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Abstract

Image similarity search plays a key role in many mul-
timedia applications, where multimedia data (such as
images and videos) are usually represented in high-
dimensional feature space. In this paper, we propose a
novel Sparse Online Metric Learning (SOML) scheme
for learning sparse distance functions from large-scale
high-dimensional data and explore its application to
image retrieval. In contrast to many existing distance
metric learning algorithms that are often designed for
low-dimensional data, the proposed algorithms are able
to learn sparse distance metrics from high-dimensional
data in an efficient and scalable manner. Our experimen-
tal results show that the proposed method achieves bet-
ter or at least comparable accuracy performance than
the state-of-the-art non-sparse distance metric learning
approaches, but enjoys a significant advantage in com-
putational efficiency and sparsity, making it more prac-
tical for real-world applications.

Introduction

With the popularity of social media applications, recent
years have witnessed an explosive growth of multimedia
data on the Internet. For many real-world multimedia appli-
cations, image similarity search is a fundamental research
task that has been actively studied for many years in sev-
eral communities. The key challenges of this research are
mainly twofold. The first is to design effective feature rep-
resentation, and the second is to study effective and efficient
distance/similarity functions over the feature space. For the
feature representation, researchers in multimedia and com-
puter vision have proposed a variety of effective features
for content-based image retrieval (Smeulders et al. 2000;
Rahmani et al. 2008) in the past decade. Examples in-
clude global features: color, texture and shape (Gevers and
Smeulders 2000), and local features: SIFT feature descrip-
tors (Lowe 1999; 2004; Mikolajczyk and Schmid 2005;
Quelhas et al. 2007; Zhang et al. 2007) and SURF feature
descriptors (Bay, Tuytelaars, and Gool 2006) as well as their
Bag-of-Words (BoW) representation (Fergus et al. 2005;
Wang, Zhang, and Li 2006; Bosch, Mufioz, and Marti 2007,
Jiang et al. 2010; Jegou, Douze, and Schmid 2010; Wu,
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Hoi, and Yu 2010; Luo, Wei, and Lai 2011). For dis-
tance/similarity functions, a variety of schemes have been
proposed in multimedia and computer vision. The most
widely used examples include Cosine similarity and Eu-
clidean distance, both of which assume a rigid similarity or
distance function in some vector space which are often opti-
mal for the applications.

Instead of using rigid distance/similarity functions, Dis-
tance Metric Learning (DML) techniques (Yang and Jin
2006) have been actively explored to optimize distance met-
rics in various applications, such as image retrieval (Yang et
al. 2010; Hoi, Liu, and Chang 2008), image annotation (Wu
et al. 2011), and pose and facial expression matching (Zhai
et al. 2012), etc. Specifically, the goal of DML typically is
to optimize the Mahalanobis distance or parametric bi-linear
similarity function between two data instances, which are
mathematically expressed as respectively:
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where x;,x; € R™ and M € R™*™ must be positive
semi-definite to satisfy the properties of a distance metric.
A variety of DML learning algorithms have been proposed
to find an optimal Mahalanobis matrix M from the train-
ing data. However, most existing DML algorithms are de-
signed to learn distance metrics in low-dimensional feature
space, and are computationally inefficient and non-scalable
for high-dimensional data, making them unsuitable for real-
world image retrieval applications.

To tackle the above challenge, we propose a novel Sparse
Online Metric Learning (SOML) scheme for learning sparse
distance metrics from high-dimensional data and explore
its application to image retrieval. In particular, we propose
to tackle the problem of online distance metric learning
in high-dimensional space by employing recent advances
in Sparse Online Learning techniques in machine learn-
ing (Langford, Li, and Zhang 2009; Xiao 2010), which are
able to learn a sparse distance metric from pairwise high-
dimensional training data in a highly efficient and scalable
manner. We apply the proposed SOML technique to op-
timize the (high-dimensional) Bag-of-Words (BoW) repre-
sentation of images in content-based image retrieval, and
conduct extensive experiments by comparing with some

