Online (Budgeted) Social Choice

Joel Oren
University of Toronto, Canada
oren@cs.toronto.edu

Brendan Lucier
Microsoft Research, New England, USA
brlucier@microsoft.com

Abstract

We consider a classic social choice problem in an online setting. In each round, a decision maker observes a single agent’s preferences over a set of $m$ candidates, and must choose whether to irrevocably add a candidate to a selection set of limited cardinality $k$. Each agent’s (positional) score depends on the candidates in the set when he arrives, and the decision-maker’s goal is to maximize average (over all agents) score.

We prove that no algorithm (even randomized) can achieve an approximation factor better than $O(\log \log m)$. In contrast, if the agents arrive in random order, we present a $(1 - \frac{1}{e} - o(1))$-approximate algorithm, matching a lower bound for the offline problem. We show that improved performance is possible for natural input distributions or scoring rules.

Finally, if the algorithm is permitted to revoke decisions at a fixed cost, we apply regret-minimization techniques to achieve approximation $1 - \frac{1}{2} - o(1)$ even for arbitrary inputs.

Introduction

Suppose that a manufacturer wishes to focus on a selected set of possible products to offer to incoming consumers. On each day a new client arrives, selecting her favorite product among those being offered. However, the client may also express preferences over potential products, including those that are not currently being offered. The manufacturer must then decide whether or not to add new production lines to make available to that consumer, as well as to future consumers. While adding a new product would potentially increase customer welfare, it carries with it some opportunity cost: it would be impractical to offer every possible product, so choices are effectively limited and irrevocable (since new production lines incur substantial overhead). Adding new products may be worthwhile if many future customers would prefer the chosen product as well, though this is not known to the manufacturer in advance. The problem is thus one of online decision-making, where uncertainty of future preferences must be balanced with the necessity of making decisions to realize current gains.

In our study of this problem, we model the underlying restriction on the set of candidates that can be chosen as a cardinality constraint. That is, there is a bound $k$ on the number of alternatives that can be chosen. To model the agents’ valuations, we use a positional scoring rule, given by a non-increasing vector $\alpha$, denoting the score associated with every rank. An agent’s value for a “slate” of items is therefore the score of the maximum rank of any item on the slate at the time of the agent’s arrival. The designer’s goal is to maximize the sum of agents’ scores.

We consider the following three different models for the manner in which the agents preferences are set, arranged in strictly decreasing order of generality:

- **Adversarial model:** the sequence of agent preferences is arbitrary (but non-adaptive, meaning that they cannot depend on the outcome of an algorithm’s randomization).\(^1\)
- **Random order model:** the set of agent preferences is arbitrary, but the order of agent arrival is uniformly random.
- **Distributional model:** The player preferences are drawn independently from a fixed distribution.

For general positional scoring rules, we cannot hope to achieve an arbitrarily good approximation to the optimal (in hindsight) choice of $k$ candidates, even for the random order model. The offline problem is known to be APX-hard, with a tight inapproximability bound of $(1 - \frac{1}{2})$ via a reduction to Max $k$-Cover (Lu and Boutilier 2011). This raises two questions: 1) Can we get close to this offline approximation ratio, in online settings? 2) Are there natural assumptions under which we can attain even better approximations? We examine these questions under the various valuation and input models described above.

Results

We first consider the adversarial model of input. We show that no online algorithm can obtain a bounded competitive ratio: it is not possible to achieve a score larger than an $O(\frac{\log \log m}{\log m})$ fraction of the optimal (offline) score. We prove this lower bound using an indistinguishability argument, and in particular it is independent of computational complexity assumptions. Moreover, this inapproximation bound applies even in the case where $k = 1$ and the positional scoring rule takes values in $\{0, 1\}$.

\(^1\)This adversarial model is also referred to as an “oblivious adversary”, in the online algorithms literature.
Motivated by this negative result, we consider the random order model. We show that for an arbitrary positional scoring function, one can approximate the optimal set of candidates to within a factor of \((1 - \frac{k-1}{e}) k - o(1))\), where the asymptotic notation is with respect to the number of agents. Thus, as \(n\) grows large, our online algorithm achieves approximation factor \(1 - 1/e\), matching the lower bound for offline algorithms (Lu and Boutilier 2011). In the special case \(k = 1\), the regret exhibited by the online selection method vanishes as \(n\) grows large. Our approach is to sample a small number of initial customers, then apply the greedy hill-climbing method for submodular set-function maximization to the empirical distribution of observed preferences. The technical hurdle to this approach is to bound the sample complexity of the optimization problem. We prove that structural properties of the greedy optimization method imply that polynomially many samples are sufficient.

