
Sparse Learning for Stochastic Composite Optimization

Weizhong Zhang∗, Lijun Zhang†, Yao Hu∗, Rong Jin†, Deng Cai∗, Xiaofei He∗
∗State Key Lab of CAD&CG, College of Computer Science, Zhejiang University, Hangzhou, China

†Dept. of Computer Science & Eng., Michigan State University, East Lansing, MI, U.S.A.
{zhangweizhongzju, huyao001, dengcai, xiaofeihe}@gmail.com, {zhanglij, rongjin}@cse.msu.edu

Abstract

In this paper, we focus on Stochastic Composite Opti-
mization (SCO) for sparse learning that aims to learn
a sparse solution. Although many SCO algorithms have
been developed for sparse learning with an optimal con-
vergence rate O(1/T), they often fail to deliver sparse
solutions at the end either because of the limited sparsity
regularization during stochastic optimization or due to
the limitation in online-to-batch conversion. To improve
the sparsity of solutions obtained by SCO, we propose
a simple but effective stochastic optimization scheme
that adds a novel sparse online-to-batch conversion to
the traditional SCO algorithms. The theoretical analysis
shows that our scheme can find a solution with better
sparse patterns without affecting the convergence rate.
Experimental results on both synthetic and real-world
data sets show that the proposed methods are more ef-
fective in recovering the sparse solution and have com-
parable convergence rate as the state-of-the-art SCO al-
gorithms for sparse learning.

Introduction
Many machine learning problems can be formulated into a
Stochastic Composite Optimization problem (SCO):

min
w∈W

φ(w) = F (w) + Ψ(w) (1)

where F (w) = Ez=(x,y)∼PXY
[f(w, z)], W is the convex

domain for the feasible solutions, f(w, z) is a loss func-
tion which is convex inW , Ψ(w) is a regularizer that con-
trols the complexity of the learned classifier w, and PXY
is a joint distribution for the input pattern x and the out-
put variable y. Since PXY is unknown, most optimization
methods approximate PXY by a finite number of samples
zi = (xi, yi), i = 1, . . . , n, which are often called training
examples, leading to the following optimization problem:

min
w∈W

φ̂(w) =
1

n

n∑
i=1

f(w, zi) + Ψ(w) (2)

In this study, we will focus on the case when Ψ(w) is a
sparsity-inducing regularizer, such as `1 norm for sparse

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

vectors and trace norm for low rank matrixes. This prob-
lem is often referred to as sparse learning or sparse online
learning (Langford, Li, and Zhang 2009) which means only
one training example is processed at each iteration.

A popular approach toward SCO is stochastic composite
gradient mapping. The key idea is to introduce the regular-
izer Ψ(w) in the gradient mapping (Lin, Chen, and Pena
2011; Chen, Lin, and Pena 2012; Ghadimi and Lan 2012;
Xiao and others 2010). Given the current solution wt, it up-
dates the solution by

wt+1 = arg min
w∈W

Lt(w) + ηtΨ(w) (3)

where Lt(w) = (w − wt)
T ĝt + 1

2‖w − wt‖22. Here ĝt
is a stochastic gradient and is usually computed as ĝt =
∂f(w, zt), where zt = (xt, yt) is a randomly sampled train-
ing example. The main advantage of using stochastic com-
posite gradient mapping for SCO is that the intermediate so-
lutions obtained by (3) are likely to be sparse, due to the
presence of the sparse regularizer Ψ(w). Many variants of
composite gradient mapping have been proposed and stud-
ied for SCO (Chen, Lin, and Pena 2012; Ghadimi and Lan
2012; Lan 2012; Lin, Chen, and Pena 2011). In the case
when the loss function f(w, z) is strongly convex, one can
achieve the optimal convergence rate O(1/T).

We should note that besides stochastic composite gradi-
ent mapping, any Stochastic Optimization (SO) methods can
also be used to solve SCO. Recent work (Hazan and Kale
2011; Rakhlin, Shamir, and Sridharan 2012) shows that with
a small modification on SGD, we can also achieve the con-
vergence rate O(1/T).

