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Abstract

Multiple Instance Learning (MIL) is a popular learning
technique in various vision tasks including image clas-
sification. However, most existing MIL methods do not
consider the problem of insufficient examples in the given
target category. In this case, it is difficult for traditional
MIL methods to build an accurate classifier due to the
lack of training examples. Motivated by the empirical
success of transfer learning, this paper proposes a novel
approach of Adaptive Knowledge Transfer for Multiple
Instance Learning (AKT-MIL) in image classification. The
new method transfers cross-category knowledge from source
categories under multiple instance setting for boosting the
learning process. A unified learning framework with a
data-dependent mixture model is designed to adaptively
combine the transferred knowledge from sources with a weak
classifier built in the target domain. Based on this framework,
an iterative coordinate descent method with Constraint
Concave-Convex Programming (CCCP) is proposed as the
optimization procedure. An extensive set of experimental
results demonstrate that the proposed AKT-MIL approach
substantially outperforms several state-of-the-art algorithms
on two benchmark datasets, especially in the scenario when
very few training examples are available in the target domain.

Introduction

With the explosive growth of data on the internet, a huge
amount of images has been generated and thus automatic
image classification has become increasingly important.
Multiple Instance Learning (MIL) (Dietterich, Lathrop,
and Lozano-Pérez 1997; Zhou, Sun, and Li 2009) is a
popular technique in machine learning that addresses the
classification problem of a bag of data instances. In MIL,
each bag contains multiple data instances associated with
input features. The purpose of MIL is to predict labels of
bags based on all the instances in individual bags with the
assumption that a bag is labeled positive if at least one of
the instances is positive, whereas a negative bag is only
composed of negative instances. For image classification,
each image is treated as a bag and different regions inside
the image are viewed as individual data instances.

One major advantage of MIL comes from the fact that in
training process it only requires the label information of a
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bag instead of all individual instances in the bag. However,
due to the label ambiguity issue of individual data instances
in the MIL setting, traditional supervised classification
methods for single instance learning may not be directly
applied. Multiple instance learning methods have generated
promising results in image classification. This is because the
concept/object is usually contained in some certain region of
the image, which is consistent with multiple instance setting.
However, most existing MIL methods do not consider the
problem when the number of training examples in the given
target category is insufficient. In this case, it is difficult for
traditional MIL methods to build accurate classifiers without
sufficient training examples.

To address this problem, this paper proposes a novel
approach of Adaptive Knowledge Transfer for Multiple
Instance Learning (AKT-MIL) in image classification.
The new method transfers cross-category knowledge from
source categories in multiple instance setting for boosting
the learning process in the target domain. The basic idea for
the framework is that the modeling of the target category
can become more effective and simpler with the extra
information contained in the source categories. Our key
observation is that semantic concepts contained in data
instances do not exist independently, since many of them are
closely correlated with each other. Fig.1 shows an example
of several images from three correlated categories, ‘sea’,
‘sand’ and ‘sky’, where instances in these categories appear
concurrently. There exists certain correlation among these
categories, and thus makes it possible to transfer knowledge
across categories.

There are two main challenges in designing the knowl-
edge transfer algorithm in multiple instance setting. Firstly,
how to transfer knowledge across categories? We have no
prior information about the correlations among different
source categories and the target category. Moreover, we
do not know which data instance in the bag represents
the semantic concept in target category. To overcome this
problem, we propose to use label propagation in multiple
instance setting from different source categories to the target
category by exploring the semantic correlation between
categories. Secondly, when to transfer knowledge across
categories? Transfer learning sometimes has detrimental
effects when the knowledge propagation is noisy (Pan and
Yang 2010; Kuzborskij, Orabona, and Caputo 2013). It
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Figure 1: An overview of the proposed AKT-MIL approach.
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could harm the modeling performance of the target category
when transfer learning is used inappropriately. To avoid
potential negative transfer, we propose a data-dependent
mixture model that adaptively adjust the importance for
transferring knowledge.

The main contributions of this paper are: (1) the proposed
AKT-MIL approach intelligently transfers knowledge from
source categories to a particular target category in multiple
instance setting by exploring the semantic correlation among
different categories. (2) an effective iterative coordinate
descent method together with Constrained Concave-Convex
Procedure (CCCP) is proposed in the learning process
as the optimization algorithm. (3) we develop a data-
dependent mixture model that adaptively adjusts the weights
of transferred knowledge from source categories.