We also show how to improve the competitive ratio to \((1 - o(1))\) for the case where agent preferences are sampled i.i.d. from a Mallows distribution (with an unknown preference ranking). If, in addition, the Borda scoring rule is used, we show how to achieve this improved competitive ratio with only logarithmically many samples.

Moving away from positional scoring functions to arbitrary utility functions, we apply a recent result due to Boutilier et al. (2012) who demonstrated that a social choice function can approximate the choice of a candidate to maximize agent utilities to within a factor of \(O(\sqrt{m})\) (where \(m\) is the number of candidates), even if only preference lists are made available. We combine this theory with our previous result to conclude that the same approximation factor applies in the online setting for arbitrary utility functions, in the random-order model.

Finally, we revisit the adversarial model of input and consider a setting in which the decision maker is allowed to remove items from the selection set, at a cost. In this case, we show that regret-minimization techniques can be applied to construct an online algorithm with vanishing additive regret. An important difficulty in this case is that the cost to remove an item may be significantly larger than the score of any other item. Also, Hemaspaandra et al. (2012) studied the task of voter control in an online setting.

In our online setting, we refer to the Mallows model (1957), a well-studied model for distributions over permutations (e.g. (Fligner and Verdacci 1986; Doignon, Pekeć, and Regenwetter 2004)) which has been studied and extended in various ways. In recent work, Braverman and Mossel (2008) have shown that the sample complexity required to estimate the maximum-likelihood ordering of a given Mallows model distribution is roughly linear. We make use of some of their results in our analysis.

Adversarial and stochastic analysis in online computation have received considerable attention (e.g. (Even-Dar et al. 2009)). In our analysis, we make critical use of the assumption that agent arrivals are randomly permuted. This is a common assumption in online algorithms (e.g., (Karp, Vazirani, and Vazirani 1990; Kleinberg 2005; Mahdian and Yan 2011)). In our analysis of the random order model, we use sampling techniques that commonly used in secretary and multi-armed bandits problems (Babaioff et al. 2008).

In a recent paper, Boutilier et al. (2012) consider the social choice problem from a utilitarian perspective, where agents have underlying utility functions that induce their reported preferences. The authors study a measure called the distortion, to compare the performance of their social choice functions to the social welfare of the optimal alternative. We use their constructions in our results for the utilitarian model.

The online arrival of preferences has been previously studied by Tennenholtz (2004). This work postulates a set of voting rule axioms that are compatible with online settings. Also, Hemaspaandra et al. (2012) studied the task of voter control in an online setting.

In our study of the problem under adversarial models, we propose a relaxation of the online model in which revocations of the decisions can be made at a fixed cost. A similar relaxation of an online combinatorial problem was proposed by Babaioff et al. (2009). We highlight two main differences from our setting. First, they do not assume an additive penalty as a result of cancellations; rather, every such buyback operation incurs a multiplicative loss to the final objective value. More importantly, in their model, each agent’s valuation of the algorithm’s solution is measured w.r.t. the final state of the solution. In our model however, the agents’ valuations are given with respect to the content of the slate at the end of their arrival steps.

**Related Work**

The problem of selecting a single candidate given a sequence of agent preference lists is the traditional social choice problem. The offline problem of selecting a set of candidates that will “proportionally” represent the voters’ preferences was introduced by Chamberlin and Courant (Chamberlin and Courant 1983). Subsequently Lu and Boutilier (2011) studied the problem from a computational perspective, in which several natural constraints on the allocated set were considered. In particular, it was shown that for the case where producing copies of the alternatives bears no cost, the problem of selecting which candidates to make available is a straightforward case of non-decreasing and submodular set-function maximization, subject to a cardinality constraint, which admits a simple greedy algorithm with approximation ratio \(1 - 1/e\). Our work differs in that the agent preferences arrive online, complicating the choice of which alternatives to select, as the complete set of agents preference is not fully known in advance.

In our online setting, we refer to the Mallows model (1957), a well-studied model for distributions over permutations (e.g. (Fligner and Verdacci 1986; Doignon, Pekeć, and Regenwetter 2004)) which has been studied and extended in various ways. In recent work, Braverman and Mossel (2008) have shown that the sample complexity required to estimate the maximum-likelihood ordering of a given Mallows model distribution is roughly linear. We make use of some of their results in our analysis.

Adversarial and stochastic analysis in online computation have received considerable attention (e.g. (Even-Dar et al. 2009)). In our analysis, we make critical use of the assumption that agent arrivals are randomly permuted. This is a common assumption in online algorithms (e.g., (Karp, Vazirani, and Vazirani 1990; Kleinberg 2005; Mahdian and Yan 2011)). In our analysis of the random order model, we use sampling techniques that commonly used in secretary and multi-armed bandits problems (Babaioff et al. 2008).