Sm(xi, %)



state-of-the-art solutions, in which the proposed SOML
method is able to achieve comparable or sometimes even
better accuracy, but enjoys a significant advantage in spar-
sity and computational efficiency, making it more practical
for real-world applications. In summary, the main contribu-
tions of this paper include:

e We present a novel Sparse Online Metric Learning
(SOML) method for learning sparse distance metrics from
large high-dimensional data.

e We propose two sparse online metric learning algorithms
and explore their applications for optimizing the high-
dimensional BoW representation in image retrieval.

e We conduct extensive experiments by comparing the pro-
posed algorithms with the state-of-the-art method for op-
timizing the BoW representation in image retrieval.

The rest of this paper is organized as follows. We first
briefly review related work, and then present the problem
formulation and the proposed algorithms for Sparse On-
line Metric Learning (SOML) with application to image re-
trieval. We further discuss our experimental results, and fi-
nally conclude this paper.

Related Work

Our work lies in the intersection of machine learning and
multimedia information retrieval. In this section, we briefly
review two major categories of related work in machine
learning, multimedia and computer vision.

Distance Metric Learning

Our work is closely related to Distance Metric Learn-
ing (DML), which has been extensively studied in ma-
chine learning, multimedia and computer vision communi-
ties (Yang and Jin 2006). A variety of DML algorithms have
been proposed by following different settings and method-
ologies across different communities. In terms of training
data formats, most existing DML work can be generally
grouped into two major categories: (i) learning distance
metrics directly from explicit class labels (Weinberger and
Saul 2009) which are common for generic data classifi-
cation tasks, and (ii) learning distance metrics from side
information (either pairwise (Hoi, Liu, and Chang 2008;
Hoi et al. 2006) or triplet constraints (Chechik et al. 2010;
Wu et al. 2013)), which are common for multimedia retrieval
applications (Hoi, Lyu, and Jin 2006).

In terms of learning methodology, most existing DML
methods often adopt batch machine learning approaches.
The major limitation of such learning methodology is that
the metric has to be re-trained from scratch whenever there
is new training data. In recent years, some emerging DML
studies have explored online learning techniques to tackle
DML tasks (Jain et al. 2008; Chechik et al. 2010). Our work
also follows the online learning methodology (Hoi, Wang,
and Zhao 2014) to tackle DML tasks.

Despite a variety of DML techniques proposed in the liter-
ature, one common issue with the existing DML approaches
is that they often learn a full matrix from low-dimensional
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data or sometimes learn a dense diagonal matrix from high-
dimensional data. Such approaches often result in compli-
cated optimization tasks, making them hardly scalable for
very high-dimensional data. Besides, learning a full matrix
or a dense diagonal matrix for distance metrics also will lead
to high computational cost when calculating the distance in
the final applications. Unlike the existing DML approaches,
our goal is to study a highly efficient and scalable online
learning scheme for learning sparse distance metrics from
very high-dimensional data.

Sparse Online Learning

Our work is also related to sparse online learning in ma-
chine learning (Langford, Li, and Zhang 2009; Duchi and
Singer 2009), which aims to induce sparsity in the model
learned by an online learner. Mathematically, sparse online
learning can be formulated as formal online optimization
tasks with convex objective functions and some sparsity-
promoting regularizer (Duchi and Singer 2009). A variety
of algorithms have been proposed to resolve such online op-
timization tasks efficiently. In terms of different optimiza-
tion principles, there are two major groups of sparse online
learning algorithms.

