transition labeled with τ of one automa-
ton in N (“interleaving transition”), or there are several au-
tomata in N that simultaneously fire transitions with equal
synchronization labels 6= τ (“synchronized transition”).

Informally speaking, global discrete update steps ofN are
either performed by single interleaving transitions of one au-
tomaton, or by firing several local transitions of several au-
tomata in a synchronized way. To perform such a synchro-
nized transition via label c, it is required that all automata
that have c in their synchronization alphabet must fire – if
this is not possible, the global discrete update step is not
possible either, i. e., the global transition is not applicable.

Although parts of PDDL+ are defined in terms of hy-
brid automata, there are several semantical issues raised by
PDDL+ which do not allow to apply the translation given

2229



by Fox and Long (2006) to common model checking tools
– in particular, their translation does not obey the standard
semantics of hybrid automata. As a basis for our paper, we
discuss these issues in more detail in the next section.

3 Semantical Issues Raised by PDDL+
Planning with continuous time is a challenging task, which
becomes even harder when processes and events are present.
In the formal definition of PDDL+ (Fox and Long 2006),
assumptions about the class of domains that can be modeled
and about plan validity (Fox, Howey, and Long 2005) are
made. In the following, we briefly recall these assumptions.

No Moving Targets: The no moving targets rule states
that no two actions are allowed to simultaneously make use
of a value if one of the two is accessing the value to update
it (i. e., the value is a moving target for the other action to
access). As a consequence of this restriction, plans must re-
spect the ε-separation requirement, i. e., interfering actions
must be separated by at least a time interval of length ε. The
planner Colin (Coles et al. 2012) makes a strictly stronger
assumption, extending this requirement also to actions that
are not mutex. In our work, we make the same assumption
as Colin. We remark that ε-separation is not respected in the
standard hybrid automata semantics, where transitions can
start or end at the same instant and hence can compromise
plan validity.

Events: Events are particularly challenging as they could
trigger an infinite cascading sequence of events. To address
this issue, we make the same restrictions proposed by Fox
and Long (2006). Firstly, each event must delete one of
its own preconditions and thus avoid self triggering. Sec-
ondly, planning instances must be event-deterministic: In ev-
ery state in which two events e1 and e2 are applicable, the
transition sequences e1 followed by e2 and e2 followed by
e1 are both valid and reach the same resulting state.

Actions and events reveal the key difference between state
changes that are deliberately planned (actions), and those
that are caused by changes in the world (events). While the
planner can decide whether or not to fire an applicable ac-
tion (actions are may transitions), events have to be fired
as soon as they become enabled (events are must transi-
tions). This distinction complicates the relationship between
PDDL+ and standard hybrid automata, where such a distinc-
tion is not present and all transitions are may transitions.

Concurrent Processes: It is possible that several pro-
cesses are active at the same time, affecting the value of
the same variable. To handle such concurrent processes, the
continuous effects affecting the rate of change of a vari-
able are combined by simply summing the effects of the
processes. Although the handling of concurrent processes is
very simple in PDDL+, it is a problematic feature in the stan-
dard hybrid automata setting, as each location in a hybrid
automaton contains a single flow describing the continuous
effects corresponding to that location. Therefore, combining
the effects of concurrent processes would generate an explo-
sion of the number of locations in the hybrid automaton.

PDDL+ Semantics: Fox and Long (2006) give a formal
semantics of PDDL+ providing a mapping between PDDL+
domain and hybrid automata. However, Fox and Long make

the key assumption to have hybrid automata where condi-
tional flows can be defined. In any given location, instead
of having a fixed rate of change for each variable, the rate
of change of each variable depends on which processes are
active in the current state. Conditional flows allow for eas-
ily modeling concurrent processes by using different rates of
change depending on the current state.

