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Abstract

Real data are often with multiple modalities or com-
ing from multiple channels, while multi-view clustering
provides a natural formulation for generating clusters
from such data. Previous studies assumed that each ex-
ample appears in all views, or at least there is one view
containing all examples. In real tasks, however, it is of-
ten the case that every view suffers from the missing of
some data and therefore results in many partial exam-
ples, i.e., examples with some views missing. In this pa-
per, we present possibly the first study on partial multi-
view clustering. Our proposed approach, PVC, works
by establishing a latent subspace where the instances
corresponding to the same example in different views
are close to each other, and similar instances (belong-
ing to different examples) in the same view should be
well grouped. Experiments on two-view data demon-
strate the advantages of our proposed approach.

Introduction
In many tasks, data are with multiple modalities or com-
ing from multiple channels. Multi-view clustering provides a
natural formulation for clustering with such data, where each
view corresponds to one modality or information channel.
For example, in web page grouping, the web page content
and its linkage information can be regarded as two views;
in web image retrieval, the visual information of images and
their textual tags can be regarded as two views.

Here, each view is actually a feature set. Formally, given
a data setD = {(x1

i ,x
2
i , · · · ,xv

i ,yi), i = 1, . . . , N}, where
Xi = (x1

i ,x
2
i , · · · ,xv

i ) is the ith example, and yi ∈ Y is
its cluster label, xj

i is the instance of the ith example in the
jth view. Multi-view clustering aims at clustering Xi into
it’s corresponding cluster yi, where the number of clusters
is usually prefixed. Note that in multi-view clustering, each
view is a set of features, and the ‘feature grouping’ informa-
tion is exploited. This makes it significantly different from
multi-dimensional clustering where each dimension is a sin-
gle feature.

A number of approaches have been proposed for multi-
view clustering. Roughly speaking, they can be categorized
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into spectral approaches and subspace approaches. The for-
mer are extensions from single-view spectral clustering ap-
proaches with the help of some similarity measures (de
Sa 2005; Zhou and Burges 2007; Kumar and Daumé 2011;
Kumar, Rai, and Daumé 2011), whereas the latter gener-
ally try to identify a latent subspace across the multiple
views (Hardoon and Shawe-taylor 2009; Chaudhuri et al.
2009; Shon et al. 2006; Salzmann et al. 2010; White et al.
2012; Guo 2013; Liu et al. 2013).

It is noteworthy that previous studies on multi-view clus-
tering either assumed that all examples have full information
in all views, or that there exists at least one view which con-
tains all the examples, i.e., there exists some g ∈ {1, ..v}
such that all examples xg

1,x
g
2, · · · ,x

g
N are available. In real

tasks, however, it’s often the case that every view suffers
from some missing information, which results in many par-
tial examples. For example, in disease diagnosis, the blood
test and the neuroimage can be regarded as two views of
each individual, and it often occurs that some individuals
would only like to take one test; in bi-lingual documents
grouping, the two languages can be seen as two views and
many documents have only single language part; in speak-
ers grouping according to audio-visual appearance, the au-
dio and visual can be seen as two views of a speaker and
some speakers have only audio or visual information.

If we want to apply existing multi-view clustering ap-
proaches to partial examples, we can either remove the ex-
amples that suffer from missing information, or preprocess
the partial examples by first filling in the missing informa-
tion. The first strategy clearly contradicts with the target of
clustering which aims at distributing all examples to their
corresponding cluster, whereas our experiments show that
the second strategy is not really a good choice either. In this
paper, we propose the PVC (Partial multi-View Clustering)
approach to handle such data, which works based on NMF
by learning a latent subspace where the instances belonging
to the same example are close to each other and similar in-
stances from the same view should be well grouped. Follow-
ing (Piyush et al. 2010; Eaton, Desjardins, and Jacob 2010),
we focus on two-view data in this paper and experimental
results validate the advantages of our PVC approach.

In the following we start with a brief review of some re-
lated work. Then, we propose our PVC approach and report
the experimental results. Finally, we conclude the paper .
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Related Work
The exploitation of multiple modalities or information from
multiple channels have attracted much attention. For exam-
ple, Blum and Mitchell (1998) treated the the web page con-
tent and its linkage as two information sources in web page
classification. Li et al.(2009) regarded the visual information
and surrounding texts of images as two information sources
in image retrieval. In speech recognition, the audio and vi-
sual sources are used together as two sources (Ngiam et al.
2011; Potamianos et al. 2004).