The first group follows the general idea of subgradient
descent with truncation also known as the Truncated Gradi-
ent (TG) for short. For example, FOBOS (Duchi and Singer
2009) adopts a traditional subgradient descent step followed
by an instantaneous minimization that keeps close to the
update with a sparsity-promoting penalty. By arguing that
the truncation at every iteration is too aggressive, an im-
proved TG method (Langford, Li, and Zhang 2009) is pro-
posed, which truncates coefficients every step only when
the coefficients exceed a predefined threshold. The second
group of algorithms is based on the idea of Dual Averag-
ing (DA) methods for sparsity-inducing online optimization
(Xiao 2010). For instance, (Xiao 2010) extends the simple
dual averaging scheme by proposing the regularized dual av-
eraging (RDA) algorithm, which uses a much more aggres-
sive truncation threshold and is able to generate significantly
sparser solutions.

Despite active study, most existing work focuses on learn-
ing classifiers for online classification tasks. In this work, we
extend sparse online learning techniques for solving DML
tasks, where the training data is given in the form of triplet
constraints. In our framework, we explore both truncated
gradient and dual averaging based algorithms to tackle our
sparse online metric learning problem.

Sparse Online Metric Learning
Problem Formulation

We address the fundamental problem of distance metric
learning from side information (pairwise or triplet image
relationship) towards image retrieval applications. To for-
mulate the metric learning task, we denote the similarity
function between any two images x;,x; € R™ by nota-
tion S(x;,x;) and assume a collection of training data in-
stances are given sequentially in the form of triplet instances
{(xi,x],x;),i = 1,---,n}, where each triplet instance



indicates the triplet relationshlp of three i images, i.e., image
x; is more similar to image x; than i image x; ,and n is
the total number of triplets. The goal is to learn a similar-
ity function S(-, -) which can produce the similarity values
always satisfying the triplet constraints as follows:

S(XZ) ) > 1+S(X’La )7

where 1 is a margin constant to ensure that S(x;,
ficiently larger than S(x;,x; ).

In this paper, we aim to explore DML techniques for
image retrieval applications, where images are often rep-
resented as a Bag-of-Words (BoW) feature vector in high-
dimensional space. Thus, we consider the problem of online
metric learning with a linear similarity function S defined
as:

Vxl,x x;, €X Q)

x;) is suf-

“
where M € R™>*™ 1t is not difficult to see that the above
similarity function reduces to cosine similarity when choos-
ing M as an identity matrix and assuming instances are of
unit norm.

Given the above similarity function and the constraint in
(3), we can formulate the problem of distance metric learn-
ing as a convex optimization task

mlvlln;ﬁ((xi,x X; );

where r(M) is some convex regularization term (e.g.,
sparsity-promoting regularizer) that limits the model com-
plexity, A > 0, and the loss function £ is based on the hinge
loss defined as:

E((xi,xj,x;);l\/[)—max(()l Sm(xiX; )—I—SM(XZ, 7)) (6)

Minimizing the above loss is equivalent to minimizing the
violations on the constraints defined in (3).

The above optimization is a batch learning formulation
with a full matrix M of space complexity O(m?), which
poses a huge challenge when handling high-dimensional
data. In order to deal with very high-dimensional image data,
we simplify the DML problem by considering the metric
defined by a diagonal matrix, i.e., M = diag(w), where
w € R™. We can rewrite the loss function L into:

L((xi,xF x;);w) =max(0,1—Sy(x; X ) +Sw(xix; ) (7)

where Sy (x;,%;) = x/! diag(w)x,. We can now give the
online learning formulation as follows.

By following online learning settings (Hoi, Wang, and
Zhao 2014), we assume a triplet instance (x;, x; , X; ) is re-
ceived at every step £ = 1,--- ,n. The goal of Sparse On-
line Metric Learning (SOML) is to sequentially update the
metric M = diag(w) by solving the following online opti-
mization:

Sm(xi,%;) = x] Mx;

M) + Ar(M) 5)

w) + Ar(w)  (8)
where r(w) is a sparsity-promoting regularizer which is
based on the ¢;-regularizer, i.e., r(w) = ||w]|; in our ap-
proach. In the following, we present two efficient algorithms
to tackle the above optimization task of online sparse metric
learning for handling very high-dimensional data.