Similarly, conditional flows are used to model events. To
model events, we must force the corresponding event au-
tomaton to leave the current location (and to enter the loca-
tion corresponding to the event’s effect) as soon as it is trig-
gered. Hence, the issue is to model must transitions. For this
purpose, Fox and Long use the time slippage mechanism. A
time-slip variable T is used to measure the amount of time
that elapses between the preconditions of an event becoming
true and the event triggering. The value of T must be 0 in
any valid planning instance. To this aim, each location con-
tains an invariant enforcing this requirement. Furthermore,
the conditional flow is extended with the additional time-
slippage flow that sets Ṫ = 1 whenever the preconditions of
any event become true. However, conditional flows are not
part of standard hybrid automata semantics. Furthermore,
the issue of modeling the ε-separation is not addressed.

4 Modeling PDDL+ as Hybrid Automata
Based on the discussed semantical issues raised by PDDL+,
we provide a formal translation of hybrid planning domains
to standard hybrid automata to overcome these limitations.
For the description of our translation, we assume a grounded
planning instance I and use the following naming conven-
tions: Function symbols are denoted with continuous vari-
ables, whereas (Boolean) grounded predicates are denoted
with discrete variables. In particular, for the rest of the pa-
per, we assume the actions in I to be grounded. The trans-
lation from I to a network of hybrid automata is based on
translating grounded actions, discrete and continuous vari-
ables, events and processes to corresponding hybrid au-
tomata. This translation is described in the next sections.

4.1 Discrete Variable Automata

Common model checkers like SpaceEx do not support dis-
crete variables in their input models. Hence, we represent
discrete variables with a variant of their domain-transition
graphs (Helmert 2006). A Boolean variable v is translated
to automatonHv with two locations that reflect the true and
false values of v. Transitions between locations reflect how
values can be changed through actions. More precisely, the
synchronization labels reflect the discrete preconditions and
effects of actions that have v in their precondition and effect,
respectively. Roughly speaking, labels c that do not occur in
all transitions ofHv possibly require changingHv’s location
in order to be able to synchronize with c (thus represent-
ing a precondition). Similarly, labels c that occur in at least
one non-self loop transition ofHv reflect that c can possibly
change the value of v (thus representing an effect). We will
make the description of synchronization labels more precise
when introducing the translation for actions.

2230



4.2 Continuous Variable Automata
Continuous variables x are translated to automataHx as fol-
lows. For all possible flows ẋ = k of x, Hx contains a lo-
cation annotated with ẋ = k. There is a transition between
two locations if it is possible to change the flow of x accord-
ingly via an action. Furthermore, for all actions that affect
the particular flow, there is a self-loop in the corresponding
location. As an example, consider the automaton in Fig. 2.

ẋ = 0 ẋ = k
acc

k := k + 1

Figure 2: Example variable automatonHx

The automaton Hx models the behavior of the acceler-
ation x of an engine. There are two possible flows for x,
namely ẋ = 0 (corresponding to the case that the engine is
turned off), and ẋ = k (corresponding to the case where the
engine is turned on, and the current acceleration is k). In case
the engine is turned on, we can apply the action accelerate
(represented as label acc) to increase k.

4.3 Durative Action Automata
Grounded durative actions are translated to automata Ha
such thatHa ensures the ε-separation property, and such that
the (propositional and numeric) preconditions, effects and
invariants of a are respected when a is starting, running and
ending, respectively. For a given action a, Ha has the over-
all structure given in Fig. 3. The guards and updates ofHa’s
transitions are denoted with g and ξ according to Def. 2. The
locations are annotated with the corresponding invariant I .
Synchronization labels are annotated with a bar.

off

int1

on

int2

I : Ṫ = 0

I : Ṫ = 1 ∧ T ≤ ε

I : Ṫ = 1 ∧ T ≤ dur(a) ∧ prenum↔

I : Ṫ = 1 ∧ T ≤ dur(a) + ε

lock start
a

releasestart
a

g : T = ε

lockend
a

g : T = dur(a)

releaseend
a

g : prenuma ∧ T = dur(a) + ε g : prenum` ; ξ : T := 0

¬pre↔

Figure 3: Structure of action automatonHa

The automatonHa uses a local continuous variable T that
models a clock to keep track of action a’s duration. Based
on T ,Ha simulates the execution of a as follows.

1. The off location models that a is not running. The invari-
ant Ṫ = 0 reflects that the clock T is stopped as well. (See
below for a description of the self-loop.)

