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Abstract

We propose a new approach for metric learning by
framing it as learning a sparse combination of locally
discriminative metrics that are inexpensive to generate
from the training data. This flexible framework allows
us to naturally derive formulations for global, multi-task
and local metric learning. The resulting algorithms have
several advantages over existing methods in the litera-
ture: a much smaller number of parameters to be esti-
mated and a principled way to generalize learned met-
rics to new testing data points. To analyze the approach
theoretically, we derive a generalization bound that jus-
tifies the sparse combination. Empirically, we evaluate
our algorithms on several datasets against state-of-the-
art metric learning methods. The results are consistent
with our theoretical findings and demonstrate the supe-
riority of our approach in terms of classification perfor-
mance and scalability.

Introduction
The need for measuring distance or similarity between data
instances is ubiquitous in machine learning and many ap-
plication domains. However, each problem has its own un-
derlying semantic space for defining distances that standard
metrics (e.g., the Euclidean distance) often fail to capture.
This has led to a growing interest in metric learning for the
past few years, as summarized in two recent surveys (Bel-
let, Habrard, and Sebban 2013; Kulis 2012). Among these
methods, learning a globally linear Mahalanobis distance
is by far the most studied setting. Representative methods
include (Xing et al. 2002; Goldberger et al. 2004; Davis
et al. 2007; Jain et al. 2008; Weinberger and Saul 2009;
Shen et al. 2012; Ying and Li 2012). This is equivalent to
learning a linear projection of the data to a feature space
where constraints on the training set (such as “xi should be
closer to xj than to xk”) are better satisfied.

Although the performance of these learned metrics is typ-
ically superior to that of standard metrics in practice, a sin-
gle linear metric is often unable to accurately capture the
complexity of the task, for instance when the data are multi-
modal or the decision boundary is complex. To overcome
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this limitation, recent work has focused on learning mul-
tiple locally linear metrics at several locations of the fea-
ture space (Frome et al. 2007; Weinberger and Saul 2009;
Zhan et al. 2009; Hong et al. 2011; Wang, Woznica, and
Kalousis 2012), to the extreme of learning one metric per
training instance (Noh, Zhang, and Lee 2010). This line
of research is motivated by the fact that locally, simple
linear metrics perform well (Ramanan and Baker 2011;
Hauberg, Freifeld, and Black 2012). The main challenge is
to integrate these metrics into a meaningful global one while
keeping the number of learning parameters to a reasonable
level in order to avoid heavy computational burden and se-
vere overfitting. So far, existing methods are not able to
compute valid (smooth) global metrics from the local met-
rics they learn and do not provide a principled way of gener-
alizing to new regions of the space at test time. Furthermore,
they scale poorly with the dimensionalityD of the data: typ-
ically, learning a Mahalanobis distance requires O(D2) pa-
rameters and the optimization involves projections onto the
positive semidefinite cone that scale in O(D3). This is ex-
pensive even for a single metric whenD is moderately large.

In this paper, we study metric learning from a new per-
spective to efficiently address these key challenges. We
propose to learn metrics as sparse compositions of locally
discriminative metrics. These “basis metrics” are low-rank
and extracted efficiently from the training data at different
local regions, for instance using Fisher discriminant analy-
sis. Learning higher-rank linear metrics is then formulated
as learning the combining weights, using sparsity-inducing
regularizers to select only the most useful basis elements.
This provides a unified framework for metric learning, as
illustrated in Figure 1, that we call SCML (for Sparse Com-
positional Metric Learning). In SCML, the number of pa-
rameters to learn is much smaller than existing approaches
and projections onto the positive semidefinite cone are not
needed. This gives an efficient and flexible way to learn a
single global metric when D is large.