In a recent paper, Boutilier et al. (2012) consider the social choice problem from a utilitarian perspective, where agents have underlying utility functions that induce their reported preferences. The authors study a measure called the distortion, to compare the performance of their social choice functions to the social welfare of the optimal alternative. We use their constructions in our results for the utilitarian model.

The online arrival of preferences has been previously studied by Tennenholtz (2004). This work postulates a set of voting rule axioms that are compatible with online settings. Also, Hemaspaandra et al. (2012) studied the task of voter control in an online setting.

In our study of the problem under adversarial models, we propose a relaxation of the online model in which revocations of the decisions can be made at a fixed cost. A similar relaxation of an online combinatorial problem was proposed by Babaioff et al. (2009). We highlight two main differences from our setting. First, they do not assume an additive penalty as a result of cancellations; rather, every such buyback operation incurs a multiplicative loss to the final objective value. More importantly, in their model, each agent’s valuation of the algorithm’s solution is measured w.r.t. the final state of the solution. In our model however, the agents’ valuations are given with respect to the content of the slate at the end of their arrival steps.

**Preliminaries**

Given is a ground set of alternatives (candidates) \(A = \{a_1, \ldots, a_m\}\). An agent \(i \in N = \{1, \ldots, n\}\), has a preference \(\succ_i\) over the alternatives, represented by a permutation \(\pi\). For a permutation \(\pi\) and an alternative \(a \in A\), we will let \(\pi(a)\) denote the rank of \(a\) in \(\pi\). A positional scoring function (PSF) assigns a score \(v(i)\) to the alternative ranked \(r\)th, given a prescribed vector \(v \in \mathbb{R}^m_{\geq 0}\). A canonical example of
a positional scoring rule is the Borda scoring rule, which is characterized by the score vector \((m - 1, m - 2, \ldots, 0)\). For an (implicit) profile of agent preferences \(\pi = (\pi_1, \ldots, \pi_n)\), we denote the average score of a single element \(a \in A\) by \(F(a) = \frac{1}{n} \sum_{i=1}^{n} F_i(a)\), where \(F_i(a) = v(\pi^i(a))\) (agent \(i\)’s score for alternative \(a\)). Moreover, we will consider the score of a set \(S \subseteq A\) of candidates w.r.t. to a set of agents as the average positional scores of each of the agents, assuming that each of them selected their highest ranked candidate in the set: \(F(S) = \frac{1}{n} \sum_{t \in N} \max_{a \in S} F_i(a)\).

The online budgeted social choice problem. We consider the problem of choosing a set of \(k \geq 1\) candidates from the set of potential alternatives. An algorithm for this problem starts with an empty “slate” \(S_0 = \emptyset\) of alternatives, of prescribed capacity \(k \leq m\). In each step \(t \in [n]\), an agent arrives and reveals her preference ranking. Given this, the algorithm can either add new candidates \(I \subseteq A \setminus S_{t-1}\) to the slate (i.e. set \(S_t \leftarrow S_{t-1} \cup I\), if \(|S_{t-1}| + |I| \leq k\), or leave it unchanged. Agent \(i\) in turn takes a copy of one of the alternatives currently\(^2\) on the slate, i.e. \(S_t\). Any addition of alternatives to the slate is irrevocable: once an alternative is added, it cannot be removed or replaced by another alternative. The offline version of this problem is called the limited choice model in (Lu and Boutilier 2011).

Some of our results will make use of algorithms for maximizing non-decreasing submodular set functions subject to a cardinality constraint. A submodular set function \(f : 2^U \rightarrow \mathbb{R}_+\) upholds \(f(S \cup \{x\}) - f(S) \geq f(T \cup \{x\}) - f(T)\) for all \(S \subseteq T \subseteq U\) and \(x \in U \setminus T\).

The Adversarial input Model: Lower Bounds
We begin by considering general input sequences, in which agents can arrive in an arbitrary order. For arbitrary positional scoring rules (normalized so that scores lie in \([0, 1]\)), a constant approximation is possible when the entire input sequence can be viewed in advance (Lu and Boutilier 2011). In this section we show that this result cannot be extended to the online setting: no algorithm can achieve a constant competitive ratio for general inputs.