2. The int1 location and the transition from off to int1
model the behavior of a in the time interval [0, ε] (for
brevity, we assume that a is started at time point 0). The

invariant of int1 ensures that T is running, and that int1 is
left after at most ε time units. The guard g of the transition
leading to int1 reflects a’s numeric precondition prenum` ,
and its update ξ resets the clock T to zero. In addition,
through synchronization, the label lock start

a ensures the ε-
separation property during the starting phase of a, as well
as the required behavior of a’s preconditions and effects:

• In order to ensure the ε-separation property, lock start
a

locks the overall system in the sense that no other au-
tomaton can start (or end, see below) as long as Ha
is in the int1 location. To achieve this, a global lock
automaton synchronizes with this label, with the prop-
erty that such a synchronization is no longer possible
for starting or ending other actions until the lock is re-
leased. To make this more clear, the lock automaton
(simplified such that it only contains transitions for the
starting phase of a) is depicted in Fig. 4 (see below for
a description of the corresponding release label).

free lock
lock start

a

releasestart
a

Figure 4: Global lock automaton

• lock start
a reflects the check for the propositional pre-

condition pre` as well as the check for the invariant
pre↔ (recall that pre↔ must hold during the execution
of a, hence it must hold at the start of a). These pre-
conditions are satisfied iff a synchronization with cor-
responding discrete variable automata is possible. For
example, if pre` requires a variable v to be true, this is
reflected in the corresponding variable automaton Hv
as depicted on the left in Fig. 5, where we observe that
v must be in the true location such that a synchroniza-
tion is possible.

false

true

lock start
a

false

true

releasestart
a

Figure 5: Example variable automataHv andHw

• lock start
a reflects the continuous numerical effects de-

scribed by effnum↔ , which affects the flow of its continu-
ous variables by synchronizing with the corresponding
continuous variable automata (e. g., by increasing k in
Fig. 2, where acc is replaced by the lock label).

3. The transition from int1 to on models the time point ε.
According to the guard T = ε, it must be taken after ex-
actly ε time units. Furthermore, its label releasestarta re-
leases the system via the lock automaton, allowing other

2231



actions to start or end again. In addition, releasestarta re-
flects the start effects eff+` , eff−` and effnum` by synchro-
nizing with the corresponding variable automata. For ex-
ample, if eff+` sets a variable w from false to true, this is
reflected inHw as shown on the right in Fig. 5.

4. The on location models a’s behavior in the time interval
[ε, dur(a)]. The invariant of on reflects the duration of a
and the numeric invariant prenum↔ . We remark that with-
out further knowledge, doing so would require prenum↔ to
hold in the time interval [ε, dur(a)], whereas the original
PDDL+ semantics would only require it to hold in the in-
terval [ε, dur(a) − ε]. However, due to the ε-separation,
the behavior of numeric invariants with strict and non-
strict inequalities is identical, and we can hence interpret
strict as non-strict inequalities without loss of generality.

5. Propositional invariants of actions a must hold as long as
Ha is in its on location. To model this, we include all syn-
chronization labels that possibly violate a’s propositional
invariant into the synchronization alphabet of Ha (e. g.,
for a propositional invariant p = true , we include all la-
bels that represent effects of actions that set p to false).
This causes all actions that execute an effect that violates
a’s propositional invariant to synchronize with a transition
inHa. However, as there is no such outgoing synchroniza-
tion transition of the on location, actions cannot violate
a’s propositional invariant as long as Ha is running. To
be able to synchronize with such actions when a is not
running, we introduce self-loops toHa’s off location that
allow corresponding synchronization. In more detail, the
self-loop with label ¬pre↔ in the off location represents
a set of self-loops with labels for actions that violate a
constraint in pre↔. Note that we do not need such self-
loops for int1 (and int2) because int1 (and int2) model
the locked system where no other action may start or end.