Wii] < arg rx&nﬁ((xt,xj,x;);
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SOML-TG: Sparse Online Metric Learning via
Truncated Gradient Algorithm

We first attempt to solve the SOML problem by exploring
the Truncated Gradient (TG) based technique (Langford, Li,
and Zhang 2009), which extends the online gradient descent
with truncation tricks.

Specifically, consider an online optimization with the ob-
jective function in (7), a simple online gradient descent
(OGD) method for ¢;-regularization makes an update:

Wil & Wi — nVﬁwf

€))

where V Ly, is a sub-gradient of £ with respect to w¢. 7 > 0
is a learning rate parameter, and \ > 0 is a regularization
parameter. This method however does not generate sparse
weights online.

In order to produce sparse weights at every online step,
we extend the OGD rule by applying the Truncated Gradient
approach which performs the following truncation update:

NV L, NAL) (10)

— nAsgn(wy)

Wil $— Tl (Wt —

where A > 0 and 7 is the learning rate, and 73 (v,a) =
[Ty (v1, @), Th(ve, @), -+, T1(Vm, @)] is a truncation func-
tion in which each dimension is defined as

) max(0,v; —a), ifv; >0
Ti(vj, @) = { min(0,v; + ), otherwise an
By taking the specific form of VL,y,, we have

W1 Ti(w = nx © (%7 — %)) 12)

where © denotes an elementwise product of two vectors.
The above update tries to promote sparsity for the OGD so-
lution w; —nV Ly, by performing truncation with threshold
nA¢. Finally, Algorithm 1 summarizes the details of the pro-
posed Sparse Online Metric Learning via Truncated Gradi-
ent (SOML-TG) algorithm.

Algorithm 1 SOML-TG—Sparse Online Metric Learning
via Truncated Gradient
Input: Training Triplets: (x,x;7,x; ), t=1,...,
Output: The weight vector w.

1: Initialize wy = 0; a = g\

2: repeat

n.

3:  Receive a triplet instance (x;,x;",x; ),
4 Sufferloss £((x¢,x;",x; ); w;) measured by (7)
5. if £((x4,x,%x; );wy) > 0 then

6: v=w, —nx O (x5 —x;)];

7: for j=1 to m do

8: if v; > 0 then

9: wii1,; = max(0,v; — a);

10: else

11: Wit1,; = min(0,v; + a);

12: end if

13: end for

14:  endif

15: until CONVERGENCE




SOML-DA: Sparse Online Metric Learning via
Dual Averaging Algorithm.

Our second solution is to explore Nesterov’s Dual Averag-
ing (DA) method (Nesterov 2009) and its extensions (Xiao
2010) to tackle the sparse online metric learning problem,
which attempts to exploit all past subgradients of the loss
function and the whole regularization term, instead of only
its subgradient by the truncated gradient approaches.

Specifically, when receiving a triplet instance
(x¢,x;7,x;) at each online step, we update the weight
vector by exploring a regularized dual averaging method
with ¢ -regularization as follows:

t
!
Wiy argming S (VL W)+ W]+ [wF(13)

.
i=1 2Vt
where VL, is a subgradient of £ at the i-th online step,
and %||w||? is an auxiliary strongly convex function. ); is a
truncating threshold A\; = \ + %, and A\ > 0,y > 0 and
p > 0 are sparsity-promoting parameters. lt is a nonnega-
tive and decreasing input sequence to ensure that the impact
by the auxiliary function decreases with time. In online im-
plementations, we maintain an average gradient V; at the
t-th step:

- t—1-= 1

Vt Tvtfl + Evtﬁwt
t—1- 1 _
Tvtfl + X O —x)

(14)
(15)

Using the above notation, we can derive the closed-form so-

lution of wy 1 = [W,E_li_)l, . ,wgfl)] for optimizing (13) as:

7 07
wg:{_ﬁ
/

if [V,"] < A,

(V_t(i) — )\tsgn(V_t(i))), otherwise
(16)
where )\, is a truncating threshold A\, = A + 77’%, and p >
0 is the sparsity-promoting parameter. Finally, Algorithm 2

summarizes the details of the proposed Sparse Online Metric
Learning via Dual Averaging (SOML-DA) algorithm.