Multi-view learning provides a natural formulation for
learning with such kind of multi-source data. Many studies
focused on the exploitation of the information compatibil-
ity of different views for learning with unlabeled data. Co-
training (Blum and Mitchell 1998) is possibly the most fa-
mous representative of multi-view semi-supervised learning.
It constructs two learners each from one view, and then lets
them to provide pseudo-labels for the other learner. Some
studies (Wang and Zhou 2007; 2010b) disclose that such
kind of disagreement-based approaches (Zhou and Li 2010)
do not really need the existence of multiple views, and the
diversity among the learners are the real essence. However,
with suitable multiple views, semi-supervised learning with
even a single labeled example has been shown to be pos-
sible (Zhou, Zhan, and Yang 2007). Moreover, the exis-
tence of multiple views enables exponential sample com-
plexity improvement for active learning in non-realizable
case (Wang and Zhou 2010a). Utilizing information from
multiple sources in many specific studies like active learn-
ing (Zhou, Chen, and Dai 2006), multi-task learning (He
and Lawrence 2011), multi-instance learning (Zhang, He,
and Lawrence 2013),et al. has also been found very useful.

Expecting a better clustering result by exploiting infor-
mation from multiple views, various multi-view clustering
approaches have been proposed. Roughly, they can be cat-
egorized into spectral approaches and subspace approaches.
With the help of some similarity measure between exam-
ples, spectral clustering (von Luxburg 2007) has been ex-
tended to multi-view data. de Sa(2005) constructs a bipartite
similarity graph and propose their spectral clustering algo-
rithm based on the minimizing-disagreement idea. Zhou and
Burges (2007) define a mixture of Markov chains on simi-
larity graph of each view and generalize spectral clustering
to multiple views. Kumar and Daume(2011) propose a co-
training approach where the similarity matrix of one view
is constrained by the spectral embedding of the other view.
Kumar et al. (2011) further propose two co-regularization
approaches to enforce the clustering hypotheses on different
views to agree with each other.

Assuming the multiple views are generated from one
common subspace, subspace approaches aim at learning
a latent intrinsic subspace where the representations of
instances in each view are close for similar examples.
By finding two projections of two set variables such that
their correlations in the projected space are maximized,
CCA (Hotelling 1936) is one of the earliest technique ap-
plied on two view data. It was further generalized to ker-
nel variant Kernel CCA (Hardoon and Shawe-taylor 2009)
and data with more than two views (Chaudhuri et al. 2009;

Hardoon, Szedmak, and Shawe-taylor 2004). Factorizing
each view as the linear combination of shared latent rep-
resentation and view-specific parts, several approaches have
been proposed. Salzmann et al.(2010) introduced an orthog-
onality constraint of view-private parts to penalize the re-
dundant between views; White et al. (2012) and Guo (2013)
formulated the subspace learning as a convex optimization
problem with a sparsity norm regularization. Being one
of the most effective techniques used in single-view latent
subspace based clustering, non-negative matrix factoriza-
tion(NMF) (Lee and Seung 1999) was recently exploited by
multi-view setting (Greene and Cunningham 2009; Akata,
Thurau, and Bauckhage 2011; Liu et al. 2013) and show
good performance.

All these previous studies on multi-view clustering as-
sumed that all examples present in all views. Piyush et
al.(2010) proposed an approach which uses one view’s ker-
nel matrix as the similarity matrix and complete the miss-
ing view’s kernel using Laplacian regularization. It is clear
that this approach requires that there exists at least one view
containing all the examples. Eaton et al.(2010) considered
semi-supervised multi-view clustering where a set of must-
link and cannot-link constraints are provided, whereas our
approach proposed in this paper can be extended to semi-
supervised setting with a similar strategy.

To the best of our knowledge, we are presenting the first
multi-view clustering approach which is able to handle the
case that each view suffers from missing information and
there are many partial examples.