The proposed framework also applies to multi-task metric
learning, where one wants to learn a global metric for sev-
eral related tasks while exploiting commonalities between
them (Caruana 1997; Parameswaran and Weinberger 2010).
This is done in a natural way by means of a group spar-
sity regularizer that makes the task-specific metrics share the
same basis subset. Our last and arguably most interesting
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Figure 1: Illustration of the general framework and its applications. We extract locally discriminative basis elements from the
training data and cast metric learning as learning sparse combinations of these elements. We formulate global metric learning
as learning a single sparse weight vector w. For multi-task metric learning, we learn a vector wt for each task where all tasks
share the same basis subset. For local metric learning we learn a function T (x) that maps any instance x to its associated sparse
weight vector wx. Shades of grey encode weight magnitudes.

contribution is a new formulation for local metric learning,
where we learn a transformation T (x) that takes as input any
instance x and outputs a sparse weight vector defining its
metric. This can be seen as learning a smoothly varying met-
ric tensor over the feature space (Ramanan and Baker 2011;
Hauberg, Freifeld, and Black 2012). To the best of our
knowledge, it is the first discriminative metric learning ap-
proach capable of computing an instance-specific metric for
any point in a principled way. All formulations can be solved
using scalable optimization procedures based on stochas-
tic subgradient descent with proximal operators (Duchi and
Singer 2009; Xiao 2010).

We present both theoretical and experimental evidence
supporting the proposed approach. We derive a generaliza-
tion bound which provides a theoretical justification to seek-
ing sparse combinations and suggests that the basis setB can
be large without incurring overfitting. Empirically, we eval-
uate our algorithms against state-of-the-art global, local and
multi-task metric learning methods on several datasets. The
results strongly support the proposed framework.

Proposed Approach
In this section, we present the main idea of sparse composi-
tional metric learning (SCML) and show how it can be used
to unify several existing metric learning paradigms and lead
to efficient new formulations.

Main Idea
We assume the data lie in RD and focus on learning
(squared) Mahalanobis distances dM (x,x′) = (x −
x′)TM(x − x′) parameterized by a positive semidefinite
(PSD) D ×D matrix M . Note that M can be represented
as a nonnegative weighted sum of K rank-1 PSD matrices:1

M =
K∑
i=1

wibib
T
i , with w ≥ 0, (1)

where the bi’s are D-dimensional column vectors.
In this paper, we use the form (1) to cast metric learning as

learning a sparse combination of basis elements taken from
a basis set B = {bi}Ki=1. The key to our framework is the
fact that such a B is made readily available to the algorithm

1Such an expression exists for any PSD matrix M since the
eigenvalue decomposition of M is of the form (1).

and consists of rank-one metrics that are locally discrimina-
tive. Such basis elements can be easily generated from the
training data at several local regions — in the experiments,
we simply use Fisher discriminant analysis (see the corre-
sponding section for details). They can then be combined to
form a single global metric, multiple global metrics (in the
multi-task setting) or a metric tensor (implicitly defining an
infinite number of local metrics) that varies smoothly across
the feature space, as we will show in later sections.

We use the notation dw(x,x′) to highlight our parame-
terization of the Mahalanobis distance by w. Learning M
in this form makes it PSD by design (as a nonnegative sum
of PSD matrices) and involves K parameters (instead of D2

in most metric learning methods), enabling it to more eas-
ily deal with high-dimensional problems. We also want the
combination to be sparse, i.e., some wi’s are zero and thus
M only depends on a small subset ofB. This provides some
form of regularization (as shown later in Theorem 1) as well
as a way to tie metrics together when learning multiple met-
rics. In the rest of this section, we apply the proposed frame-
work to several metric learning paradigms (see Figure 1).