One problem with most SCO methods is that although the
intermediate solutions are sparse, the final solution may not
be exactly sparse because it is usually obtained by taking the
average of the intermediate solutions (Xiao and others 2010;
Ghadimi and Lan 2012), a procedure that is sometimes re-
ferred to as online-to-batch conversion (Littlestone 1989;
Dekel and Singer 2005). Several SCO approaches were pro-
posed recently to address this limitation by only utilizing
the solution of the last iteration (Chen, Lin, and Pena 2012).
They are however short in enforcing the last solution to be
exactly sparse. This is because the magnitude of the sparse
regularizer Ψ(w) has to be reduced over iterations as the in-
termediate solutions approach the optimal one, and thus, can

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

893

0 1 2 3 4 5

x 10
4

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

Iterations

E
D

 o
f
w

ORDA

a−SGD

0 1 2 3 4 5

x 10
4

26

27

28

29

30

31

32

33

34

35

Iterations

L
1
−

n
o
rm

 o
f
w

ORDA

a−SGD

Figure 1: The exact sparsity (i.e. the percentage of non-zero
entries) (left) and `1 sparsity (right) of the solutions obtained
by α-SGD and ORDA over iterations

not force the final solution to be sparse, especially exactly
sparse.

To demonstrate our point, we conduct an experiment on
a synthetic dataset with λ = 1, ρ = 0.1, σ2

e = 1(see the
experiment section for more details) using two sparse online
learning algoithms: α-SGD (Rakhlin, Shamir, and Sridharan
2012) that obtains the final solution by α-suffix averaging,
and ORDA (Ghadimi and Lan 2012) that takes the last solu-
tion as the final prediction model. Figure 1 (left) shows the
exact sparsity (i.e. the percentage of non-zero entries) over
iterations for the solutions obtained by these two algorithms.
It is clear that neither of these two approaches is able to ob-
tain exactly sparse solutions, although the `1 sparsity of the
solutions is improved over iterations (Figure 1, right panel).

In this work, we develop a novel scheme for sparse learn-
ing that is likely to obtain exactly sparse solution. The pro-
posed scheme is divided into two steps. In the first step,
we will run a standard SCO algorithm to obtain an approxi-
mately optimal solution w̄. In the second step, we introduce
a sparse online-to-batch conversion procedure that converts
w̄ into an exactly sparse solution w̃. It is important to note
that a simple rounding method may not work well for sparse
online-to-batch conversion. This is because through the iter-
ations, the solution obtained by SCO is already subjected to
the rounding effect of Ψ(w) in the steps of composite gra-
dient mapping. As a result, some of the small entries in the
final solution may be important for the prediction task, and
therefore simply removing small entries from the obtained
solution is unreliable as we will show in the empirical study
on real-world data (table 3).

Related Work
In this section, we only briefly review the recent work
on Sparse Online Learning, Stochastic Optimization and
Stochastic Composite Optimization.

Sparse Online Learning
Several algorithms have been developed for Sparse On-
line Learning (Duchi and Singer 2009; Langford, Li, and
Zhang 2009), where the goal is to generate a sequence of
sparse solutions that minimize the learner’s regret. Most of
the existed Sparse Online Learning algorithms are based
on composite gradient mapping or other rounding schemes
to remove the small entries in the intermediate solutions.

The main problem with most Sparse Online Learning is
that although the intermediate solutions are sparse, the fi-
nal solution, after online-to-batch conversion, is likely to
be dense in the number of non-zeros entries. Finally, it is
worth pointing out that Sparse Online Learning is closely
related to the sparse recovery problem (Daubechies et al.
2010) that has been studied extensively. Many efficient al-
gorithms (Daubechies et al. 2010; Chartrand and Yin 2008;
Becker, Bobin, and Candès 2011) have been developed for
sparse recovery that can achieve a linear convergence rate.
The only limitation of these algorithms is that they are de-
signed for full gradients, instead of stochastic gradients, and
therefore are inapplicable to our case. We refer the audience
to (Daubechies et al. 2010) for a comprehensive treatment
of this subject.