Experiments

In our experiments, we investigate the application of the pro-
posed sparse online metric learning technique for improving
the Bag-of-Words (BoW) representation in image retrieval
tasks. In the following, we first introduce the experimental
testbed and setup, followed by discussing the detailed exper-
imental results.

Experimental Testbed and Setup

In order to examine the efficacy of the proposed sparse
online metric learning scheme, we compare the following
schemes for image retrieval in our experiments:

o TF-IDF: the commonly used TF-IDF scheme for weigh-
ing the BoW representation (Baeza-Yates, Ribeiro-Neto,
and others 1999);
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Algorithm 2 SOML-DA—Sparse Online Metric Learning
via Dual Averaging Algorithm
Input:

1: Training Triplets: (x,x;",x; ), ¢

2: Input parameters: v > 0, p > 0
Output: The final weight vector w,, .

3: Initialize wq; = 0,Vy =0

4: repeat

5. Receive a triplet instance (x;, x;", x; ),
Suffer loss £((x¢,x;",x; ); w;) measured by (7)
Compute V, = =1V, 4+ 1x, O (xf —x;)
Compute \; = X\ + yp/\/t
9: if L((x4,x;,%x; );ws) > 0 then

1,...

,n

® 2D

10: for j=1 to m do

11 if [V, < ), then

12: ng)l = Os

13: else ) )
14: wgi)l = —%(vt 7 Aesgn(V, J )),
15: end if

16: end for

17:  end if

18: until CONVERGENCE

e QPAO: a state-of-the-art codebook learning ap-
proach (Cai, Yan, and Mikolajczyk 2010) which
formulates it as quadratic programming (QP) and adopts
Alternating Optimization (AO) to solve it.

e OASIS: Online Algorithm for Scalable Image Similarity
(OASIS) (Chechik et al. 2010), a state-of-the-art algo-
rithm for online metric learning.

e SOML.: the two proposed sparse online metric learning
algorithms: SOML-TG and SOML-DA, which denote by
“S-TG” and “S-DA” for short.

Following previous studies, we adopt the “Oxford5K” im-
age dataset, a well-known public dataset for image retrieval
benchmarks. This dataset contains a total of 5,062 images
for 11 Oxford landmarks with manually annotated ground
truth. We follow the same experimental settings used in pre-
vious studies, where 5 images per landmark are used for
each query. The mean Average Precision (mAP) is employed
as the performance metric for evaluating the retrieval results.
We learn distance/similarity metrics for each landmark with
7 randomly selected positive images and 500 negative im-
ages, which generates a total of 21,000 (= 7 x 6 x 500)
triplet instances. The remaining 4,555 images are used for
testing/retrieval. We evaluate the list of compared algorithms
on 7 landmarks out of 11 and exclude another 4 landmarks
because they simply have too few training examples to learn
by the algorithms. The same setting was also adopted by the
previous codebook learning study in (Cai, Yan, and Mikola-
jezyk 2010). Finally, for the BoW representation of images,
we use SIFT for feature descriptors, and Approximate K-
means (AKM) clustering to generate different-sized code-
books in three scales: 10,000, 100,000, and 1-million.



For parameter settings, we set the parameters for the three
different-sized codebooks (10,000, 100,000, and 1-million)
are: L = 0, M = 10%, 50 subsets; L = 0, M = 10°, 50
subsets; and L = 0, M = 10, 500 subsets for QPAO (Cai,
Yan, and Mikolajczyk 2010). For OASIS, the parameters are
C = 0.1 and 10° training steps with different-sized code-
books. For SOML-TG algorithm, we set parameters n = 1,
A = 1075 for all the codebooks respectively. For SOML-
DA algorithm, we set parameters v = 10~4, p =1, and
A = 107° with the three different-sized codebooks respec-
tively.