Our negative result applies to a very restricted class of scoring rules. In the inputs we consider, each agent \(i \in N\) is interested in a single item \(a \in A\), and the total score is increased by one point for every satisfied agent. In other words, our scoring vector is the \(m\)-dimensional vector with 1 in the first entry, and zeroes in the other entries. In voting theory, this is referred to as the single non-transferable vote rule (STNV). Note that the offline \(k\)-slate optimization task is trivial: sort the candidates in non-increasing order of scores, and take the top \(k\) candidates.

We emphasize that even though one can view an arbitrary input sequence as adversarial, we model such an adversary as non-adaptive (or equivalently, oblivious). By this we mean that the input sequence is set before the algorithm realizes any randomness in its candidate choices. If an adversary were allowed to be adaptive, a strong lower bound on algorithm performance would be trivial. Indeed, an adaptive adversary could simply choose, on each round, to set an agent’s preference to an item not currently on the slate; this would prevent any algorithm from achieving a bounded competitive ratio. With this in mind, we focus on studying non-adaptive adversaries, which are more appropriate in cases where the algorithm’s choices should not affect the preferences of future agents. However, even against a non-adaptive adversary, we prove that no online algorithm can achieve a constant approximation.

**Proposition 1.** For a non-adaptive adversary and any randomized online algorithm, the competitive ratio is \(O\left(\frac{\log \log m}{\log m}\right)\), even in the special case of STNV.

**Proof.** Let \(X \geq 1\) and \(\ell \geq 1\) be integer values to be specified later. We define a set of input sequences \(\{I_1, \ldots, I_\ell\}\). Input \(I_j\) consists of \(nX/m\) agents who desire item 1, followed by \(nX^2/m\) agents who desire item 2, \(nX^3/m\) agents who desire item 3, and so on, up to \(nX^\ell/m\) agents who desire item \(\ell\). We will refer to each of these contiguous subsequences of agents with the same desire as blocks. After these \(j\) blocks, the remaining agents’ preferences are divided equally among the items in \(A\), in an arbitrary order. Note that, for this set of input sequences to be well-defined, we will require that \(\ell \leq m\) and \(\sum_{j=1}^{\ell} nX^j/m \leq n\).

Consider the behavior of any (possibly randomized) algorithm on input \(I_j\). First, we can assume w.l.o.g. that when the algorithm adds an item, it adds the currently requested item (as otherwise it could wait until the next request of the added item and obtain the same social welfare). Any such algorithm defines a probability distribution over blocks, corresponding to the probability that the algorithm selects an item while that block is being processed. In particular, there must exist some block \(r\) such that the probability of selecting an item during the processing of that block is at most \(1/\ell\). Moreover, since inputs \(I_{r-1}\) and \(I_r\) are indistinguishable up to the end of block \(r\), the probability of selecting an item in block \(r\) is also at most \(1/\ell\) on input \(I_r\).

On input \(I_r\), the optimal outcome is to choose item \(r\), for a score of at least \(nX^r/m\). If any other item is chosen, the score received is at most \(nX^{r-1}/m + n/m = n(X^{r-1} + 1)/m\). Thus, the expected score of our algorithm is at most \(\frac{1}{\ell} n(X^r + 1)/m + n(X^{r-1} + 1)/m\), for an approximation factor of \(\frac{1}{\ell} + \frac{1}{\ell^2} + \frac{1}{\ell^3} + \frac{1}{\ell^4} \leq \frac{1}{\ell} + \frac{2}{\ell^2}\).

Setting \(X = \ell = \log(m)/\log\log(m)\) yields the desired approximation factor, and satisfies the requirement \(\sum_{j=1}^{\ell} nX^j/m \leq n\). \(\square\)

The Random Order Model
We briefly recall the random order model. We assume that the set of agent preference profiles is arbitrary. After the set of all preference has been fixed, we assume that they are presented to an online algorithm in a uniformly random order. The algorithm can irrevocably choose up to \(k\) candidates during any step of this process; each arriving candidate will then receive value corresponding to his most-preferred candidate that has already been chosen. The goal is to maximize...
the value obtained by the algorithm, with respect to an arbitrary positional scoring function.

In general, we cannot hope to achieve an arbitrarily close approximation factor to the optimal (in hindsight) choice of \( k \) candidates, as it is \( \text{NP} \)-hard to obtain better than a \( (1 - \frac{1}{e}) \) approximation to this problem even when all profiles are known in advance\(^3\). Our goal, then, is to provide an algorithm for which the approximation factor approaches \( 1 - \frac{1}{e} \) as \( n \) grows, matching the performance of the best-possible algorithm for the offline problem\(^4\).