Stochastic Optimization
Most Stochastic Optimization (SO) methods are based on
stochastic gradient descent (SGD). At each iteration, it ob-
tains a stochastic gradient based on a randomly sampled
training example, and updates the solution by: wt+1 =
ΠW (wt − ηtĝt) ,where ĝt is the stochastic subgradient of
φ(w), and Π is the projection operator of W . The original
SGD computes the final solution by taking the average of
the intermediate solutions, which achieves an O(log(T)/T)
convergence rate (Hazan et al. 2007) when the loss function
is strongly convex. This result is improved to O(1/T) by
epoch gradient descent (Hazan and Kale 2011) and α-suffix
average (Rakhlin, Shamir, and Sridharan 2012). Although
both epoch gradient descent and α-suffix average achieve
the optimal convergence rate for strongly convex loss func-
tions, they are not designed for sparse learning.

Stochastic Composite Optimization
The most popular methods for SCO are based on compos-
ite gradient mapping, which was firstly proposed for gradi-
ent descent in order to effectively explore the smoothness of
the objective function (Nesterov 2007). It was introduced to
online learning by (Xiao and others 2010) to obtain sparse
intermediate solutions. Multiple variants of composite gra-
dient mapping were developed for Stochastic Optimiza-
tion (Lin, Chen, and Pena 2011; Chen, Lin, and Pena 2012;
Ghadimi and Lan 2012; Xiao and others 2010). (Chen, Lin,
and Pena 2012) improves the convergence rate and sparsity
preserving ability of (Xiao and others 2010) by presenting a
novel algorithm of dual average, termed ORDA (stands for
optimal regularized dual average), that returns the last solu-
tion as the final prediction model. Although ORDA avoids
the problem of taking the average of intermediate solutions,
the learned prediction model is likely to be approximately
sparse, instead of exactly sparse, because the regularizer
used by the the last solution is usually too small (vanishes
rapidly over iterations).

Preliminary and Notation
Similar to most Stochastic Optimization algorithms, we as-
sume that we will randomly sample a training example

894

z = (x, y) at each iteration, and obtain a stochastic gradi-
ent ĝ = ∂f(w, z) based on the sampled example. It is evi-
dent that E[ĝ] = ∇Ez∼PXY

[f(w, z)]. Let w̃ be the solution
obtained after sampling T training examples. Our goal is to
find w̃ that on one hand minimizes the objective φ(w) and
on the other hand is sufficiently sparse.

We denote w∗ ∈ W as the optimal solution that mini-
mizes φ(w), i.e.

w∗ = arg min
w∈W

φ(w)

Function f(w, z) is called λ-strongly convex if for any z and
all w,w′ ∈ W , we have

f(w′, z) ≥ f(w, z) + 〈∂f(w, z),w′−w〉+ λ

2
‖w′−w‖22.

Similarly, f(w, z) is L-smooth if for any z and all w,w′ ∈
W ,

f(w′, z) ≤ f(w, z) + 〈∂f(w, z),w′−w〉+ L

2
‖w′−w‖22.

Similar to most Stochastic Optimization algorithms, we
assume that f(w, z) is G-Lipschitz continuous, i.e.
‖∂f(w, z)‖ ≤ G. Throughout this work, we assume that the
loss function f(w, z) is G-Lipschitz continuous, λ-strongly
convex, L-smooth and also ‖gt‖ ≤ G. Many loss functions
satisfy this condition, including regularized least square loss
and regularized logistic regression loss over bounded do-
mains.

The Proposed Stochastic Optimization Scheme
for Sparse Learning

As described in the introduction section, the proposed
scheme is comprised of two steps. It learns an approxi-
mately optimal solution w̄ using a Stochastic Composite
Optimization (SCO) method at first, and then approximates
w̄ into an exactly sparse solution w̃ through a novel online-
to-batch conversion procedure. Two specific approaches are
discussed in this section. In the first approach, any algorithm
for SCO with optimal convergence rate (e.g. α-suffix aver-
age (Rakhlin, Shamir, and Sridharan 2012)) can be used to
find an approximately optimal solution w̄, while in the sec-
ond approach, the last solution obtained by a SGD is used
as w̄. For the convenience of presentation, we postpone the
detailed analysis to the appendix.