Experimental Results

We first evaluate the retrieval quality of different schemes,
and then evaluate the sparsity of the learned weights as well
as the computational efficiency of the different algorithms.

Evaluation of Mean Average Precision Table 1, Table 2,
and Table 3 show the evaluation of mAP performance by
different schemes. We draw several observations from the
experimental results.

First of all, we observe that all learning-based schemes
are able to outperform the TF-IDF scheme without learn-
ing for most cases. This shows the efficacy and importance
of optimizing the BoW representation by applying machine
learning techniques in exploiting side info/training data.

Table 1: Comparison of mean Average Precision (%) on Ox-
ford5K dataset with 10,000-sized codebook.

Category TF-IDF | QPAO | OASIS | S-TG | S-DA
all souls 40.60 57.42 52.72 | 56.68 | 45.50
ashmolean 30.66 30.02 33.03 30.79 | 35.90
bodleian 30.11 68.28 65.13 64.66 | 74.53
christ church 46.35 45.79 43.41 5343 | 52.42
hertford 31.16 51.47 42.18 | 44.30 | 35.93
magdalen 5.92 8.86 9.34 12.12 | 17.55
radcliffe camera | 52.22 82.44 75.12 | 80.68 | 74.71
mAP 33.86 49.18 45.85 48.95 | 48.08

Table 2: Comparison of mean Average Precision (%) on Ox-
ford5K dataset with 100,000-sized codebook.

Category TF-IDF | QPAO | OASIS | S-TG | S-DA
all souls 58.17 93.92 75.22 | 91.58 | 88.70
ashmolean 44.96 42.78 47.68 40.15 | 41.12
bodleian 49.06 86.02 7136 | 83.07 | 83.42
christ church 52.08 70.74 50.97 | 59.73 | 59.04
hertford 53.51 63.93 57775 | 63.41 | 60.44
magdalen 11.29 10.99 12.96 9.63 | 18.42
radcliffe camera 70.51 82.19 76.92 | 76.69 | 76.43
mAP 48.51 64.37 56.13 | 60.61 | 61.08

Table 3: Comparison of mean Average Precision (%) on Ox-
ford5K dataset with 1 million-sized codebook.

Category TF-IDF | QPAO | OASIS | S-TG | S-DA
all souls 53.96 6299 | 55.03 | 62.71 | 63.57
ashmolean 53.86 48.77 5345 | 48.63 | 51.53
bodleian 66.88 90.21 70.57 | 84.17 | 83.47
christ church 56.67 65.36 | 57.34 | 61.10 | 61.10
hertford 72.00 68.66 | 7536 | 79.24 | 82.78
magdalen 18.98 15.63 19.24 8.79 9.77
radcliffe camera | 64.43 6294 | 65.04 | 58.03 | 61.85
mAP 55.25 59.23 | 56.58 | 57.53 | 59.15
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Second, we found that the batch learning approach,
QPAO, achieved overall better retrieval performance than
OASIS that is an online metric learning scheme. This is
not too surprising since QPAO solves a batch optimization
which thus might get better solution, while all online algo-
rithms (OASIS and our algorithms) only learn from a single
pass of the triplet instance sequence.

Further, by examining the two proposed algorithms (S-TG
and S-DA), we found that their overall retrieval performance
is better than OASIS, which indicates the proposed online
metric learning algorithm with sparsity is potentially more
effective than the existing online metric learning without ex-
ploiting sparsity. Moreover, by comparing with QPAO, we
found that our algorithms are in general fairly comparable
for most cases, and sometimes even better than QPAO (e.g.,
on the scenario with the 10,000-sized codebook). This en-
couraging result validates the efficacy of the proposed learn-
ing scheme for improving the BoW performance.