Let \( F_i(\cdot) \) be an arbitrary PSF, based on score vector \( v \); w.l.o.g. we can scale \( v \) so that \( v(1) = 1 \). Note that this implies that \( F_i(a) \in [0,1] \) for each outcome \( a \). If agent \( i \) has preference permutation \( \pi^i \), then write \( F_i(\cdot) = v(\pi^i(\cdot)) \) for the scoring function \( F_i \) applied to agent \( i \)'s permutation of the choices. Also, we'll write \( \sigma \) for the permutation of players representing the order in which they are presented to an online algorithm. Thus, for example, \( F_{\sigma(1)}(a) \) denotes the value that the first observed player has for object \( a \).

For \( S \subseteq A \) and PSF \( F \), write \( F(S) = \max_{a \in S} F(a) \) — the value of the highest-ranked object in \( S \). Given a set \( T \) of players, \( F_T(S) = \sum_{t \in T} F_t(S) \) is the total score held by the players in \( T \) for the objects in \( S \). We also write \( F_T(S)/|T| \) for the average score assigned to set \( S \). Let \( OPT = \max_{S \subseteq \mathcal{A} \mid |S| \leq k} F_N(S) \) be the optimal outcome value.

Let us first describe a greedy algorithm for the offline problem that achieves approximation factor \( (1 - 1/e) \), due to Lu and Boutilier (2011). The algorithm repeatedly selects the candidate that maximizes the marginal gain in the objective value, until a total of \( k \) candidates have been chosen. As any PSF, \( F(\cdot) \) can be shown to be a non-decreasing, submodular function over the sets of candidates. This algorithm obtains approximation \( 1 - (\frac{k-1}{k})^k \), which is at most \( 1 - 1/e \) for all \( k \). We will write \( Greedy(N,k) \) for this algorithm applied to set of players \( N \) with cardinality bound \( k \).

We now consider the online algorithm \( A \), listed as Algorithm 1. We write \( V(A) \) for the value obtained by this algorithm. We claim that the expected value obtained by \( A \) will approximate the optimal solution online.

**Theorem 2.** If \( m < n^{1/3 - \varepsilon} \) for any \( \varepsilon > 0 \), then \( E[V(A)] \geq (1 - (\frac{k-1}{k})^k - o(1))OPT \).

The first step in the proof of Theorem 2 is the following technical lemma, which states that the preferences of the first \( t \) players provide a good approximation to the (total) value of every set of candidates, with high probability.

\(^3\)We can reduce \( \text{Max}-k\)-Coverage (Feige 1998) to the budgeted social choice problem for the case of \( l\)-approval: the PSF where the first \( l \) positions receive score 1, and others receive score 0.

\(^4\)For the special case of the Borda scoring rule, it can be shown that the algorithm that simply select a random \( k \)-set obtains a \( 1 - O(1/m) \)-approximation to the offline problem. Furthermore, this algorithm can be derandomized using the method of conditional expectations. We omit the proof due to space considerations. An alternative method for the case of the Borda scoring rule would be to combine our sampling-based technique with the algorithm proposed by Skowron et al. (2013)

**Algorithm 1: Online Candidate Selection Algorithm**

**Input:** Candidate set \( A \), parameters \( k \) and \( n \), online sequence of preference profiles

1. Let \( t \leftarrow n^{2/3}(\log n + k \log m) \);
2. Observe the first \( t \) agents, \( T = \{\sigma(1), \ldots, \sigma(t)\} \);
3. \( S \leftarrow \text{Greedy}(T,k) \);
4. Choose all candidates in \( S \) and let the process run to completion;

**Lemma 3.** \( Pr[\exists S, |S| \leq k : |F_T(S) - F(S)| > n^{-1/3}] < \frac{1}{n} \), where the probability is taken over the arrival order.

**Proof.** Let \( t \) be defined as in Alg. 1. Choose any set \( S \) with \( |S| \leq k \). For each \( j \in [t] \), let \( X_j \) be a random variable denoting the value \( F_{\sigma(j)}(S) \). Note that \( E[X_j] = F(S) \) for all \( j \), and that \( F_T(S) = \frac{1}{t} \sum X_j \). By the Hoeffding inequality (without replacement), for any \( \eps > 0 \), \( Pr[|F_T(S) - F(S)| > \eps] < 2e^{-\eps^2t} \). By the union bound over all \( S \) with \( |S| \leq k \),

\[
Pr[\exists S, |S| \leq k : |F_T(S) - F(S)| > \eps] < 2 \sum_{k \leq \ell \leq n} \left( \frac{m}{\ell} \right) e^{-\eps^2t} \leq 2m^k e^{-\eps^2t}.
\]

Setting \( t = n^{2/3}(\log n + k \log m) \) and \( \eps = n^{-1/3} \) then yields the desired result.