Our Proposed PVC Approach
For the convenience of discussion, assume that we are han-
dling two-view data, i.e., given a data set of N instances
D = {(X,y)} = {(X1, X2,y)} = {(Xi,yi), i = 1, . . . , N},
where Xi = (x1

i ,x
2
i ) is the ith example of two views, and

yi ∈ Y is its cluster label. x1
i ∈ R1×d1(x2

i ∈ R1×d2) is
the instance of the ith example in the first(second)view of
dimension d1(d2). In the partial view setting, a partial view
example set X̂ = {X̂(1,2), X̂(1), X̂(2))} instead of X is given,
where X̂(1,2), X̂(1), X̂(2) denotes the examples present and
only present in both views, the first view, and the second
view, respectively. The goal of partial view clustering, same
as normal multi-view clustering, is to cluster the examples
into their corresponding clusters. We assume that the num-
ber of clusters are prefixed by users.

The Formulation
We assume that the number of examples present and only
present in both views, the first view, and the second view
is c,m and n, i.e., X̂(1,2)=[(x1

1,x
2
1); . . . ; (x1

c ,x
2
c)] ∈

Rc×(d1+d2), X̂(1)=[x1
c+1; . . . ;x1

c+m] ∈ Rm×d1 , and
X̂(2)=[x2

c+m+1; . . . ;x2
c+m+n] ∈ Rn×d2 , N = c+m+ n.

In the partial view setting, X̂(1,2), X̂(1), X̂(2) are rep-
resented by heterogeneous features of dimension (d1 +
d2), d1, d2, which makes their clustering not so direct. But
examining the problem from view perspective, in each in-
dividual view, their instances are sharing the same feature
space; and the two different views are bridged by the shared
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common examples. If we can learn a common latent sub-
space for the two views, like previous subspace-based multi-
view learning, where different instances belonging to the
same example are close, while at the same time for each
view, the cluster property that similar instances are grouped
is well captured in the latent subspace, then we can directly
exploit any standard single view clustering method, like k-
means, in this subspace, and do not need to consider whether
to complete the partial view examples.

Let X̂(1,2)= [X
(1)
c ,X

(2)
c ] be composed of instances X

(1)
c ∈

Rc×d1 , X(2)
c ∈ Rc×d2 coming from two views. We now have

the instances of each view denoted as X̄(1) = [X
(1)
c ; X̂(1)] ∈

R(c+m)×d1 , X̄(2) = [X
(2)
c ; X̂(2)] ∈ R(c+n)×d2 . As we deal

with webpage clustering task in the experiment, for such
text data, non-negative matrix factorization(NMF) (Lee and
Seung 1999) has been an highly effective technique used in
single-view clustering tasks, which actually assumes that the
observed instances are generated by additive combination of
an underlying set of hidden basis. The best fit between NMF
and our problem is that, the latent subspace(hidden basis),
what we are trying to learn, is just exactly what NMF aims at
finding. Incorporating the NMF technique into our problem,
for each view, its latent subspace learning can be formulated
as:

min
U(1)≥0,P̄ (1)≥0

‖X̄(1) − P̄ (1)U (1)‖2F + λΩ(P̄ (1)), (1)

min
U(2)≥0,P̄ (2)≥0

‖X̄(2) − P̄ (2)U (2)‖2F + λΩ(P̄ (2)), (2)

where U (1) ∈ Rt×d1 and U (2) ∈ Rt×d2 are the basis ma-
trix for each view’s latent space, and P̄ (1) = [P

(1)
c ; P̂ (1)] ∈

R(c+m)×t, P̄ (2) = [P
(2)
c ; P̂ (2)] ∈ R(c+n)×t are the latent rep-

resentation of instances in the latent space. The same la-
tent space dimension t is shared between the two views.
And λ is the tradeoff parameter for the regularization term
Ω(P ). By Eq.1 and Eq.2, the latent space basis U and cor-
responding instance latent representation P are simultane-
ously learned to minimize the instance reconstruction error,
which enforces all instances from each individual view to be
smoothly gathered in the latent space.