Sparse Learning based on Existing SCO Methods
Algorithm 1 shows the detailed steps of the first approach.

Firstly, it runs a SCO algorithm A with the first (1 − α)T
training examples, and computes an approximately sparse
solution w̄(1−α). In the sparse online-to-batch conversion, it
calculates the gradient of w̄(1−α) using the remaining αT
training examples, and computes the final sparse solution
w̃ by a composite gradient mapping in (4). Parameter α is
introduced to balance between Stochastic Composite Opti-
mization and online-to-batch conversion. Unlike most SCO
methods where the size of sparse regularizer Ψ(w) is re-
duced over iterations, we use the original sparse regularizer

Algorithm 1 Sparse Learning based on Existing SCO Meth-
ods

1: Input: strong convexity λ ≥ 0, smoothness L ≥ 0,
tradeoff parameter 0 ≤ α ≤ 1, training examples {zt =
(xt, yt)}Tt=1, and a Stochastic Composite Optimization
algorithm A.

2: Run A with the first (1 − α)T training examples
to obtain approximately optimal solution w̄1−α, i.e.,
w̄1−α = A(λ, L, (1− α)T).

3: // Sparse online-to-batch conversion:
4: Compute the average gradient at w̄1−α using the re-

maining αT training examples

ḡα1−α =
1

αT

T∑
i=1+(1−α)T

∇f(w̄(1−α), zi)

5: Compute the final solution w̃ as

w̃ = argmin
w∈W

〈
ḡα1−α,w

〉
+
L

2
‖w − w̄1−α‖2 + Ψ(w)

(4)

6: Return: w̃

in (4) without reducing its size, which will lead to an ex-
actly sparse solution for w̃. This is particularly clear when
Ψ(w) = β‖w‖1. If we note v = Lw̄1−α − ḡα1−α, then the
solution to (4) can be given by

[w̃]i =

{
0, if |[v]i| < β

1
L [v − βsgn(v)]i, else

We also note that the conversion step is different from a
simple rounding approach and the introduction of gradient
ḡα1−α is important to ensure that the final sparse solution w̃
also minimizes the objective function φ(w). This is justified
by the following two theorems.

Theorem 1. Suppose the loss function f(w, z) is G-
Lipschtiz continuous, λ-strongly convex and L-smooth. As-
sume SCO algorithm A is optimal that yields the following
generalization error bound

E(φ(w̄1−α)− φ(w∗)) ≤ O
(

G2

(1− α)λT

)
Then, we have

E(φ(w̃)− φ(w∗)) ≤ O
(

G2

(1− α)λT
+

G2

αLT

)
As indicated by Theorem 1, the tradeoff parameter α bal-

ances the loss of Stochastic Composite Optimization and the
loss of sparse online-to-batch conversion: a small αwill lead
to a small error in Stochastic Composite Optimization, but a
large error in the conversion step.

The theorem below refines Theorem 1 by presenting a
high probability bound.

Theorem 2. Let δ ∈ (0, 1/e) and assume T ≥ 4. Under
the same assumption as Theorem 1, with probability at least

895

1− 2δ, we have

φ(w̃)− φ(w∗)

≤ O
(

log(log((1− α)T)/δ)G2

λ(1− α)T
+
G2(log 2

δ)2

αT

)
Sparse Learning Based on the Last Solution
One potential drawback of Algorithm 1 is that only a portion
of training examples will be used by the Stochastic Compos-
ite Optimization algorithm A to find approximately optimal
solution. To address this limitation, in the second approach,
we will use the last solution output from a standard stochas-
tic gradient descent approach as the approximately optimal
solution, and apply an online-to-batch conversion procedure,
similar to Algorithm 1, to compute the final sparse solution
w̃. Algorithm 2 gives the detailed steps. We observe that in
contrast to Algorithm 1 that utilizes the first (1− α)T train-
ing examples to learn w̄, all the training examples are used
to learn w̄, which may lead to a better usage of training ex-
amples. Similar to Algorithm 1, we introduce parameter α
that decides which portion of training examples will be used
for sparse online-to-batch conversion. Finally, since a simi-
lar conversion procedure is applied to convert w̄ to the final
solution w̃, we expect w̃ to be an exactly sparse solution
benefited from the sufficiently large regularizer Ψ(w). The
theorems below show the optimality of w̃.