6. The int2 location and the transition from on to int2 mod-
els the behavior of a in the interval [dur(a), dur(a) + ε]

when a is finished. The label lockend
a locks the system to

ensure the ε-separation during the ending phase of a, and
reflects prea via synchronization (analogously to the start
of a). In addition, it reflects the end of the continuous nu-
meric change reflected by effnum↔ . For example, if k has
been increased by effnum↔ in Fig. 2 at the start of a, k is
decreased again to reset the flow before a has been started
(a corresponding self-loop is omitted in Fig. 2).

7. The transition from int2 to off models the end of the
execution of a. Its guard checks both a’s duration T =

dur(a)+ε and precondition prenuma . The label releaseenda
releases the system (indicating that a is finished), and re-
flects the effect updates eff+a , eff−a , and effnuma .

We observe that, by construction, the PDDL+ semantics
of durative actions a is reflected by the hybrid automaton
Ha. In particular,Ha respects the ε-separation property.

4.4 Instantaneous Action Automata
Instantaneous actions a are modeled as automata Ha as fol-
lows. Similarly to durative actions, Ha contains an off and

on location and respects the ε-separation. However, in con-
trast to durative actions, instantaneous actions do not fea-
ture durations (as suggested by the name), and hence, we do
not need additional intermediate locations in the automaton
model. In more detail, the transition from off to on is labeled
with a corresponding locka label, which locks the system via
the global lock automaton, and reflects the guard and effects
analogously to the lock start

a labels for durative actions (we
do not need to distinguish between start and end labels be-
cause a is instantaneous). In addition, the transition features
a numerical guard constraint that reflects the numerical pre-
condition prenum` of a. Finally, Ha stays for ε time in on,
and releases the system by returning to off.

4.5 Event and Process Automata
Events and processes require a must semantics, as they trig-
ger as soon as they become enabled. In this paper, we over-
approximate this must behavior with the (common) may
behavior, which allows for more behavior and is hence
sufficient for proving plan non-existence. Generally, over-
approximations allow for at least the same (and possibly
more) behavior as the original model. (Realizing must be-
havior more precisely is an important issue for future work).

Events are essentially instantaneous actions with must
behavior. Hence, in our translation, we over-approximate
events with instantaneous action automata.

Processes p are modeled as automata Hp that consist of
an off and on location similar to events. There is a tran-
sition from off to on which synchronizes over the propo-
sitional precondition constraints pre`. This is an over-
approximation because the transition is not forced to be
taken as soon as possible. Furthermore, the on location
features an invariant induced by the numeric precondition
prenum` . Finally, there are transitions from on to off for each
negated constraint in prenum` (reflecting that the numeric in-
variant gets violated), and a transition that allows for return-
ing in case the propositional invariant is set to false (again
yielding an over-approximation). The effects of p are re-
flected in the same way as for continuous variable automata
(e.g., see again Fig. 2). This translation allows modeling of
concurrent processes in the standard hybrid automata se-
mantics without the need of conditional flows.

4.6 Overall Translation Scheme
For a given planning instance, the overall translation is de-
fined by a network of hybrid automata which contains a
translated automaton for all discrete and continuous vari-
ables, durative and instantaneous actions, processes and
events. The resulting system of hybrid automata is an over-
approximation of the original PDDL+ planning instance.

Proposition 1. Let I be a planning instance, and let N
be the translated network of hybrid automata. Then for all
plans π in I , there is a corresponding sequence σ of transi-
tions in N such that for each time point t, the values of the
discrete and continuous variables of π and σ are equal in t.

Proof. (sketch) By construction, the semantics of variables
and actions is reflected exactly by the translated automata.

2232



For processes and events, must transitions are approximated
with may transitions, yielding an over-approximation.

The over-approximation is sufficient to prove plan non-
existence. In the more simple case where no processes and
events are present, the back direction holds as well. For such
planning instances I , the translation can also be applied for
finding plans because transition sequences in N are guaran-
teed to correspond to applicable action sequences in I .