Finally, the two proposed algorithms (S-TG and S-DA)
achieve very comparable retrieval performance in which S-
DA tends to slightly outperform S-TG.

Evaluation of Sparsity of the Learned Weights The
sparsity of BoW plays a critical role for large-scale content-
based image retrieval systems, especially in the phases of
image indexing and retrieval. A sparse BoW model not only
can speed up the indexing and retrieval process, but also can
save a significant amount of storage cost. Below we measure
the sparsity of the learned weights by different algorithms,
i.e., the number of zero values in the learned weight vectors.

Table 4: Comparison of sparsity (%) of learned weights by
different approaches with 10,000-sized codebook.

Category QPAO | OASIS | S-TG | S-DA
all souls 44.99 0.00 22.36 | 64.54
ashmolean 40.16 0.00 25.10 | 74.49
bodleian 35.80 0.00 77.43 | 93.43
christ church 31.91 0.00 32.08 | 76.92
hertford 43.19 0.00 22.87 | 61.82
magdalen 47.59 0.00 19.62 | 52.61
radcliffe camera | 43.37 0.00 40.48 | 75.53

Table 5: Comparison of sparsity (%) of learned weights by
different approaches with 100,000-sized codebook.

Category QPAO | OASIS | S-TG | S-DA
all souls 0.02 0.00 90.64 | 97.82
ashmolean 0.02 0.00 86.37 | 98.11
bodleian 0.02 0.00 95.25 | 98.82
christ church 0.01 0.00 91.42 | 98.87
hertford 0.00 0.00 92.99 | 97.56
magdalen 0.04 0.00 82.26 | 97.04
radcliffe camera 0.01 0.00 93.47 97.18

Table 4, 5 and 6 show the sparsity evaluation of the
learned weights by different learning approaches with
10,000-sized, 100,000-sized, and 1 million-sized codebook.
Note that we use a small threshold 1E-10 to check if a value
is zero or not. We can draw some observations from the re-
sults.

First, we found that OASIS fails to produce sparse
weights for most cases, especially for large-sized code-



Table 6: Comparison of sparsity rate (%) of learned weights
by different approaches with 1 million-sized codebook.

Category QPAO | OASIS | S-TG | S-DA
all souls 0.00 0.00 99.51 | 99.88
ashmolean 0.00 0.00 99.30 | 99.96
bodleian 0.00 0.00 99.65 | 99.85
christ church 0.00 0.00 99.67 | 99.97
hertford 0.00 0.00 99.77 | 99.90
magdalen 0.00 0.00 99.06 | 99.96
radcliffe camera 0.00 0.00 99.51 99.82

books. QPAO is able to produce reasonably sparse weights
on the 10,000-sized codebook, but also fails when the code-
book size is large. By contrast, the two proposed algorithms
(S-TG and S-DA) are able to produce sparse weights for all
the cases. In particular, it seems the larger the codebook size,
the higher the sparsity achieved by the proposed algorithms.
Finally, by comparing the two proposed algorithms them-
selves, S-DA generally achieves better sparsity than S-TG
for most cases primarily because it exploits all past subgra-
dients and thus is a better approach for achieving sparsity.

Evaluation of Computational Cost Our last experiment
is to evaluate the empirical computational cost of the differ-
ent schemes. Table 7, Table 8 and Table 9 show the compar-
isons of training time costs by different learning schemes on
three different-sized codebooks.

Table 7: Evaluation of training time cost (seconds) by differ-
ent schemes with 10,000-sized codebook.