Algorithm 2 Sparse Learning based on the Last Solution
1: Input: strong convexity λ ≥ 0, smoothnessL ≥ 0, ratio

0 ≤ α ≤ 1, and training examples {zt = (xt, yt)}Tt=1,
2: Initialize w1 = 0
3: for t = 1 to T do
4: Compute the stochastic gradient ĝt = ∇f(w, zt)
5: Update

wt+1 = ΠW (wt − ηt(ĝt + ∂Ψ(wt))

where ηt = 1/(λt).
6: end for
7: // Sparse online-to-batch conversion:
8: Compute

w̃ = argmin
w∈W

〈ĝα,w〉+
L

2
‖w −wT ‖2 + Ψ(w)

where

ĝα =
1

αT

T∑
t=(1−α)T+1

∇f(wt, zt)

9: Return: w̃

Theorem 3. Suppose the loss function f(w, z) is G-
Lipschtiz continuous, λ-strongly convex and L-smooth.
Then, we have

E(φ(w̃)− φ(w∗)) ≤ O
(
G2L

λ2T
+

G2L

(1− α)λ2T
+

G2

αLT

)

As indicated by Theorem 3, α is also a tradeoff parame-
ter, which is the same with that of Algorithm 1. In addition,
the larger the α, the higher computational cost in online-to-
batch conversion. So the parameter α allows us to balance
the tradeoff between computational cost and prediction ac-
curacy. Finally, we observe that λ−2 in the bound of The-
orem 3 is significantly worse than λ−1 in Theorem 1. This
may due to the loose bounds in our analysis, as the empir-
ical study shows that Algorithms 1 and 2 give similar per-
formance. We will examine in the future to see if a tighter
bound can be provided for Algorithm 2.

Theorem below refines the result in Theorem 3 with a high
probability bound.
Theorem 4. Let δ ∈ (0, 1/e), d is the length of vector gt
and assume T ≥ 4. Suppose the loss function f(w, z) is
G-Lipschtiz continuous, λ-strongly convex and L-smooth.
Then, with a probability at least 1− 2δ, we have

φ(w̃T)− φ(w∗) ≤ O
(
L log(log(T)/δ)G2

λ2T
+

+
L log(log(T)/δ)G2

(1− α)λ2T
+

log((d+ 1)/δ)G2

αLT

)
Experiments

In this section, we conduct experiments to evaluate the
performance of the proposed methods on two aspects: (i)
whether the learned w̃ is close to the optimal solution, and
(ii) whether the learned w̃ will be sparse and recover most
of the relevant features.

Three baseline algorithms will be used in our study.
• ORDA (Chen, Lin, and Pena 2012): an optimal Stochas-

tic Composite Optimization algorithm that yieldsO(1/T)
convergence rate.

• α-SGD (Rakhlin, Shamir, and Sridharan 2012): an opti-
mal algorithm for Stochastic Optimization.

• FOBOS (Duchi and Singer 2009): a Stochastic Composite
Optimization algorithm.

• OptimalSL: the proposed Algorithm 1 based on existing
SCO methods. And we take α-SGD as the algorithmA in
this experiment.

• LastSL: the proposed Algorithm 2 based on the last solu-
tion of SGD.

Experiments on the Synthesized Dataset
Experimental model and parameter setting Follow-
ing (Chen, Lin, and Pena 2012), we consider solving a sparse
linear regression problem: minw∈Rd f(w) + h(w) where
f(w) = 1

2Ea,b((〈w,a〉 − b)2) + ρ
2‖w‖

2
2 and h(w) =

λ‖w‖1. Every entry of the input vector a is generated from
the uniform distribution U(−1, 1) and the response is given
by b = 〈a,w∗〉 + ε, where the noise ε ∼ N(0, σ2

e), and
[w∗]i = 1 for 1 ≤ i ≤ d

2 and 0 otherwise. We set
λ = 0.1, ρ = 0.1, d = 100, and vary σe in the range
[1, 2, 3, ..., 10] in our experiments. The number N of train-
ing examples is set to be 50, 000. In addition, we set the
α = 0.1 for α-SGD and two proposed methods. It is easy to