Related Work
Multiple Instance Learning

Image classification algorithms based on multiple instance
learning (MIL) model the relationship between labels and
regions (Hu, Li, and Yu 2008; Maron and Ratan 1998; Ray
and Craven 2005; Zhang et al. 2011; Bunescu and Mooney
2007). One major challenge of MIL is the label ambiguity,
i.e., which region contains the semantic concept of the target
category is not known.

Existing MIL algorithms can be divided into two
groups, generative models and discriminative models. Many
generative algorithms predict bag labels by first inferring
the hidden labels of individual instances in the bags. The
Diverse Density (DD) (Maron and Lozano-Pérez 1997)
method defines the DD value of data instances and uses a
scaling and gradient search algorithm to find the prototype
points in the instance space. The EM-DD method in (Zhang
and Goldman 2001) combines the idea of Expectation-
Maximization (EM) with DD to identify the most probable
concept. Many discriminative methods directly predict bag
labels in a large margin framework by using bag-level
features. DD-SVM (Chen and Wang 2004) selects a set of
instances using the DD function to train a SVM classifier
based on the bag-level features. The MI-SVM (Andrews,
Tsochantaridis, and Hofmann 2002) method formulates
MIL as a mixed integer quadratic programming problem
for learning instance and bag labels. In the work of MILES
(Chen, Bi, and Wang 2006), bags are first embedded into
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a feature space defined by all the instances, and then a 1-
norm SVM is built as the bag-level classifier. The MILBoost
algorithm in (Viola, Platt, and Zhang 2005) translates MIL
into the AdaBoost framework.

Recently, an instance selection MIL (IS-MIL) approach
is proposed in (Fu and Robles-Kelly 2009), which selects
one instance per positive bag to represent the concept. A
standard SVM is applied to train the classifier based on
the constructed bag-level features. The multi-label issue in
multiple instance learning is explored in (Xue et al. 2011;
Zha et al. 2008), which simultaneously captures both the
connections between labels and regions and the correlations
among the labels based on hidden conditional random fields.
Most recently, a mixture model approach for MIL (Wang,
Si, and Zhang 2012) has been proposed to handle the multi-
target problem where positive instances may lie in different
clusters in the feature space. The work in (Zhang et al. 2013)
proposes to embed the global features with local features to
learn more accurate classifier. A multi-view MIL method is
proposed in (Zhang, He, and Lawrence 2013) to incorporate
multiple features for boosting the learning performance.

Transfer Learning

In many real world applications, it is expensive or impos-
sible to collect sufficient training examples for building
accurate learning models. One possible way is to extract
knowledge from other related source categories to enhance
the learning process. This method is known as transfer
learning. A comprehensive survey of transfer learning is
summarized in (Pan and Yang 2010).

The work in (Tommasi, Orabona, and Caputo 2010)
designs cross-domain adaptation by constraining the clas-
sification hyperplane in the target domain to be close to
that in the source domain. A two phase transfer approach
proposed in (Yao and Doretto 2010) identifies useful models
from various sources to enhance the modeling of the target
classifier. In work (Raykar et al. 2008), the authors address
the multiple instance multiple task learning problem from a
Bayesian perspective. Recently, the work in (Qi et al. 2011)
proposes a cross-category knowledge transfer method that
explores the knowledge in correlated categories. The cross-
category classifiers are combined to integrate the knowledge
from multiple source categories in an Adaboost framework.
The only work we found using transfer learning in MIL
setting is (Zhang and Si 2009), which directly uses instance
level transfer learning to model the instance label. However,
the semantic correlation among different categories is not
modeled in their work. Moreover, this work does not handle
the problem of when to do the transfer as we discussed
before. Since transfer learning sometimes has detrimental
effects, it is important to determine when the knowledge
should be transferred.

Adaptive Knowledge Transfer Multiple
Instance Learning
Problem Setting and Approach Overview

We first introduce some notation. There are a set of N
training bags (image examples) in the target category. Let



us denote them as: T = {(B;,y;)|¢ = 1,..., N}, where
y, € {+1,—1} is the label of i*" bag. Let B; = {=z;;|j =

,N;}, where T;i; is the jth instance in B; and NV;
1s the number of instances in B;. Denote the sources as
S (Bui,yii)li = 1,...,Nj}forl = 1,...,Lover L
source categories, where IV, is the number of bags in the /*
source and y;; € {+1,—1} is the label of source bag By ;.
We assume that the positive instance in source bag By ;, can
be estimated and denoted as a:l ;1. This can be conducted
by using any instance selection method such as (Fu and
Robles-Kelly 2009; Wang, Si, and Zhang 2012) in an off-
line manner.