Global Metric Learning
In global metric learning, one seeks to learn a single metric
dw(x,x′) from a set of distance constraints on the training
data. Here, we use a set of triplet constraints C where each
(xi,xj ,xk) ∈ C indicates that the distance between xi and
xj should be smaller than the distance between xi and xk.
C may be constructed from label information, as in LMNN
(Weinberger and Saul 2009), or in an unsupervised manner
based for instance on implicit users’ feedback (such as clicks
on search engine results). Our formulation for global metric
learning, SCML-Global, is simply to combine the local basis
elements into a higher-rank global metric that satisfies well
the constraints in C:

min
w

1

|C|
∑

(xi,xj ,xk)∈C

Lw(xi,xj ,xk) + β‖w‖1, (2)

where Lw(xi,xj ,xk) = [1 + dw(xi,xj) − dw(xi,xk)]+
with [·]+ = max(0, ·), and β ≥ 0 is a regularization pa-
rameter. The first term in (2) is the classic margin-based
hinge loss function. The second term ‖w‖1 =

∑K
i=1 wi

is the `1 norm regularization which encourages sparse so-
lutions, allowing the selection of relevant basis elements.
SCML-Global is convex by the linearity of both terms and
is bounded below, thus it has a global minimum.
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Multi-Task Metric Learning
Multi-task learning (Caruana 1997) is a paradigm for learn-
ing several tasks simultaneously, exploiting their common-
alities. When tasks are related, this can perform better than
separately learning each task. Recently, multi-task learn-
ing methods have successfully built on the assumption that
the tasks should share a common low-dimensional represen-
tation (Argyriou, Evgeniou, and Pontil 2008; Yang, Kim,
and Xing 2009; Gong, Ye, and Zhang 2012). In general,
it is unclear how to achieve this in metric learning. In con-
trast, learning metrics as sparse combinations allows a direct
translation of this idea to multi-task metric learning.

Formally, we are given T different but somehow related
tasks with associated constraint sets C1, . . . , CT and we aim
at learning a metric dwt

(x,x′) for each task t while sharing
information across tasks. In the following, the basis set B is
the union of the basis sets B1, . . . , BT extracted from each
task t. Our formulation for multi-task metric learning, mt-
SCML, is as follows:

min
W

T∑
t=1

1

|Ct|
∑

(xi,xj ,xk)∈Ct

Lwt(xi,xj ,xk) + β‖W ‖2,1,

where W is a T × K nonnegative matrix whose t-th row
is the weight vector wt defining the metric for task t,
Lwt

(xi,xj ,xk) = [1 + dwt
(xi,xj)− dwt

(xi,xk)]+ and
‖W ‖2,1 is the `2/`1 mixed norm used in the group lasso
problem (Yuan and Lin 2006). It corresponds to the `1 norm
applied to the `2 norm of the columns of W and is known
to induce group sparsity at the column level. In other words,
this regularization makes most basis elements either have
zero weight or nonzero weight for all tasks.

Overall, while each metric remains task-specific (dwt
is

only required to satisfy well the constraints in Ct), it is com-
posed of shared features (i.e., it potentially benefits from ba-
sis elements generated from other tasks) that are regularized
to be relevant across tasks (as favored by the group sparsity).
As a result, all learned metrics can be expressed as combi-
nations of the same basis subset of B, though with different
weights for each task. Since the `2/`1 norm is convex, mt-
SCML is again convex.

Local Metric Learning
Local metric learning addresses the limitations of global
methods in capturing complex data patterns (Frome et al.
2007; Weinberger and Saul 2009; Zhan et al. 2009; Noh,
Zhang, and Lee 2010; Hong et al. 2011; Wang, Woznica, and
Kalousis 2012). For heterogeneous data, allowing the metric
to vary across the feature space can capture the semantic dis-
tance much better. On the other hand, local metric learning
is costly and often suffers from severe overfitting since the
number of parameters to learn can be very large. In the fol-
lowing, we show how our framework can be used to derive
an efficient local metric learning method.

We aim at learning a metric tensor T (x), which is a
smooth function that (informally) maps any instance x to its
metric matrix (Ramanan and Baker 2011; Hauberg, Freifeld,
and Black 2012). The distance between two points should

then be defined as the geodesic distance on a Riemannian
manifold. However, this requires solving an intractable
problem, so we use the widely-adopted simplification that
distances from point x are computed based on its own met-
ric alone (Zhan et al. 2009; Noh, Zhang, and Lee 2010;
Wang, Woznica, and Kalousis 2012):

dT (x,x
′) = (x− x′)TT (x)(x− x′)

= (x− x′)T
K∑
i=1

wx,ibib
T
i (x− x′),

where wx is the weight vector for instance x.
We could learn a weight vector for each training point.