896

Table 1: Numerical results on l1 regularized linear regression
problem with λ = 0.1, ρ = 0.1.

d = 100, N = 50000
σ2
e = 1 Obj ED TD SSR RT

FOBOS 5.7099 0.99 0.99 0.671 0.5443
α-SGD 5.6984 1.00 1.00 0.667 0.3992
ORDA 5.7031 0.99 0.56 0.700 1.4690
LastSL 5.6968 0.50 0.50 1.000 0.4367

OptimalSL 5.6954 0.50 0.50 1.000 0.3772
d = 100, N = 50000

σ2
e = 4 Obj ED TD SSR RT

FOBOS 7.2124 0.99 0.99 0.669 0.5172
α-SGD 7.2035 1.00 1.00 0.667 0.3901
ORDA 7.2096 0.99 0.65 0.669 1.4517
LastSL 7.2001 0.50 0.50 0.997 0.4281

OptimalSL 7.1976 0.50 0.50 1.000 0.3639
d = 100, N = 50000

σ2
e = 25 Obj ED TD SSR RT

FOBOS 17.7351 1.00 1.00 0.667 0.5345
α-SGD 17.7437 1.00 1.00 0.667 0.3971
ORDA 17.7606 1.00 0.91 0.667 1.4546
LastSL 17.7339 0.62 0.62 0.897 0.4292

OptimalSL 17.7128 0.52 0.52 0.983 0.3746
d = 100, N = 50000

σ2
e = 100 Obj ED TD SSR RT
FOBOS 55.3119 1.00 1.00 0.667 0.4252
α-SGD 55.406 1.00 1.00 0.667 0.3140
ORDA 55.4296 1.00 1.00 0.667 1.1707
LastSL 55.4195 0.82 0.82 0.757 0.3451

OptimalSL 55.3109 0.75 0.75 0.807 0.2971

verify that under the above assumptions for a and b, we have
1
2Ea,b((a

Tw− b)2) = 1
6‖w−w∗‖22 + 1

2σ
2
e , so we can cal-

culate the exact objective function value and the optimal so-
lution fortunately: [w∗]i = 7

13 for i ≤ 50 and 0, otherwise.
Evaluation metrics To evaluate the properties of the
learned w̃, we follow (Lin, Chen, and Pena 2011), and
measure the objective function value and the sparsity of w̃
over iterations. Two metrics are used to measure the spar-
sity of a solution: the exact density ratio (ED for short),
that is computed as 1

d

∑d
i=1 I([w]i 6= 0), and the trun-

cated sparse ratio (TD for short), which is computed as
1
d

∑d
i=1 I(|[w]i| > εr), where εr is set to be 10−6 in our

experiment. We also measure the recovery of the support set
of w∗ by SSR(w) = 2|S(w)∩S(w∗)|/(|S(w)|+|S(w∗)|),
where S(w) is the support set of w, which is composed of
the nonzero components of w, |S(w)|means the cardinality
of the set S(w). In addition, we give the running time (RT
for short, second). We run each experiment 100 times, and
report the results averaged over 100 trials.
Experimental results Table 1 summarizes the evaluation
results for the final solutions output from different algo-
rithms under different noise level σe. We observe that be-
sides yielding comparable value for the objective function,
the solutions found by the two proposed algorithms are sig-
nificantly sparser than the ones found by the other base-

line algorithms. From the running time, we can see that our
methods are more effective than FOBOS and ORDA. Fig-
ures 2 and 3 show the objective function’s values of differ-
ent algorithms over iterations under different noise level σe.
We observe that the proposed algorithms are comparable to,
if not better than, the baselines in reducing the value of the
objective function.