The proposed AKT-MIL approach is a unified learning
framework that consists of three components as shown
in Fig.1: (1) A transfer function that propagates useful
knowledge from source categories to the target category
under MIL setting. (2) A weak classifier built in target
category. (3) A combination method to adaptively inte-
grate the transferred knowledge with the weak classifier.
An iterative coordinate descent method with Constrained
Concave-Convex Procedure (CCCP) is designed as the
optimization algorithm for the unified learning framework.
In the rest of this section, we first introduce the three
components respectively and then give the optimization
algorithm. Finally, some analysis on the convergence of the
learning algorithm will be elaborated.

Knowledge Transfer

Existing MIL methods do not leverage knowledge from
various source categories, although the modeling on target
category could be much more effective and accurate by uti-
lizing extra information from source categories. Therefore,
how to transfer knowledge between categories becomes the
key issue. In this work, we propose to directly transfer the
label information from source categories to target category
by exploring their semantic correlation under multiple
instance setting. In particular, a discriminative classifier
fs(B) is defined based on the transfer function 7'r(B, By,;)
to transfers the cross-category labeling information is
constructed as follows:

1 L 1 NL
-7 Z N, Z y1,iTr(B, Bi,s)
1=1 i=1

where y; ; is the label of the i'" bag from [*" source, and
Tr(B, By;) is the transfer function that determines how the
knowledge from a source bag By,; should be transferred to a
target bag B.

There are several important factors to define the transfer
function. Firstly, the binary labels on the two categories can
be different even for a same bag, depending on how they
are collected or labeled. We need to model the semantic
correlation between two different categories. For example,
‘sea’ and ‘sky’ may have high correlation, while the
correlation between‘sea’ and ‘t¢ger’ may be low or even
negative. Therefore, we do not want to transfer knowledge

ey

'If By; is a negative bag, then we use a:;':i to denote its most
positive instance.
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from ‘tiger’ to ‘sea’. Secondly, it is important to measure
the similarity between the two bags in order to propagate
the label information. The reason is it is less likely that
two totally different bags share much related knowledge,
even though they are from two highly correlated categories.
Therefore, the transfer function should also model the
similarity between the two bags. Based on the above
observations, we define the transfer function as:

TT(B,BI’,') = CIS(B,BI’,') )

where ¢; is coefficient representing the semantic correlation
between the target category and the [*" source category.
If two categories are highly correlated, the value of the
corresponding ¢; should also be high. S(B, By ;) measures
the similarity between two bags/images. Previous transfer
learning methods treat the whole image as one instance to
calculate the similarity, which may introduce noise from the
background regions. Therefore, instead of using the whole
image By ;, we use the positive instance :L‘Z':i which contains
the semantic concept of the source category to calculate the
similarity between two bags as:

3)

where o2 is the band width parameter. s(B ,x;"'i) actually
defines the similarity by Choosing the closest instance in

B to the positive instance z . The idea is that the closest

instance in bag B to the pos1t1ve instance a:?"i carries the

maximum amount of information, while the other instances
in B might be irrelevant ones (backgrounds) to calculate the
similarity. Intuitively, for example, assume B is an image
from the target set ‘sea’ and By ; is an image from the source
category ‘sky’. The label y; ; should be transferred to image
B, if ‘sea’ and ‘sky’ are highly correlated and image B
contains a region of ‘sky’ in it. In this case, it is very likely
that the target concept ‘sea’ will also appear in image B.

The major difference between our transfer function and
those defined in previous transfer learning work (Qi et al.
2011; Wang et al. 2011) is that we transfer the knowledge
from sources to target under multiple instance setting by
choosing the positive instance inside each source bag to
calculate the similarity, while previous methods treat the
whole bag as one instance, which may introduce noisy
knowledge propagation since only the positive instance of
a bag contains the semantic concept.

Substituting Eqn.2 and Eqn.3 into Eqn.1, we have:

L N;

%Z;] ZyzzClSBﬂﬁh)

=1 i=1
s(B :1:“ L
T
—E 122 tpici=c tp
=1
S v s(Bay)

here we use tp; to denote N, . Note that tp ;
can be pre-calculated and combined into a vector tg =
[tB1,tB2,-.-,tB L] € = [c1,C2,...,cy] is the correlation
vector.

||$] - xl 1,”2

S(B,By;) = s(B, :lrh) = max exp 5

x;EB o

fs(B)
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Weak Classifier

Traditional MIL methods build bag classifier solely based
on the training examples from target category. In this paper,
we build a weak classifier on the target category as:

&)

here w is the linear classifier on instances and we assume
that the bias has already been absorbed into feature vectors.
The most positive instance in bag B is used to represent
the bag, which is consistent with multiple instance setting.
Note that we call this ‘weak’ classifier due to the situation
of few training examples in target category. Although there
are several alternatives to define the classifier for the target.
The reason we choose this form is to reduce the complexity
of the resulting optimization problem.