This would result in a formulation similar to mt-SCML,
where each training instance is considered as a task. How-
ever, in the context of local metric learning, this is not an
appealing solution. Indeed, for a training sample of size S
we would need to learn SK parameters, which is compu-
tationally difficult and leads to heavy overfitting for large-
scale problems. Furthermore, this gives no principled way
of computing the weight vector of a test instance.

We instead propose a more effective solution by con-
straining the weight vector for an instance x to parametri-
cally depend on some embedding of x:

TA,c(x) =
K∑
i=1

(aT
izx + ci)

2bib
T
i , (3)

where zx ∈ D′ is an embedding of x,2 A = [a1 . . .aK ]T

is a D′ × K real-valued matrix and c ∈ RK . The square
makes the weights nonnegative ∀x ∈ RD, ensuring that they
define a valid (pseudo) metric. Intuitively, (3) combines the
locally discriminative metrics with weights that depend on
the position of the instance in the feature space.

There are several advantages to this formulation. First,
by learning A and c we implicitly learn a different metric
not only for the training data but for any point in the fea-
ture space. Second, if the embedding is smooth, TA,c(x) is
a smooth function of x, therefore similar instances are as-
signed similar weights. This can be seen as some kind of
manifold regularization. Third, the number of parameters to
learn is nowK(D′+1), thus independent of both the size of
the training sample and the dimensionality of x. Our formu-
lation for local metric learning, SCML-Local, is as follows:

min
Ã

1

|C|
∑

(xi,xj ,xk)∈C

LTA,c
(xi,xj ,xk) + β‖Ã‖2,1,

where Ã is a (D′ + 1) × K matrix denoting the
concatenation of A and c, and LTA,c

(xi,xj ,xk) =[
1 + dTA,c

(xi,xj)− dTA,c
(xi,xk)

]
+

. The `2/`1 norm on

Ã introduces sparsity at the column level, regularizing the
local metrics to use the same basis subset. Interestingly, if A
is the zero matrix, we recover SCML-Global. SCML-Local
is nonconvex and is thus subject to local minima.

2In our experiments, we use kernel PCA (Schölkopf, Smola,
and Müller 1998) as it provides a simple way to limit the dimension
and thus the number of parameters to learn. We use RBF kernel
with bandwidth set to the median Euclidean distance in the data.
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Optimization
Our formulations use (nonsmooth) sparsity-inducing regu-
larizers and typically involve a large number of triplet con-
straints. We can solve them efficiently using stochastic com-
posite optimization (Duchi and Singer 2009; Xiao 2010),
which alternates between a stochastic subgradient step on
the hinge loss term and a proximal operator (for `1 or `2,1
norm) that explicitly induces sparsity. We solve SCML-
Global and mt-SCML using Regularized Dual Averaging
(Xiao 2010), which offers fast convergence and levels of
sparsity in the solution comparable to batch algorithms. For
SCML-Local, due to local minima, we ensure improve-
ment over the optimal solution w∗ of SCML-Global by us-
ing a forward-backward algorithm (Duchi and Singer 2009)
which is initialized with A = 0 and ci =

√
w∗i .

Recall that unlike most existing metric learning algo-
rithms, we do not need to perform projections onto the PSD
cone, which scale in O(D3) for a D ×D matrix. Our algo-
rithms thereby have a significant computational advantage
for high-dimensional problems.

Theoretical Analysis
In this section, we provide a theoretical analysis of our ap-
proach in the form of a generalization bound based on al-
gorithmic robustness analysis (Xu and Mannor 2012) and
its adaptation to metric learning (Bellet and Habrard 2012).
For simplicity, we focus on SCML-Global, our global metric
learning formulation described in (2).