With Lemma 3 in hand, we can complete the proof of Theorem 2 as follows. Since \( F_T(S) \) is almost certain to approximate \( F(S) \) well for every \( S \), our approach will be to sample \( T \), choose the (offline) optimal output set according to the preferences of \( T \), and then apply this choice to the remaining bidders. This generates two sources of error: the sampling error bounded in Lemma 3, which is at most \( n^{-1/3} \) per agent for a total of \( n^{2/3} \), and the loss due to not serving the agents in \( T \), which is at most \( t = n^{2/3}(\log n + k \log m) \). Noting that \( OPT \) cannot be very small (it must be at least \( \frac{1}{n} \)), we conclude that the relative error vanishes as \( n \) grows large.

One special case of note occurs when \( k = 1 \); that is, there is only a single candidate to be chosen. In this case, the regret experienced by our online algorithm vanishes as \( n \) grows.

**Corollary 4.** If \( k = 1 \) and \( m < n^{1/3 - \varepsilon} \) for any \( \varepsilon > 0 \), then \( E[V(A)] \geq (1 - o(1))OPT \).

**Remark** Algorithm 1 makes use of the greedy algorithm, resulting in a computationally efficient procedure. However, our sampling method is actually more general: one can use any offline \( \alpha \)-approximate algorithm on line 3 to obtain an overall competitive ratio of \( \alpha - o(1) \) in our online setting. In particular, in the absence of computational tractability constraints, one could obtain a competitive ratio of \( 1 - o(1) \). Furthermore, some classes of preferences (e.g. single-peaked preferences and single-crossing preferences) are known to admit improved algorithms that could be applied (e.g., Skowron et al. 2013).
A connection to the unknown distribution model

After having considered the random order model as an example of an input model where a certain degree of random noise allows us to obtain a comparatively efficient algorithm, one might ask if there are any other input models to which similar techniques could be applied. Due to a recent result by Karande et al. (2011) in a related online setting, we argue that the case in which the agent preferences are sampled i.i.d. from an unknown discrete distribution over preferences is a special case of the aforementioned random order model. The discussion, which contains a formal description of the equivalence theorem, is given in the full version of the paper.

Additional extensions and special cases

Following the issue of having a distribution over preference "types", can we obtain any better results for specific distributions? We consider the case where each of the incoming agent preferences are drawn i.i.d. from a Mallows distribution, with an unknown underlying reference ranking (see the full version for a formal definition of the Mallows distribution). We show that if $n$ is sufficiently large, than there exists an online algorithm for selecting the optimal $k$-slate, which obtains a competitive ratio of $1 - o(1)$. For the random order model and Borda scores, we provide an efficient $1 - o(1)$-competitive online algorithm (requiring only a logarithmic number of samples). These two algorithms are described in the full version of the paper.

Our final extension to the random order model pertains to a result by Boutilier et al. (2012). Assuming that agents have utilities for the alternatives in $A$, i.e., cardinal preferences, but only report on the ordinal preferences, induced by the values for the items, the question is: how well do positional scoring rules perform in selecting the optimal items, relative to the total valuation of the maximum-valuation item? We argue that given this complication, the addition of an online arrival of the agents does not impose a significant barrier to the design of efficient positional scoring rules. The relevant discussion is given in the full version of the paper.

The Item Buybacks Extension

Given our lower bounds for adversarial inputs for the online social choice problem with binary valuations, one may argue that the fact that decisions must be irrevocable may be too stringent. Indeed, in many scenarios, it is often the case that changes to the contents of the slate can be made at a cost. We therefore consider a natural relaxation of our setting: instead of making the item additions to the slate irrevocable, we allow for the removal of items, at a fixed cost. That is, at any point in time $t$, in addition to adding items to the slate $S_t$, (conditioned on $|S_t| \leq k$), the decision maker is allowed to remove items in $S_t$ at a cost of $\rho$ per item. The goal is to maximize the net payoff of the algorithm: for the sequence of states $(S^{(1)}, \ldots, S^{(m)})$ corresponding to the sequences of agent valuations, such that agent $t$'s score for slate $S^{(t)}$ is $F_t(S^{(t)})$, the goal is to maximize the function $\sum_{t=1}^{m}(F_t(S^{(t)}) - \rho \cdot |S^{(t-1)} \setminus S^{(t)}|)$ (for consistency, we assume that $S^{(0)} = \emptyset$). A similar approach of relaxing the restrictions of an online setting was studied by Babaioff et al. (2009). Note that we still compare performance against the original offline problem without buybacks. Indeed, following the learning literature, we are interested in whether allowing buybacks in the online problem can offset the gap in approximability relative to the offline problem.