B) = Tx;
fr(B) = maxw’z;

Adaptive Learning

Transfer learning sometimes has detrimental effects. When
transfer learning is used inappropriately, it would harm the
modeling performance of the target category. For example, a
bag in the target category may contain instances with strong
evidence indicating that this bag is obviously a positive bag,
or the weak classifier in the target category may be well
learned with sufficient training examples. In such cases, the
weak classifier in the target category should be assigned
more weight. On the other side, if there are very few training
examples or the concept is too complex to be learned by the
weak classifier, then more weight should be assigned to the
transferred knowledge from source categories.

Therefore, to avoid negative effects in transfer, we
propose a data-dependent mixture model that combines the
transferred label knowledge from source categories with
the weak classifier by adaptively adjusting their weights as
follow:

f(B) = (1-Ag)fs(B) + A fr(B) (©6)
where 0 < Ap < 1is a data-dependent convex combination
coefficient that balances the two terms. We propose to use a
logistic function to model the combination coefficient as:
B 1
"1+ eap(—0Tz4.)

here @ is the model parameter and ;- =arg max,;cp W' ;
is the most positive instance in bag B. The data-dependent
mixture model enables us to adaptively integrate the
transferred knowledge with the weak classifier into a unified
learning framework.

AB @)

Objective and Optimization

Given the combined classifier f(B) in Eqn.4, 5 and 6, we
formulate the learning problem to minimize the following
objective:

N
. 2 2 2

m w c 7] ;

Jaig, alwl’ + Slell + 71617 + 3

st. Vie{1,2,...,N}, & >0 (3)

Yi <(1 — A, )c"tp, + A, max'waij) >1-¢
J

1337

here &; is the classification loss on the i*" training bag in
the target set 7. We adopt hinge loss due to its superior
performance in classification problem. «, 3 and ~ are the
trade-off parameters.

Directly minimizing Eqn.8 is intractable (Wang, Tao,
and Di 2010), as many model parameters are coupled
together and the formulation is a non-convex non-smooth
optimization problem. An iterative coordinate descent
method is employed to solve this problem. In particular,
we optimize the objective function with respect to different
parameters alternatively by the following two steps.

Step 1: Fix w and c, update 6. Given w and ¢, the
resulting optimization problem becomes:

N
rgign’vll0H2+Z&
’ i=1
st Vie{1,2,...,N}, &>0
1
1+ exp(—0Tx;j+)

€))

> a; + bi&;

where a; and b; are some constants which are computed
using current w and ¢. The above objective is still non-
convex due to the logistic function in Ap,. However,
it is differentiable with respect to 6 and thus can be
solved efficiently using methods such as successive linear
programming (Nocedal and Wright 2006).

Step 2: Fix 6, update w and c. Given 6, the objective
function can be written as:

N
: 2 2 )
min alfw]” + Blle] +§&
st. Vie{l,2,....N}, & >0 (10)
Y <(1 — )\i)CTtBi + A\ Inawa:I:,-j) >1-¢&
J

It is still a non-smooth optimization problem. But the form
is less complicated than the problem in Eqn.8. There are
multiple ways for solving the non-smooth optimization
problems, such as Constrained Concave-Convex Procedure
(CCCP) (Yuille and Rangarajan 2003) and bundle method
(Bergeron et al. 2012). Due to the popularity of CCCP,
we decompose this non-smooth problem into a series of
smooth and convex sub-problems by CCCP. More precisely,
CCCP iteratively computes w® and ¢® from w®=1) and
c®=1) by replacing max; w’ z;; with its first order Taylor
expansions at w® D For the t-th iteration of CCCP, the
derived subproblem for solving problem in Eqn.10 is:

N
. 2 2 _
min alfw]* + Bllel|* + ;5

st Vie{1,2,...,N}, & >0
yi (L= N)e"tp, + hw'zije) > 1§

(1)

where j*=arg max; w(t_l)T:L‘,-j represents the most positive
instance in bag B;. The above subproblem is smooth and
convex, which can be solved efficiently with a standard