Consider the supervised learning setting, where we are
given a labeled training sample S = {zi = (xi, yi)}ni=1
drawn i.i.d. from some unknown distribution P over Z =
X × Y . We call a triplet (z, z′, z′′) admissible if y = y′ 6=
y′′. Let C be the set of admissible triplets built from S
and L(w, z, z′, z′′) = [1 + dw(x,x′)− dw(x,x′′)]+ de-
note the loss function used in (2), with the convention that L
returns 0 for non-admissible triplets.

Let us define the empirical loss of w on S as

RSemp(w) =
1

|C|
∑

(z,z′,z′′)∈C

L(w, z, z′, z′′),

and its expected loss over distribution P as

R(w) = Ez,z′,z′′∼PL(w, z, z
′, z′′).

The following theorem bounds the deviation between the
empirical loss of the learned metric and its expected loss.
Theorem 1. Let w∗ be the optimal solution to SCML-
Global with K basis elements, β > 0 and C constructed
from S = {(xi, yi)}ni=1 as above. Let K∗ ≤ K be the num-
ber of nonzero entries in w∗. Let us assume the norm of
any instance bounded by some constant R and L uniformly
upper-bounded by some constant U . Then for any δ > 0,
with probability at least 1− δ we have:

∣∣R(w∗)−RSemp(w∗)∣∣ ≤ 16γRK∗

β
+3U

√
N ln 2 + ln 1

δ

0.5n
,

where N is the size of an γ-cover of Z .

This bound has a standard O(1/
√
n) asymptotic conver-

gence rate.3 Its main originality is that it provides a theo-
retical justification to enforcing sparsity in our formulation.
Indeed, notice that K∗ (and not K) appears in the bound as
a penalization term, which suggests that one may use a large
basis set K without overfitting as long as K∗ remains small.
This will be confirmed by our experiments. A similar bound
can be derived for mt-SCML, but not for SCML-Local be-
cause of its nonconvexity. Due to the lack of space, details
and proofs can be found in the technical report version of
this paper (Shi, Bellet, and Sha 2014).

Related Work
Global methods Most global metric learning methods
learn the matrix M directly: see (Xing et al. 2002; Gold-
berger et al. 2004; Davis et al. 2007; Jain et al. 2008;
Weinberger and Saul 2009) for representative papers. This
is computationally expensive and subject to overfitting for
moderate to high-dimensional problems. An exception is
BoostML (Shen et al. 2012) which uses rank-one matrices
as weak learners to learn a global Mahalanobis distance via
a boosting procedure. However, it is not clear how BoostML
can be generalized to multi-task or local metric learning.

Multi-task methods Multi-task metric learning was pro-
posed in (Parameswaran and Weinberger 2010) as an ex-
tension to the popular LMNN (Weinberger and Saul 2009).
The authors define the metric for task t as dt(x,x′) =
(x − x′)T(M0 + Mt)(x − x′), where Mt is task-specific
and M0 is shared by all tasks. Note that it is straightforward
to incorporate their approach in our framework by defining
a shared weight vector w0 and task-specific weights wt.

Local methods MM-LMNN (Weinberger and Saul 2009)
is an extension of LMNN which learns only a small number
of metrics (typically one per class) in an effort to alleviate
overfitting. However, no additional regularization is used
and a full-rank metric is learned for each class, which be-
comes intractable when the number of classes is large. Like
SCML-Local, PLML (Wang, Woznica, and Kalousis 2012)
is based on a combination of metrics but there are major dif-
ferences with our work: (i) weights only depend on a man-
ifold assumption: they are not sparse and use no discrimi-
native information, (ii) the basis metrics are full-rank, thus
expensive to learn, and (iii) a weight vector is learned ex-
plicitly for each training instance, which can result in a large
number of parameters and prevents generalization to new
instances (in practice, for a test point, they use the weight
vector of its nearest neighbor in the training set). Unlike
the above discriminative approaches, GLML (Noh, Zhang,
and Lee 2010) learns a metric independently for each point