Clearly, this gives rise to a "spectrum" of online problems, where for $\rho$ large enough we are left with our original setting, whereas for $\rho = 0$, the algorithm can simply satisfy each incoming agent. The goal of this section is to show that under this relaxation of the model, and assuming that the agent valuations are in the range $[0, 1]$ (note that we do not require them to be consistent with some score vector), then the task of optimizing the contents of the slate at every step can be effectively reduced to a classical learning problem.

**Warmup:** $k = 1$

For the purpose of exposition, we begin with the special case of $k = 1$. We will assume that each agent $i \in N$ has a positional scoring rule $F_i : [n] \rightarrow [0, 1]$, based on a score vector $v$, normalized so that $v(1) = 1$.3

Our approach is to employ the multiplicative weight update (MWU) algorithm (e.g., (Freund and Schapire 1997; Arora, Hazan, and Kale 2012)), designed for the following expert selection problem. Given a set of $m$ experts, the decision maker selects an expert in each round $t = 1, \ldots, T$. An adversary then determines the payoffs that each expert yields that round. The performance of such an online policy is measured against the total payoff of the best fixed expert in hindsight. The MWU algorithm works as follows. Starting from a uniform weight vector $(w_0^1 = 1, \ldots, w_0^m = 1)$, at each step $t$, the algorithm selects expert $j \in [m]$ with probability $w_t^j / \sum_{j=1}^{m} w_t^j$. After round $t$, If the payoff of expert $i$ is $F^t(i) \in [0, B]$, update the weights by setting $w^{t+1}(i) = (1 + \epsilon)^{-1} F^t(i)/B$, for some parameter $\epsilon > 0$.

We reduce our problem to this setting by partitioning the input sequence into $\lfloor n/B \rfloor$ 'epochs' of length $B$, for a given $B$, and selecting slates for each epoch anew. We then use the MWU algorithm, treating the $B$-length epochs as single steps in the original learning problem, and the slate states as our possible 'experts'. We call this algorithm EpochAlg. A formal description appears in the full paper.

Now, we make crucial use of the following result, as adapted from (Arora, Hazan, and Kale 2012), which guarantees a bound on the additive regret of the MWU:

**Proposition 5** (Arora, Hazan, and Kale 2012). Consider a $T$-step experts selection problem with $m$ experts. Then the MWU algorithm admits a payoff of at least $(1 - \epsilon)OPT - B \ln m/\epsilon$, conditioned on having $\epsilon \leq 1/2$.

The following guarantee on the net payoff (after deducting the buyback costs) of EpochAlg follows from Prop. 5:

**Theorem 6.** Let $OPT$ be the maximal welfare obtained by any fixed single item in $A$. The net payoff of EpochAlg is at least $OPT - (32n^2 \rho \ln m)^{1/3}$. If $n \gg m^3 \ln m$ and $\rho = o(n/(m^3 \ln m))$, then this payoff is at least $OPT(1 - o(1))$.

3In fact, our results do not require that all agents use the same score vector; only that each agent $i$ has a unit-demand scoring function $F_i$ normalized so that $\max_{a \in A} F_i(a) = 1$. 

1460
Proof. By Prop. 5 and the fact that the contents of the slate can change before each epoch, we get that the net payoff of EpochAlg is at least $OPT - \epsilon \cdot OPT - (B \cdot \ln m)/\epsilon - (\rho \cdot n)/B$.

To minimize the first two error terms (due to running the MWU algorithm) set $\epsilon \cdot OPT = (B \ln m)/\epsilon$. As $OPT \leq n$, we get that for $\epsilon = \sqrt{(B \ln m)/n}$, the algorithm gives a net payoff of at least: $OPT - 2 \cdot \sqrt{B \ln m} - \rho \cdot n/B$.

Similarly, equating the last two terms in the above bound gives $B = (\rho^2 n/(4 \ln m))^{1/3}$, which, plugging in our previous formula gives a lower bound of: $OPT - 2 \rho \cdot n/(\rho^2 n/4 \ln m)^{-1/3} = OPT - (32n^2 \rho \ln m)^{1/3}$.

The above bound is of practical interest when the second term (the additive regret) is asymptotically smaller than $OPT$. Equating $OPT$ to the regret term, and using the lower bound $OPT \geq n/m$, we obtain that $\rho = o(n/(m^2 \ln m))$ is necessary for the algorithm to admit vanishing regret (this term also gives the lower bound on $n$ in the theorem).