Algorithm 1 Adaptive Knowledge Transfer Multiple In-
stance Learning (AKT-MIL)

Input: Target set T = {(Bj;,v:)}, Sources sets S
{(Bu,i,y1,;) } and trade-off parameters.
Output: Category correlation ¢, Adaptive transfer parame-
ter @ and Weak Classifier w.
1: Initialize model parameters w and c.
2: Coordinate Descent
3: repeat

4 Step 1: Update 8 by Eqn.9

5: Step 2: Update w and ¢ using CCCP, sett = 0

6: repeat

7: Replace max; 'wT:I:ij with z;;+ using

8: j*=arg max; wtDTg;;

9: Compute w® and ¢® by solving Eqn.11
10: t=t+1
11: until CCCP converges

12: until Coordinate Descent converges

SVM. Through solving a series of subproblems derived
from CCCP, the method is guaranteed to converge to a
local optimal solution of problem in Eqn.10. The complete
coordinate descent method together with CCCP for our
AKT-MIL is shown in Algorithm 1.

Analysis

This section provides some analysis on the convergence
of the learning algorithm. We first prove the convergence
of the optimization algorithm. There are two loops in the
optimization algorithm, an outer loop of coordinate descent
method with an inner loop of CCCP to update w and
c. It has been shown that the coordinate descent method
is guaranteed to converge to a local minimum. This is
because the value of the objective function strictly decreases
during the alternative updating of the parameters. For the
CCCEP iteration, if the selected instances j* in the t-th
iteration are the same as last iteration, then the algorithm will
terminate since the optimization problem of Eqn.11 in t-th
iteration is exactly the same as that in (¢ — 1)-th iteration,
which indicates that w®=w®=1) is the optimal solution.
Otherwise, a different set of instances j* are selected, which
form a different problem and the optimal solution w®
will give a smaller objective value than w®1_ Therefore,
the set of instances selected in each iteration are different
until the optimization algorithm exists. Since there are only
a finite number of possible sets of instances that can be
selected at each iteration, the CCCP will terminate after
a finite number of iterations. For the convergence speed,
both successive linear programming for Eqn.9 and SVM for
Eqn.11 converge very fast. The total computational cost of
the learning algorithm depends on the number of iterations
for coordinate descent and CCCP as well as the initial
value. In our experiments, we have found that the coordinate
descent method usually converges in less than 40 iterations
and CCCP takes 20~40 iterations to converge.
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COREL2000 | NUS-WIDE
AKT-MIL 0.782 0.746
MILEAGE 0.774 0.702
MM-MIL 0.768 0.709
CCCL 0.744 0.703
DKT 0.707 0.671
MITL 0.593 0.606

Table 1: Average AUC results on two benchmarks by
different algorithms.

Experimental Results
Datasets and Setting

The proposed AKT-MIL approach is evaluated with three
configurations of experiments on two benchmark datasets,
COREL?2000 and NUS-WIDE. The COREL2000 (Chen, Bi,
and Wang 2006) dataset includes 2000 images from 20
different categories, with 100 images in each category. This
dataset contains various scenes and objects, e.g., ‘building’,
‘bus’, ‘elephant’ and ‘tiger’. The NUS-WIDE (Chua et
al. 2009) dataset is created by NUS lab as a benchmark
for evaluating image annotation and classification tasks. We
use a subset of 6000 images from this benchmark. These
6000 images form 20 different categories, e.g., ‘mountain’,
‘beach’, ‘sky’ and ‘sea’, with 300 images in each category.

For MIL methods, each image is treated as a bag and
segments of each image are instances. We extract a set
of low-level features from each segment to represent an
instance, including color histogram, color moment, region
size, wavelet texture and shape (Wang, Si, and Zhang 2012).
For transfer learning methods, the whole image is treated
as one instance and the same set of features are extracted
from the image. For each dataset, we randomly select 5
categories as the target categories, and the remaining 15
categories are used as the source categories. During each
experiment, images in the target category are randomly
partitioned into two halves to form the training and testing
sets. Some parameters in our experiment are band width
parameter o2, and the trade-off parameters o, 3 and y. We
use five-fold cross-validation for tuning the optimal values
within the training set. We calculate the average result by
repeating each experiment 10 times.