3In robustness bounds, the cover radius γ can be made arbitrar-
ily close to zero at the expense of increasing N . Since N appears
in the second term, the right hand side of the bound indeed goes to
zero when n→∞. This is in accordance with other similar learn-
ing bounds, for example, the original robustness-based bounds in
(Xu and Mannor 2012).
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Table 1: Datasets for global and local metric learning.
Vehicle Vowel Segment Letters USPS BBC

# samples 846 990 2,310 20,000 9,298 2,225
# classes 4 11 7 26 10 5
# features 18 10 19 16 256 9,636

in a generative way by minimizing the 1-NN expected error
under some assumption for the class distributions.

Experiments
We first demonstrate the benefits of combining basis ele-
ments on global metric learning. Then we compare our
methods to state-of-the-art algorithms on multi-task and lo-
cal metric learning.4 We use a 3-nearest neighbor classifier
in all experiments. To generate a set of locally discriminative
rank-one metrics, we first divide data into regions via clus-
tering. For each region center, we select J nearest neighbors
from each class (for J = {10, 20, 50} to account for differ-
ent scales), and apply Fisher discriminant analysis followed
by eigenvalue decomposition to obtain the basis elements.5

Remark Due to the lack of space, some additional ex-
perimental results can be found in the technical report ver-
sion of this paper (Shi, Bellet, and Sha 2014).

Global Metric Learning
Datasets We use 6 datasets from UCI6 and BBC7 (see Ta-
ble 1). The dimensionality of USPS and BBC is reduced to
100 and 200 using PCA to speed up computation. We nor-
malize the data as in (Wang, Woznica, and Kalousis 2012)
and split into train/validation/test (60%/20%/20%), except
for Letters and USPS where we use 3,000/1,000/1,000. Re-
sults are averaged over 20 random splits.
Setup Global metric learning is a convenient setting to
study the effect of combining basis elements. To this end,
we consider a formulation with the same loss function as
SCML-Global but that directly learns the metric matrix with
Frobenius norm regularization to reduce overfitting. We re-
fer to it as Global-Frob. We generate the training triplets by
identifying 3 target neighbors (nearest neighbors with same
label) and 10 imposters (nearest neighbors with different la-
bel) for each instance. We tune the regularization parameter
on the validation data. For SCML-Global, we use a basis set
of 400 elements for Vehicle, Vowel, Segment and BBC, and
1,000 elements for Letters and USPS.
Results Table 2 shows misclassification rates with stan-
dard errors, where Euc is the Euclidean distance. The results
show that SCML-Global performs similarly as Global-Frob
on low-dimensional datasets but has a clear advantage when
dimensionality is high (USPS and BBC). This demonstrates
that learning a sparse combination of basis elements is an

4For all compared methods we use MATLAB code from the au-
thors’ website. The MATLAB code for our methods is available at
http://www-bcf.usc.edu/~bellet/.

5We also experimented with a basis set based on local GLML
metrics. Preliminary results were comparable to those obtained
with the procedure above.

6http://archive.ics.uci.edu/ml/
7http://mlg.ucd.ie/datasets/bbc.html

Table 2: Global metric learning results (best in bold).
Dataset Euc Global-Frob SCML-Global
Vehicle 29.7±0.6 21.5±0.8 21.3±0.6
Vowel 11.1±0.4 10.3±0.4 10.9±0.5

Segment 5.2±0.2 4.1±0.2 4.1±0.2
Letters 14.0±0.2 9.0±0.2 9.0±0.2
USPS 10.3±0.2 5.1±0.2 4.1±0.1
BBC 8.8±0.3 5.5±0.3 3.9±0.2

effective way to reduce overfitting and improve generaliza-
tion. SCML-Global is also faster to train than Global-Frob
on these datasets (about 2x faster on USPS and 3x on BBC)
because it does not require PSD projections.