So far, the latent space are learned independently for each
view. For the partial view setting, for examples available in
both views X

(1)
c ,X

(2)
c , their latent representation P

(1)
c , P

(2)
c

should also be close. Combining this idea and Eq.1, Eq.2,
by enforcing P (1)

c = P
(2)
c = Pc, we have the following mini-

mization problem

min
{U(v),P̄ (v)}2v=1

O ≡
∥∥∥∥[ X

(1)
c

X̂(1)

]
−

[
Pc

P̂ (1)

]
U (1)

∥∥∥∥2

F

+ λ‖P̄ (1)‖1

+

∥∥∥∥[ X
(2)
c

X̂(2)

]
−

[
Pc

P̂ (2)

]
U (2)

∥∥∥∥2

F

+ λ‖P̄ (2)‖1

s.t. U (1) ≥ 0, U (2) ≥ 0,

P̄ (1) ≥ 0, P̄ (2) ≥ 0, (3)

where P̄ (1) = [Pc; P̂
(1)], P̄ (2) = [Pc; P̂

(2)] are the latent rep-
resentation of instances for two views. Now we can have
the homogeneous feature representation for all examples as
P = [Pc; P̂

(1); P̂ (2)] ∈ R(c+m+n)×t, whether they are orig-
inally partial or not. Any standard clustering approach can

be applied on such representation. Note that Eq.3 is differ-
ent from previous subspace based multi-view clustering ap-
proaches, which either requires P̄ (1) and P̄ (2) are the same,
or do not require P̄ (1) and P̄ (2) to share any common part.
In Eq.3, P̄ (1) and P̄ (2) share one same part Pc and at the
same time has their own individual part P̂ (1), P̂ (2). More-
over, learned by using all available instances of each view,
the individual basis matrix U (1) and U (2) are connected by
the common Pc. Lasso is used for Ω(P ) in this work as one
of the mostly often used regularization for text analysis.

The Algorithm
To address the optimization in Eq.3, which is convex in la-
tent representations Pc, P̂

(v) given the basis matrix U (v) and
vice versa, but not jointly convex in both, we propose an it-
erative update procedure and prove its convergence. Firstly,
the basis matrices are initialized by the initialization step
and then the following two steps are repeated until conver-
gence:1) minimizing O over Pc, P̂

(v) with fixed U (v); and 2)
minimizing O over U (v) with fixed Pc, P̂

(v).
Initialization: Since the iterative AO procedure’s efficiency
is greatly affected by the initialization step, in this paper, we
learn the initial value of U (v) rather than random allocation:

min
U(1),U(2),Pc

Oinit ≡‖X(1)
c − PcU

(1)‖2F + ‖X(2)
c − PcU

(2)‖2F

+λ‖Pc‖1 (4)

s.t. U (1) ≥ 0, U (2) ≥ 0, Pc ≥ 0.

It can be seen that U (1), U (2) are essentially initialized by
applying traditional NMF multi-view clustering methods on
examples without partial views. This initialization is also
solved by iterative AO optimization. At each iteration, Oinit

is minimized alternatively over Pc and U (v). Fixing Pc, U (1)

and U (2) can be independently optimized by :

min
U(1)≥0

Oinit(U
(1)) ≡ ‖X(1)

c − PcU
(1)‖2F , (5)

min
U(2)≥0

Oinit(U
(2)) ≡ ‖X(2)

c − PcU
(2)‖2F . (6)

Fixing U (1), U (2), Pc is optimized by:

min
Pc≥0

Oinit(Pc) ≡ ‖X(1)
c − PcU

(1)‖2F + ‖X(2)
c − PcU

(2)‖2F

+λ‖Pc‖1. (7)

1). Minimizing O over Pc, P̂
(v) with fixed U (v) Given the

basis matrix U (v) for each view, the computation of Pc, P̂
(v)

do not depend on each other. Therefore, Eq. 3 reduces to:

min
P̂ (1)≥0

O(P̂ (1)) ≡ ‖X̂(1) − P̂ (1)U (1)‖2F + λ‖P̂ (1)‖1, (8)

min
P̂ (2)≥0

O(P̂ (2)) ≡ ‖X̂(2) − P̂ (2)U (2)‖2F + λ‖P̂ (2)‖1, (9)

min
Pc≥0

O(Pc) ≡ ‖X(1)
c − PcU

(1)‖2F + ‖X(2)
c − PcU

(2)‖2F

+λ‖Pc‖1. (10)

Noting the same formulation of Eq. 10 as Eq. 7, so at the first
iteration, Pc has already been obtained from initialization.
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Algorithm 1 The PVC Approach

Input: data set {X̂(1,2), X̂(1), X̂(2)}; parameters: {t, λ}
Output: Basis matrices {U (1), U (2)}; latent representations
{Pc, P̂

(1), P̂ (2)}
Algorithm:

1: Initialize U (1), U (2) by Eq.4.
2: repeat
3: Fixing U (1), U (2), update P̂ (1), P̂ (2), Pc by Eq.8-10 .
4: Fixing P̂ (1), P̂ (2), Pc, update U (1), U (2) by Eq.11-12.
5: until Eq. 3 converges

2). Minimizing O over U (v) with fixed Pc, P̂
(v) Given

Pc, P̂
(v), the latent representations for instances of each view

can be obtained as P̄ (1) = [Pc; P̂
(1)] and P̄ (2) = [Pc; P̂

(2)],
minimizing O over U (v) now independently reduces to:

min
U(1)≥0

O(U (1)) ≡ ‖X̄(1) − P̄ (1)U (1)‖2F , (11)

min
U(2)≥0

O(U (2)) ≡ ‖X̄(2) − P̄ (2)U (2)‖2F . (12)

To solve the optimization problem in Eq. 5-Eq. 12, which
are (lasso regularized) NMF with one factor fixed, in this
paper, we employ the GCD(greedy coordinate descent) ap-
proach proposed by Hsieh and Dhillon (2011), which is
about 10 times faster than cyclic coordinate descent scheme
and proved to converge. To get a stable sparsity tradeoff pa-
rameter for different data set, λ is normalized by the data
size during the optimization, i.e., for Eq.8,9,10(7), λ is re-
spectively timed by coefficient (d1 + d2)/t, d1/t, d2/t. Al-
gorithm 1 summarizes the PVC approach.
Convergence Property We prove that our PVC approach in
Algorithm 1 converges to a local minima solution.
Theorem 1 The objective function value of Eq. 3 is nonin-
creasing under the optimization procedure in Algorithm 1.
Lemma 1 (Hsieh and Dhillon 2011) For least squares
NMF, if a basis matrix, latent representation pair sequence
{(Uj , Pj)} is generated by GCD, then every limit point of
this sequence is a stationary point.
Proof of Theorem 1: To prove Theorem 1, we only need
to prove that the objective function value of Eq. 3 is nonin-
creasing after each step in line 3, 4. With fixed U (1), U (2),
the objective function value of Eq. 3 with respect to
P̂ (1), P̂ (2), Pc equals the sum of the objective function value
of Eq. 8- 10. With fixed P̂ (1), P̂ (2), Pc, the objective value of
Eq. 3 with respect toU (1), U (2) equals the sum of Eq. 11- 12.
By Lemma 1, the objective function value of Eq. 8-Eq. 12
are guaranteed to converge to some local minima. So the ob-
jective function value of Eq. 3 is guaranteed to nonincrease
after each step in line 3, 4.�

Experiment
In this section, we compare the PVC approach with six base-
line methods over four webpage data sets.
Data Sets: The WebKB data set1 (Blum and Mitchell 1998)
has been widely used in multi-view learning (Guo 2013;

1http://membres-liglab.imag.fr/grimal/data.html

Zhang and Huan 2012), which contains webpages collected
from four universities: Cornell, Texas, Washington and Wis-
consin. The webpages are distributed over five classes: stu-
dent, project, course, staff and faculty and described by two
views: the content view and the citation view. Each webpage
is described by 1703 words in the content view, and the num-
ber of citation links between other pages in the citation view.
Statistics of the data sets are summarized in Table 1.

Table 1: Statics of four webpage data sets. # size, # view, #
cluster denotes the number of examples, views, and clusters
of each data set. # featCon and # featCit denotes the number
of features in the content view and citation view.
Data Set # size # view # cluster # featCon # featCit
Cornell 195 2 5 1703 195
Texas 187 2 5 1703 187
Washington 230 2 5 1703 230
Winsconsin 265 2 5 1703 265