Category QPAO OASIS | S-TG | S-DA
all souls 298 x10° | 1791 | 883 | 7.85
ashmolean 2.51x10% | 1734 | 6.61 | 6.46
bodleian 2.94 x 10° | 14.64 | 851 | 8.92
christ church | 1.89 x 10® | 13.77 | 3.71 | 3.56
hertford 2.74 x 10% | 1827 | 6.95 | 5.58
magdalen 2.49 x 10° 17.75 6.23 5.69
radcliffe camera | 2.93 x 10° | 16.82 | 7.09 | 7.69

Table 8: Evaluation of training time cost (seconds) by differ-

ent schemes with 100,000-sized codebook.

Category QPAO OASIS | S-TG | S-DA
all souls 3.03x 10° | 74.01 | 238 | 1.76
ashmolean 2.63 x 103 73.03 1.64 1.14
bodleian 3.80 x 10° | 68.48 | 3.57 | 2.92
christ church | 1.95 x 10° | 69.08 | 0.99 | 0.92
hertford 2.87 x 10° | 7378 | 2.10 | 1.54
magdalen 3.05 x 10° | 7459 | 191 | 1.26
radcliffe camera | 2.97 x 10® | 7545 | 2.68 | 1.81

We can draw some observations from the experimental re-
sults. First of all, we can see that QPAO is the least efficient
algorithm due to its QP formulation. Although QPAO has
solved the QP problem by an efficient alternative optimiza-
tion scheme, it remains inefficient when handling very high-
dimensional data (e.g., I-million scale). Second, OASIS is
far more efficient than QPAO on relatively lower dimen-
sional space since OASIS is an online algorithm whose time
complexity is in general linear with respect to the sample
size and dimensionality. However, when handling very high-
dimensional data (e.g., on the 1-million sized codebook),
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Table 9: Evaluation of training time cost (seconds) by differ-

ent schemes with 1 million-sized codebook.

Category QPAO OASIS S-TG | S-DA
all souls 238 x10% [ 1.26 x 10 | 1.34 | 1.40
ashmolean 244 x 10* | 1.25 x 10® | 1.14 | 1.01
bodleian 1.94 x 10* | 1.24 x 10® | 2.24 | 2.02
christ church | 2.17 x 10* | 1.25 x 10®> | 0.99 | 0.94
hertford 219 x 10* | 1.26 x 10> | 1.65 | 1.72
magdalen 2.28 x 10* | 1.26 x 10®> | 1.05 | 1.09
radcliffe camera | 2.22 x 10* | 1.26 x 10> | 1.65 | 1.72

OASIS becomes inefficient as the dimensionality plays a
dominating factor.

By contrast, the proposed algorithms are far more effi-
cient and scalable than both QPAO and OASIS due to the
proposed sparse online learning strategy. Finally, unlike the
other two algorithms, it is interesting observe that increas-
ing the dimensionality does not lead to increasing the time
cost of the two proposed algorithms. This seems counter-
intuitive but is not difficult to explain. This is because our
algorithms always learn sparse weights in the online learn-
ing processes, and thus the time complexity of our algorithm
depends on how many non-zero elements are in the training
data instead of the dimensionality. This encouraging result
again validates the efficiency and advantage of the proposed
sparse online metric learning technique for large-scale real-
world applications.

Conclusions

This paper presented a novel Sparse Online Metric Learning
(SOML) scheme, aiming to make metric learning efficient
and practical for handling very high-dimensional data. In
particular, we explored the recent advances of sparse online
learning for resolving the proposed distance metric learn-
ing problem, and presented two specific Sparse Online Met-
ric learning (SOML) algorithms based on two different op-
timization solutions: truncated gradient based and dual av-
eraging based algorithms. We investigate the application of
the proposed SOML technique for improving the sparse and
high-dimensional Bag-of-Words representation in image re-
trieval tasks. Our empirical results showed that the proposed
SOML method is able to achieve comparable retrieval re-
sults in comparison to state-of-the-art approaches, but enjoys
a significant gain in terms of model sparsity and computa-
tional cost, making our technique more practical for real-
world applications. Future work will improve the current
scheme by exploring more advanced sparse online learning
techniques.
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