Multi-task Metric Learning
Dataset Sentiment Analysis (Blitzer, Dredze, and Pereira
2007) is a popular dataset for multi-task learning that con-
sists of Amazon reviews on four product types: kitchen ap-
pliances, DVDs, books and electronics. Each product type
is treated as a task and has 1,000 positive and 1,000 negative
reviews. To reduce computational cost, we represent each
review by a 200-dimensional feature vector by selecting top
200 words of the largest mutual information with the labels.
We randomly split the dataset into training (800 samples),
validation (400 samples) and testing (400 samples) sets.
Setup We compare the following metrics: st-Euc (Eu-
clidean distance), st-LMNN and st-SCML (single-task
LMNN and single-task SCML-Global, trained indepen-
dently on each task), u-Euc (Euclidean trained on the union
of the training data from all tasks), u-LMNN (LMNN
on union), u-SCML (SCML-Global on union), multi-task
LMNN (Parameswaran and Weinberger 2010) and finally
our own multi-task method mt-SCML. We tune the regu-
larization parameters in mt-LMNN, st-SCML, u-SCML and
mt-SCML on validation sets. As in the previous experiment,
the number of target neighbors and imposters for our meth-
ods are set to 3 and 10 respectively. We use a basis set of
400 elements for each task for st-SCML, the union of these
(1,600) for mt-SCML, and 400 for u-SCML.
Results Table 3 shows the results averaged over 20 ran-
dom splits. First, notice that u-LMNN and u-SCML obtain
significantly higher error rates than st-LMNN and st-SCML
respectively, which suggests that the dataset may violate mt-
LMNN’s assumption that all tasks share a similar metric.
Indeed, mt-LMNN does not outperform st-LMNN signifi-
cantly. On the other hand, mt-SCML performs better than its
single-task counterpart and than all other compared methods
by a significant margin, demonstrating its ability to leverage
some commonalities between tasks that mt-LMNN is un-
able to capture. It is worth noting that the solution found
by mt-SCML is based on only 273 basis elements on aver-
age (out of a total of 1,600), while st-SCML makes use of
significantly more elements (347 elements per task on aver-
age). Basis elements selected by mt-SCML are evenly dis-
tributed across all tasks, which indicates that it is able to ex-
ploit meaningful information across tasks to get both more
accurate and more compact metrics. Finally, note that our
algorithms are about an order of magnitude faster.
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Table 3: Multi-task metric learning results.
Task st-Euc st-LMNN st-SCML u-Euc u-LMNN u-SCML mt-LMNN mt-SCML

Books 33.5±0.5 29.7±0.4 27.0±0.5 33.7±0.5 29.6±0.4 28.0±0.4 29.1±0.4 25.8±0.4
DVD 33.9±0.5 29.4±0.5 26.8±0.4 33.9±0.5 29.4±0.5 27.9±0.5 29.5±0.5 26.5±0.5

Electronics 26.2±0.4 23.3±0.4 21.1±0.5 29.1±0.5 25.1±0.4 22.9±0.4 22.5±0.4 20.2±0.5
Kitchen 26.2±0.6 21.2±0.5 19.0±0.4 27.7±0.5 23.5±0.3 21.9±0.5 22.1±0.5 19.0±0.4

Avg. accuracy 30.0±0.2 25.9±0.2 23.5±0.2 31.1±0.3 26.9±0.2 25.2±0.2 25.8±0.2 22.9±0.2
Avg. runtime N/A 57 min 3 min N/A 44 min 2 min 41 min 5 min

Table 4: Local metric learning results (best in bold).
Dataset MM-LMNN GLML PLML SCML-Local
Vehicle 23.1±0.6 23.4±0.6 22.8±0.7 18.0±0.6
Vowel 6.8±0.3 4.1±0.4 8.3±0.4 6.1±0.4

Segment 3.6±0.2 3.9±0.2 3.9±0.2 3.6±0.2
Letters 9.4±0.3 10.3±0.3 8.3±0.2 8.3±0.2
USPS 4.2±0.7 7.8±0.2 4.1±0.1 3.6±0.1
BBC 4.9±0.4 5.7±0.3 4.3±0.2 4.1±0.2

Avg. rank 2.0 2.7 2.0 1.2

(a) Class member-
ship

(b) Trained metrics (c) Test metrics

Figure 2: Illustrative experiment on 3 digits of USPS in 2D.
A color version can be found in (Shi, Bellet, and Sha 2014).