0 1 2 3 4 5

x 10
4

5.5

6

6.5

7

7.5

8

8.5

Iterations

O
b

je
c
ti
v
e

s

ORDA

a−SGD

FOBOS

OptimalSL

LastSL

Figure 2: Objective values with parameter ρ = 0.1, λ =
0.1, σ2

e = 1

0 1 2 3 4 5

x 10
4

55

60

65

70

Iterations

O
b
je

c
ti
v
e

ORDA

a−SGD

FOBOS

OptimalSL

LastSL

Figure 3: Objective values with parameter ρ = 0.1, λ =
0.1, σ2

e = 100

Experiments on Real-world Dataset
Dataset To further demonstrate the effectiveness of our
methods, we conduct an experiment on the well-known
MNIST dataset because it is easy to visualize the learned
prediction model. It is composed of the images for 10 digits
(0-9). Each image is a 28× 28 gray-scale pixel map, which
can be treated as a real-valued vector of 784 dimension. Each
digit has roughly 6, 000 training examples and 1, 000 testing
examples.
Experimental model and parameter setting Following
the experiment setting in (Xiao and others 2010), we ap-

897

Figure 4: The visualization for the prediction models learned
to classify between digits 2 and 3. Columns (a)-(d) are the
results for ρ = 0.01 and λ = 0.02, 0.03, 0.04, 0.05.

ply the regularized logistic regression to learn a binary clas-
sification model for each of the 45 pairs of digits. We set
the loss function as f(w̃, z) = log(1 + exp(−y(wTx +
b))) + ρ

2‖w̃‖
2
2, where w ∈ R784, b is the model bias and

w̃ = [w; b]. It is straightforward to verify that f(w̃, z)
is a strongly convex and smooth loss function. We set the
sparsity-inducing regularizer Ψ(w) = λ‖w‖1. In our ex-
periment, we fix ρ = 0.01, and vary λ from 0.02 to 0.05.
Parameter α is set to be 0.1 for α-SGD and the proposed
algorithms.
Evaluation metrics We evaluate the learned prediction
model by test error, exactly sparse ratio (ED) and truncated
sparse ratio (TD), the threshold here is also 10−6. We run
each algorithm 100 times, each with an independent random
shuffle of training examples. Because of the space limita-
tion, we only report the results for classifying digits 2 and 3
in Table 2. The results of some other digit pairs can be found
in the supplementary document.

To visualize the sparse patterns of the learned prediction
models, we first create a new vector w̃′ for a learned solution
w̃ as follows

[w̃′]i =

{
0.5 [w̃]i < 0
1 [w̃]i > 0
0 [w̃]i = 0

(5)

We then reshape w̃′ to a matrix of size 28 × 28 and visual-
ize it as a grey-level image. Evidently, the larger the black
area in the grey-level image, the sparser the solution is. Fig-
ure 4 shows the images for the prediction models learned by
different algorithms for classifying between digits 2 and 3.

Experimental results According to table 2, we observe that
the proposed methods significantly improve the sparsity of
solutions compared to the baseline methods, and at the same
time, achieve comparable test errors. This is further con-
firmed by the grey-level images shown in Figure 4, in which
the solutions obtained by the proposed algorithms have sig-
nificantly larger black areas than the other algorithms in
comparison.

Table 2: numerical results when we classify the digits 2 and
3

λ, ρ Algorithms Test Error ED TD
FOBOS 0.0499 0.394 0.394

ρ = 0.01 α-SGD 0.0475 0.825 0.822
ORDA 0.0513 0.404 0.352

λ = 0.02 LastSL 0.0488 0.276 0.276
OptimalSL 0.0476 0.269 0.269

FOBOS 0.0578 0.375 0.375
ρ = 0.01 α-SGD 0.0529 0.825 0.822

ORDA 0.0573 0.382 0.329
λ = 0.03 LastSL 0.0558 0.223 0.223

OptimalSL 0.0528 0.199 0.199
FOBOS 0.0630 0.346 0.346

ρ = 0.01 α-SGD 0.0578 0.825 0.823
ORDA 0.0593 0.356 0.304

λ = 0.04 LastSL 0.0600 0.174 0.174
OptimalSL 0.0577 0.153 0.153

FOBOS 0.0672 0.334 0.334
ρ = 0.01 α-SGD 0.0617 0.825 0.823

ORDA 0.0651 0.341 0.294
λ = 0.05 LastSL 0.0638 0.144 0.144

OptimalSL 0.0610 0.125 0.125

Table 3: the test error of ORDA after(Test Error1) and be-
fore(Test Error2) simple rounding