To simulate the partial view setting, we randomly select
a fraction of webpages to be partial examples, i.e., they are
described by either the content or the citation view, but not
both, and the remaining ones appear in both the content and
the citation view. Following the formulation section, two dif-
ferent settings for the partial examples are considered in this
paper, the first is: both m > 0 and n > 0, i.e., both views
suffer from missing information about webpages; the second
is: either m = 0 or n = 0, i.e., at least one view, either the
content or the citation view, does not suffer from any miss-
ing information, being the ’complete view’. Note the second
setting is what Piyush et al.(2010) have considered, which is
a special case of our partial view setting. To simplify the as-
signment of partial examples to their corresponding view for
the first setting, we evenly distribute them to the two views
in the experiment. And for the second setting, two tasks, ei-
ther with the content or the citation view being the ’com-
plete view’ are conducted for each data set. Each time we
randomly select 10% to 90% examples, with 20% as inter-
val, as partial examples. Such process is repeated 10 times
and the average and standard deviation results are recorded.
Baseline Algorithms: Two subspace based multi-view clus-
tering methods CCA, ConvexSub and four spectral multi-
view clustering methods are included as baselines.2
CCA: We use the LSCCA package3 implementation of CCA
and kernel CCA to first extract the latent representation and
then perform k-means. The clustering results for whichever
gives the best performance is recorded.
ConvexSub: The subspace-based multi-view clustering
method developed by (Guo 2013).
MinDisSC: The multi-view spectral clustering method de-
veloped by (de Sa 2005).
CentroidSC: The centroid multi-view spectral method de-
veloped by (Kumar, Rai, and Daumé 2011).
PairwiseSC: The pairwise multi-view spectral clustering
method developed by (Kumar, Rai, and Daumé 2011).

2Except for CCA(Kernel CCA), we use the implementation
codes for other baselines provided by their authors.

3http://www.public.asu.edu/ jye02/Software/CCA/index.html

1971



0 10 30 50 70 90
0

0.5

1

PER(%)

NMI(↑)

 

 

PVC CCA ConvexSub MinDisSC CentroidSC PairwiseSC VconSC VcitSC

0 10 30 50 70 90
0

0.1

0.2

0.3

0.4

0.5

PER(%)

NM
I

Cornell

0 10 30 50 70 90
0

0.1

0.2

0.3

0.4

0.5

PER(%)

NM
I

Texas

0 10 30 50 70 90
0

0.1

0.2

0.3

0.4

0.5

PER(%)

NM
I

Washington

0 10 30 50 70 90
0

0.1

0.2

0.3

0.4

0.5

PER(%)

NM
I

Winsconsin

Figure 1: The NMI(the higher, the better) results for the four data sets when both views miss information about examples. Partial
examples are evenly distributed to the content and citation views. PER(partial example ratio) is the ratio of partial examples.

SingleView: Regarding the clustering result within each sin-
gle view when the partial example ratio becomes zeros, i.e.,
all examples are complete examples, as upper bound for par-
tial view clustering, we run spectral clustering (von Luxburg
2007) respectively on the content view and citation view,
denoted as VconSC and VcitSC.

Notice that for the first partial example setting, the ap-
proach of (Piyush et al. 2010) can’t be used to help the
baselines to handle partial examples, for a fair comparison,
in this experiments they are facilitated with the ALM (Aug-
mented Lagrange Multipliers)4 (Lin, Chen, and Ma 2010)
matrix completion method by first filling in the missing in-
formation of the partial examples. For the second partial ex-
ample setting, the approach of (Piyush et al. 2010) is used
to facilitate kernel CCA and the four spectral methods.

For kernel based methods kernel CCA and the four spec-
tral baselines, Gaussian kernel is used and the width parame-
ter is set as the median pairwise distance between instances.
Parameters of baselines are well tuned to achieve the best
performance (consistent with the values recommended in
their corresponding papers). For PVC, the latent dimension
t is set as the number of clusters, the default choice for
most subpace approaches. The sparsity tradeoff parameter
λ is fixed as 0.01 for all data sets. We run 20 rounds itera-
tions for PVC in the experiment, which is empirically shown
enough to almost converge and achieve good enough clus-
tering performance. The parameter study and convergence
process are later discussed. The k-means algorithm is per-
formed on the latent representation of examples to get the fi-
nal clustering result for our PVC approach and CCA. Since
k-means might be sensitive to initializations, we run it for
20 times and record the mean result.

The normalized mutual information(NMI) clustering
evaluation measure (Kumar, Rai, and Daumé 2011; Guo
2013) is used in this paper. Results for the two different set-
tings are shown in Figure 1 and Figure 2 -3 respectively.

Results
Figure 1 summarize the results (the average and standard de-
viation) for the fist setting, i.e., both the content and citation
view suffer from missing information, on the four data sets
for PER(partial example ratio) varying from 10% to 90%
with 20% as interval. Taken as the upper bound of each com-
parison methods, the results of all methods when PER is 0%,

4http://perception.csl.illinois.edu/matrix-rank/home.html

i.e., all examples are described by both the content and cita-
tion view, are also recorded.