Evaluation on Different Algorithms

We first compare the proposed AKT-MIL approach with
five different methods, including two multiple instance
learning methods MM-MIL (Wang, Si, and Zhang 2012) and
MILEAGE (Zhang et al. 2013) and three transfer learning
methods CCCL (Qi et al. 2011), DKT (Wang et al. 2011)
and MITL (Zhang and Si 2009) on both two benchmarks.
For CCCL and MILEAGE, linear classifiers are used for
fair comparison. For MM-MIL, the number of clusters is
set to be 3, which shows good performance in their work.
Various evaluation metrics can be used for comparing the
performance. In our experiments, we use average area under
the ROC curve (AUC) measure, which is a widely used
metric in classification tasks.
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Figure 2: Average AUC results on two benchmarks by
varying ration of training examples.

The results of average AUC are reported in Table
1. It is clear that among all of these methods, AKT-
MIL gives the best performance on both datasets. From
the reported results, it can be seen that the proposed
AKT-MIL substantially outperforms both compared MIL
methods. Our hypothesis is that AKT-MIL benefits from the
transferred knowledge in the source categories by exploring
the semantic correlation among different categories, while
traditional MIL methods do not leverage the knowledge
contained in source categories. As seen in Table 1, our
AKT-MIL also achieves higher AUC values than the transfer
learning methods CCCL, DKT and MITL. The reason is
that CCCL and DKT treat the whole image as one instance
and do not take multiple instances into consideration, which
could potentially introduce noisy knowledge transfer and
thus limit their performance. Furthermore, MITL doesn’t
model the semantic correlation among different categories
and has not considered the potential negative transfer effect.

Evaluation on Different Training Ratios

To evaluate the effectiveness of the proposed AKT-MIL
approach with different number of training examples, we
progressively increase the number of training examples
in the target category by varying the training ratio from
{0.2,0.4,0.6,0.8,1} and compare our AKT-MIL approach
with all the other baseline methods on both datasets
described before. The results of average AUC are reported
in Fig.2. From these results we can see that our AKT-
MIL achieves the best performance among all compared
methods on different training ratios. It can be observed
from Fig.2 that the performance of transfer learning methods
(i.e., CCCL, DKT, MITL and AKT-MIL) suffers less with
small ratio of training data in target domain than the other
non-transfer learning methods. The reason is that transfer
learning methods leverage addition information contained in
source categories and the cross-category knowledge could
be considered as meaningful guidance for learning accurate
classifier in the target domain, especially when there are very
few training examples. However, our AKT-MIL consistently
outperforms CCCL and DKT on different training ratios.
We attribute this to the advantage of using multiple instance
learning, since different instances in a bag carry different
information and only one or few instances represent the
semantic concept. Again, MITL does not perform well since
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Figure 3: Average AUC results of different combination
methods on two benchmarks.

it neither models the semantic correlation among different
categories nor considers negative transfer effect.

Evaluation on Adaptive Learning

To evaluate the effectiveness of the proposed adaptive
transfer scheme, we compare three different knowledge
transfer strategies: (1) The proposed adaptive transfer
learning algorithm with data-dependent knowledge transfer
weight Ap. (2) Fixing the knowledge transfer weight Ap to
0.5, which means we treat the two classifiers from target and
source domain equally. (3) Fixing the knowledge transfer
weight Ap to 1, which means we do not transfer any
knowledge from source categories. The comparison results
are shown in Fig.3, which demonstrates the advantage of
the adaptive transfer scheme. As we can see in the figure,
knowledge transfer algorithm with fixed weight sometime
obtains even worse results than the algorithm without
knowledge transfer. Our hypothesis is that the inappropriate
knowledge transfer potentially hurts the performance of
the transfer learning algorithm. Therefore, the adaptive
knowledge transfer model is a critical component in our
unified transfer learning framework.

Conclusion

This paper proposes a novel approach of Adaptive Knowl-
edge Transfer for Multiple Instance Learning (AKT-MIL)
in image classification. The new method leverages cross-
category knowledge for improving the learning process in
the target category by exploring the knowledge contained in
the source categories in multiple instance setting. We design
a unified learning framework with a data-dependent mixture
model, which adaptively combines the transferred knowl-
edge from sources with the weak classifier built in the target
domain. An iterative coordinate descent scheme together
with a Constrained Concave-Convex Procedure (CCCP) is
proposed as the optimization method. Experimental results
on two datasets demonstrate the advantage of the proposed
AKT-MIL approach against several state-of-the-art multiple
instance learning and transfer learning methods. In future,
we plan to develop theoretical analysis of the convergence
rate of the proposed learning algorithm. We also plan to
extend the current binary classification problem to the multi-
label case.
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