Prop. 5 requires that $\epsilon \leq 1/2$, which is satisfied by our setting of $\epsilon$, $B$ and the aforementioned bound on $\rho$.

Going beyond $k = 1$
In order to address cases where $k > 1$, we must notice that the reduction to the experts selection problem required us to consider each of the items as “experts”. Naturally, we can take a similar approach for the case of $k > 1$, by considering all possible $\left(\begin{array}{c}n \\ k \end{array}\right)$ slates as our experts. If one is not limited by computational resources, it is easy to see that a simple modification of EpochAlg provides a vanishing regret:

**Theorem 7.** Let $OPT$ be the maximal social welfare obtained by any fixed subset of $A$ of size $k$. Then the net payoff of EpochAlg with $B = (k^2 \rho^2 n/4 \ln m)$ and $\epsilon = \sqrt{B \ln m/n}$, is at least $OPT - (32n^2 k \rho \ln m)^{1/3}$. Assuming that $k^5 \rho \gg m^3 \ln m$ and $\rho = o(n/(m^2 \ln m))$, then this payoff is at least $OPT(1 - o(1))$.

The proof of the above theorem is largely identical Thm. 6; we omit it due to space limitations.

**Computational Efficiency**
Recall that the MWU algorithm applied in Thm 7 invokes, as a black box, the subproblem of selecting the best of a set of experts given an offline instance of the optimization problem. However, the expert selection problem is NP-hard in general for $k > 1$. Thus, in general, this algorithm cannot always be implemented in poly-time in each iteration.

In the case where one is interested in a computationally efficient algorithm (with buybacks), we now describe a straightforward transformation for a rich subclass of valuation models. Consider the case where, for every agent $i \in N$, the number of candidates for which agent $i$ has a non-zero value is at most some constant $d$. We say in this case that $F_i$ has support size at most $d$ (if each agent is required to report exactly $d$, identically valued candidates, we end up with the well-known $d$-approval scoring rule).

In this case, we can consider the following adjustment to EpochAlg. For each agent $i \in N$, we define an alternative linear score function: $F_i^*(S) = d^{-1} \sum_{j \in S} F_i(j)$. This score function is linear over items in the candidate set, and is guaranteed to take values in $[0, 1]$. Note that since the valuations under this new valuation function are additive, $d^{-1} F_i(S) \leq F_i^*(S) \leq F_i(S)$.

**Theorem 8.** If for every agent $i \in N$, $F_i$ has support size at most $d$, then for any fixed $\rho$ and large enough $n$, there exists a $(1/d - o(1))$-online algorithm that uses buyback payments.

Using this transformation, and our technique for reducing the online problem to the online experts selection using buyback payments, we can apply the algorithmic framework given by Kalai and Vempala (2005), for the expert selection problem under linear objectives, to achieve vanishing regret. As these linear scores differ from the original scoring rules $F_i$ by a factor of at most $d$, and only in one direction, this implies that the online algorithm is also $(1/d - o(1))$-approximate with respect to the original scoring rules. The details are deferred to the full version of the paper.

**Conclusions and Future Directions**
We have described an online variant of a common optimization problem in computational social choice. We have designed an efficient sample-based algorithms that achieve strong performance guarantees under various distributions over preference sequences. We showed that no online algorithm can achieve constant competitive ratio when agent preferences are arbitrary, but that this difficulty can be circumvented if buybacks are allowed.

The first open question, raised by our lower bound for the adversarial input model, is whether or not one could find a online algorithm that matches this bound.

Another direction for research would be to improve the rate at which the regret vanishes as $n$ grows, both in the distributional settings, and in the adversarial setting with buyback. Another direction is the study of more involved combinatorial constraints, such as matroid or knapsack constraints.

We could also extend our work by considering cases in which the agents can strategically delay their arrival, so as to increase their payoffs due to having a larger set of selected alternatives. Clearly, the pure sampling approach we have taken in this paper would be problematic, as no agent would like to take part in the initial sampling of preferences, and would thus delay their arrival in order to avoid it.

Finally, our transformation to the linear valuation function $F^*(\cdot)$ was done in order to make use of known algorithmic techniques for online experts selection with linear objective functions. To what extent can this technique be extended to handle richer types of objective functions? Such extensions could have implications on the competitive ratios achievable for online social choice problems.

**Acknowledgements** We thank Ariel Procaccia for his helpful comments and for pointing out the connection between this work and the results on low-distortion choice rules in (Boutilier et al. 2012). We thank Craig Boutilier for many fruitful discussions. We thank the anonymous reviewers for their many helpful comments and suggestions.
References