Local Metric Learning
Setup We use the same datasets and preprocessing as for
global metric learning. We compare SCML-Local to MM-
LMNN (Weinberger and Saul 2009), GLML (Noh, Zhang,
and Lee 2010) and PLML (Wang, Woznica, and Kalousis
2012). The parameters of all methods are tuned on valida-
tion sets or set by authors’ recommendation. MM-LMNN
use 3 target neighbors and all imposters, while these are set
to 3 and 10 in PLML and SCML-Local. The number of an-
chor points in PLML is set to 20 as done by the authors. For
SCML-Local, we use the same basis set as SCML-Global,
and embedding dimensionD′ is set to 40 for Vehicle, Vowel,
Segment and BBC, and 100 for Letters and USPS.
Results Table 4 gives the error rates along with the average
rank of each method across all datasets. Note that SCML-
Local significantly improves upon SCML-Global on all but
one dataset and achieves the best average rank. PLML does
not perform well on small datasets (Vehicle and Vowel), pre-
sumably because there are not enough points to get a good
estimation of the data manifold. GLML is fast but has rather
poor performance on most datasets because its Gaussian as-
sumption is restrictive and it learns the local metrics inde-
pendently. Among discriminative methods, SCML-Local
offers the best training time, especially for high-dimensional
data (e.g. on BBC, it is about 5x faster than MM-LMNN and
15x faster than PLML). Note that on this dataset, both MM-
LMNN and PLML perform worse than SCML-Global due to

Figure 3: Effect of the number of bases on Segment dataset.

severe overfitting, while SCML-Local avoids it by learning
significantly fewer parameters.
Visualization of the learned metrics To provide a better
understanding of why SCML-Local works well, we apply it
to digits 1, 2, and 3 of USPS projected in 2D using t-SNE
(van der Maaten and Hinton 2008), shown in Figure 2(a).
We use 10 basis elements and D′ = 5. Figure 2(b) shows
the training points colored by their learned metric (based on
the projection of the weight vectors in 1D using PCA). We
see that the local metrics vary smoothly and are thereby ro-
bust to outliers. Unlike MM-LMNN, points within a class
are allowed to have different metrics: in particular, this is
useful for points that are near the decision boundary. While
smooth, the variation in the weights is thus driven by dis-
criminative information, unlike PLML where they are only
based on the smoothness assumption. Finally, Figure 2(c)
shows that the metrics consistently generalize to test data.
Effect of the basis set size Figure 3 shows the number of
selected basis elements and test error rate for SCML-Global
and SCML-Local as a function of the size of basis set on
Segment (results were consistent on other datasets). The
left pane shows that the number of selected elements in-
creases sublinearly and eventually converges, while the right
pane shows that test error may be further reduced by using a
larger basis set without significant overfitting, as suggested
by our generalization bound (Theorem 1). Figure 3 also
shows that SCML-Local generally selects more basis ele-
ments than SCML-Global, but notice that it can outperform
SCML-Global even when the basis set is very small.

Conclusion
We proposed to learn metrics as sparse combinations of
rank-one basis elements. This framework unifies several
paradigms in metric learning, including global, local and
multi-task learning. Of particular interest is our local met-
ric learning algorithm which can compute instance-specific
metrics for both training and test points in a principled way.
The soundness of our approach is supported theoretically
by a generalization bound, and we showed in experimental
studies that the proposed methods improve upon state-of-
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the-art algorithms in terms of accuracy and scalability.
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