5 Case Study
As a case study, we apply our translation with the SpaceEx
model checker (Frehse et al. 2011), which is considered as
a state-of-the art tool in the area of hybrid systems model
checking. The search engine of SpaceEx performs symbolic
search, which is suited for effectively proving plan non-
existence. Proving plan non-existence has recently found in-
creasing attention for classical planning (Bäckström, Jons-
son, and Ståhlberg 2013), and becomes even harder for plan-
ning in hybrid domains. For a particular class of planning
domains, SpaceEx is guaranteed to find valid plans in solv-
able domains as well (see below). We consider several in-
stances (with growing size) of the generator (Howey, Long,
and Fox 2004) and the car domains (Fox and Long 2006),
which are standard and challenging benchmarks in the hy-
brid planning community. We compare our translation for
SpaceEx with the state-of-the-art planners Colin (Coles et al.
2012) and UPMurphi (Della Penna, Magazzeni, and Merco-
rio 2012). The experiments are performed on an x64 Linux
machine with 6 GB of RAM and an Intel i7 CPU (2.20GHz).

The results for unsolvable instances are reported in Ta-
ble 1. Colin can prove plan non-existence for a restricted
class of domains, namely when there is a tight deadline on
reaching the goals (which sets a finite horizon for the plan),
and each ground action can only be applied a finite number
of times. UPMurphi cannot provide any guarantees about
plan non-existence as it relies on discretizing the time line
and the continuous variables prior to search. In other words,
plans might exist for a finer discretization than actually used
by UPMurphi. The results for UPMurphi are included in
Table 1 for the sake of completeness. We observe that our
translation with symbolic search is able to scale better than
both Colin and UPMurphi. In particular, our approach is able
to effectively prove plan non-existence in the car domain,
which is out of scope for both UPMurphi (as discussed) and
Colin (as Colin is not able to deal with processes and events,
which are present in the car domain).

D Tool 1 2 3 4 5 6 7 8 9 10
Gen SpaceEx 0.01 0.09 0.83 4.25 58.61 1214.35 - - - -
Gen CoLin 0.01 0.1 1.7 32.48 761.28 - - - - -
Gen UPMur 0.9 29.42 - - - - - - - -
Car SpaceEx 0.98 4.91 9.46 19.65 37.19 59.40 112.43 210.47 350.14 574.71
Car CoLin x x x x x x x x x x
Car UPMur 36.01 445.23 - - - - - - - -

Table 1: Results in seconds for unsolvable instances. In-
stance numbers correspond to number of tanks (generator)
and maximum acceleration (car). Abbrev.: ’-’: tool still run-
ning after 30 minutes, ’x’: tool cannot handle the problem.

The symbolic search performed by SpaceEx induces an
over-approximation of the original system, which is suited
for effectively proving plan non-existence. In contrast, ap-
plying symbolic search to find plans might result in spuri-
ous plans, i. e., plans that do not correspond to valid plans
in the concrete. However, for the subclass of planning prob-
lems that do neither feature processes nor events (according
to Prop. 1) and do only include simple differential equations
of the form ẋ = c, the search algorithm by SpaceEx guaran-
tees that a path to a goal corresponds to a valid plan as well.
These requirements are satisfied by the generator, but not by
the car domain. The results are depicted in Table 2.

Domain Tool 1 2 3 4 5 6 7 8 9 10
Generator SpaceEx 0.01 0.03 0.07 0.1 0.19 0.28 0.45 0.65 0.93 1.22
Generator CoLin 0.01 0.09 0.2 2.52 32.62 600.58 - - - -
Generator UPMurphi 0.2 18.2 402.34 - - - - - - -
Car SpaceEx 0.01 0.01 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.1
Car CoLin x x x x x x x x x x
Car UPMurphi 28.44 386.5 - - - - - - - -

Table 2: Results in seconds for solvable instances.

Table 2 shows scalability improvements for solvable in-
stances as well. As discussed, the results for the car domain
must be taken with care (as the found paths might be spuri-
ous), but are included for the sake of completeness. In con-
trast, for the generator domain, the found paths by SpaceEx
are guaranteed to correspond to valid plans. We observe that
SpaceEx outperforms the other tools by several orders of
magnitude in terms of scalability. We remark that our cur-
rent implementation does not yet extract these plans, but
this step is purely technical and efficiently implementable
(essentially a call to an SMT solver). Overall, we observe
that symbolic search is beneficial for both proving plan non-
existence as well as for finding paths to goal states. Gen-
erally, symbolic search seems to be well suited for hybrid
domains because it handles several paths simultaneously.