From Figure 1 we can see that, for all four data sets, com-
paring the two spectral clustering results on each complete
single view, VconSC always performs better than VcitSC,
which coincides with our expectation that the content view
is more informative than the citationview. When the partial
example ratio PER is 0%, the data set actually comes to the
traditional multi-view data that each example appears in all
views. In such case, PVC is also able to perform better than
most baselines except for ConvexSub, which specifically de-
signed a convex optimization algorithm and was validated to
get better performance than direct AO optimization by their
experiment. As the partial example ratio PER varies from
10% to 90%, our PVC approach always achieves the best
performance among all methods. Although matrix comple-
tion is powerful in recovering missing values for low rank
matrix, ALM seems less effective in the view missing case;
which may be caused by that while the data are missing
block-wise for the partial view data setting, matrix comple-
tion requires the missing locations to be random.

Possibly the most inspiring thing about PVC we can get
from Figure 1 is that, even when PER equals 90%, i.e., as
large as 90% examples are partial, PVC is still able to get
better performance than VcitSC on the single complete ci-
tation view. Moreover, for Cornell with 0% PER, out of
expectation, the specifically designed multi-view methods
even perform worse than the single view approach VconSC.
These two points may suggest an interesting problem of
view selection for examples in multiple view clustering.

Similar results for PVC and baselines for the second spe-
cial partial example setting, i.e., either the citation or the
contentview is ’complete’, are also obtained in Figure 2-3.
As the approach of (Piyush et al. 2010) greatly depends on
the similarity matrix constructed from the complete view,
it would only be helpful when the complete view is infor-
mative enough, like in Figure 3, the complete content view.
Otherwise, the performance is not satisfiable. However, even
the complete view is less informative, like in Figure 2 the
complete citation view, our PVC still performs much better
than all baselines as long as PER is no more than 70%.
Parameter Study In the above, parameters are fixed for
PVC. Here we explore the effect of the sparsity trade
off parameter λ to clustering performance. Tuning λ from
{10−6, 10−5, . . . , 10−1, 1} for three different partial exam-
ple ratios 30%, 50% and 70%, we only present the results for
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Figure 2: The NMI(the higher, the better) results on the four data sets when the citation view is complete and only the content
view misses information about examples. PER(partial example ratio) is the ratio of partial examples.
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Figure 3: The NMI(the higher, the better) results on the four data sets when the content view is complete and only the citation
view misses information about examples. PER(partial example ratio) is the ratio of partial examples.

the first partial example setting, i.e., both views suffer from
missing information, in Figure 4 due to space limitation.
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Figure 4: Influence of the sparsity parameter λ on the four
data sets with three different partial example ratio PER.

From Figure 4 we can see that PVC achieves stably good
performance when λ is around 10−2, which is the value we
used in the experiment. It’s not strange that all data sets share
the same preference for parameter λ since we have normal-
ize out the data set size in each optimization step.
Convergence Study We have proved in previous section
that the PVC objective function is convergent. Due to space
limitation, we here only show the convergence curve and
corresponding NMI performance for the first partial exam-
ple setting, i.e., both views suffer from missing information,
with partial example ratios 70% in Figure 5. It can be seen
that the objective function value monotonically decreases as
the iteration round increases. Though it takes a lot of rounds
to converge, the GCD in each iteration runs very fast and
actually 20 round is enough to get good clustering results.
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Figure 5: Objective function value convergence curve and
corresponding NMI performance curve vs number of itera-
tions of PVC with partial example ratio PER = 70%.

Conclusion

In this paper, we present possibly the first attempt to deal
with multi-view clustering with partial views where each
view may suffer from missing of some data. Based on NMF,
our proposed PVC approach establishes a latent subspace
where the instances corresponding to the same example in
different views are close to each other, and the instances
(belonging to different examples) in the same view are well
grouped. Experimental results validate the effectiveness of
PVC. In this paper we focus on two-view data. The num-
ber of views in real tasks is often smaller than five, and it is
not difficult to extend and apply our approach. Extending to
more views, however, will suffer from computational prob-
lem. In the future we will study how to extend this subspace
based partial view learning idea to data with more views,
and to nonlinear latent subspace cases.
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