6 Conclusions

We have presented a formal translation from PDDL+ to
the standard formalism of hybrid automata. Our translation
forms the basis for bridging the gap between planning in hy-
brid domains and model checking of hybrid automata. Our
experimental evaluation has shown that the translation can
be effectively applied to proving plan non-existence in chal-
lenging hybrid domains. In particular, our translation ex-
tends the class of tractable planning domains for proving
plan non-existence as shown for the car domain. For a par-
ticular class of hybrid domains, SpaceEx can also be applied
for effectively finding plans. For future research, the precise
modeling of must transitions in order to avoid spurious plans
should be addressed. Furthermore, it will be interesting to
apply the translation also with other model checking tools
in order to exploit their particular strengths. Generally, we
hope that our work forms the basis to eventually allow the
planning community to systematically benefit from the large
body of research in the area of hybrid automata.

2233



Acknowledgments
We thank Alexander Heinz for the help on the benchmark
suite preparation. This work was partly supported by the
German Research Foundation (DFG) as part of the Tran-
sregional Collaborative Research Center “Automatic Veri-
fication and Analysis of Complex Systems” (SFB/TR 14
AVACS, http://www.avacs.org/).

References
Alur, R.; Courcoubetis, C.; Halbwachs, N.; Henzinger, T.;
Ho, P.; Nicolin, X.; Olivero, A.; Sifakis, J.; and Yovine, S.
1995. The algorithmic analysis of hybrid systems. Theoret-
ical Computer Science 138:3–34.
Bäckström, C.; Jonsson, P.; and Ståhlberg, S. 2013. Fast
detection of unsolvable planning instances using local con-
sistency. In Proceedings of the Sixth Annual Symposium on
Combinatorial Search (SoCS 2013). AAAI Press.
Cimatti, A.; Clarke, E. M.; Giunchiglia, F.; and Roveri, M.
2000. Nusmv: A new symbolic model checker. STTT
2(4):410–425.
Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Strong plan-
ning in non-deterministic domains via model checking. In
AIPS, 36–43.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN:
Planning with continuous linear numeric change. Journal of
Artificial Intelligence Research (JAIR) 44:1–96.
Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrig-
ila, B. 2009. UPMurphi: A tool for universal planning on
PDDL+ problems. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling (ICAPS
2009). AAAI.
Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012.
A universal planning system for hybrid domains. Applied
Intelligence 36(4):932–959.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. Journal of Artificial Intel-
ligence Research (JAIR) 27:235–297.
Fox, M.; Howey, R.; and Long, D. 2005. Validating plans
in the context of processes and exogenous events. In AAAI,
1151–1156.
Frehse, G.; Guernic, C. L.; Donzé, A.; Cotton, S.; Ray, R.;
Lebeltel, O.; Ripado, R.; Girard, A.; Dang, T.; and Maler, O.
2011. Spaceex: Scalable verification of hybrid systems. In
Proceedings of the 23rd International Conference on Com-
puter Aided Verification (CAV 2011), Lecture Notes in Com-
puter Science, 379–395. Springer.
Frehse, G. 2008. PHAVer: algorithmic verification of hybrid
systems past HyTech. STTT 10(3):263–279.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Henzinger, T. A. 1996. The theory of hybrid automata. In
Proceedings of the 11th Annual IEEE Symposium on Logic
in Computer Science (LICS 1996), 278–292.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
plan validation, continuous effects and mixed initiative plan-

ning using PDDL. In 16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI), 294–301.
Li, H. X., and Williams, B. C. 2008. Generative planning
for hybrid systems based on flow tubes. In ICAPS, 206–213.
McDermott, D. V. 2003. Reasoning about autonomous pro-
cesses in an estimated-regression planner. In ICAPS, 143–
152.
Penberthy, J. S., and Weld, D. S. 1994. Temporal planning
with continuous change. In AAAI, 1010–1015.
Shin, J.-A., and Davis, E. 2005. Processes and continuous
change in a sat-based planner. Artif. Intell. 166(1-2):194–
253.

2234