λ, ρ Test Error1 Test Error2
ρ = 0.01, λ = 0.02 0.0513 0.0499
ρ = 0.01, λ = 0.03 0.0573 0.0578
ρ = 0.01, λ = 0.04 0.0593 0.0630
ρ = 0.01, λ = 0.05 0.0651 0.0672

Table 3 shows the results after and before the simple
rounding process when we classify the digits 2 and 3. The
threshold here is 10−6. We can observe that the simple
rounding process sometimes will make the test error in-
crease significantly. So this approach is unreliable, which
demonstrates our analysis in the introduction section.

Conclusions
In this paper, we propose a novel scheme for sparse learn-
ing that aims to learn an exactly sparse solution based on
Stochastic Composite Optimization. The key idea is to in-
troduce a sparse online-to-batch conversion procedure that
approximates the solution learned by a SCO algorithm into
an exactly sparse solution. Two specific algorithms are de-
veloped, one based on the solution output from an existing

898

SCO algorithm, and one based on the last solution of the
a simple SGD algorithm. We verify, both theoretically and
empirically, that the proposed algorithms will yield solution
that is exactly sparse and achieves an optimal convergence
rate. In the future, we plan to investigate sparse online-to-
batch conversion for loss functions that are only strongly
convex but not necessarily smooth.

Acknowledgments
This work was supported in part by National Ba-
sic Research Program of China (973 Program) under
Grant 2011CB302206, National Natural Science Foun-
dation of China under Grants (61125203, 61233011,
61222207, 91120302), National Program for Special Sup-
port of Top-Notch Young Professionals, National Science
Foundation (IIS-1251031) and Office of Naval Research
(N000141210431).

References
Becker, S.; Bobin, J.; and Candès, E. J. 2011. Nesta: a fast
and accurate first-order method for sparse recovery. SIAM
Journal on Imaging Sciences 4(1):1–39.
Chartrand, R., and Yin, W. 2008. Iteratively reweighted al-
gorithms for compressive sensing. In IEEE International
Conference on Acoustics, Speech and Signal Processing,
3869–3872.
Chen, X.; Lin, Q.; and Pena, J. 2012. Optimal regularized
dual averaging methods for stochastic optimization. In Ad-
vances in Neural Information Processing Systems, 404–412.
Daubechies, I.; DeVore, R.; Fornasier, M.; and Güntürk,
C. S. 2010. Iteratively reweighted least squares minimiza-
tion for sparse recovery. Communications on Pure and Ap-
plied Mathematics 63(1):1–38.
Dekel, O., and Singer, Y. 2005. Data-driven online to batch
conversions. In Advances in Neural Information Processing
Systems, 267–274.
Duchi, J., and Singer, Y. 2009. Efficient online and batch
learning using forward backward splitting. Journal of Ma-
chine Learning Research 10:2899–2934.
Ghadimi, S., and Lan, G. 2012. Optimal stochastic approx-
imation algorithms for strongly convex stochastic compos-
ite optimization i: A generic algorithmic framework. SIAM
Journal on Optimization 22(4):1469–1492.
Hazan, E., and Kale, S. 2011. Beyond the regret minimiza-
tion barrier: an optimal algorithm for stochastic strongly-
convex optimization. In Proceedings of the 24th Annual
Conference on Learning Theory, 421–436.
Hazan, E.; Kalai, A.; Kale, S.; and Agarwal, A. 2007. Log-
arithmic regret algorithms for online convex optimization.
Machine Learning 69(2-3):169–192.
Lan, G. 2012. An optimal method for stochastic composite
optimization. Mathematical Programming 133:365–397.
Langford, J.; Li, L.; and Zhang, T. 2009. Sparse online
learning via truncated gradient. Journal of Machine Learn-
ing Research 10:777–801.

Lin, Q.; Chen, X.; and Pena, J. 2011. A sparsity preserv-
ing stochastic gradient method for composite optimization.
Manuscript, Carnegie Mellon University, PA 15213.
Littlestone, N. 1989. From on-line to batch learning. In Pro-
ceedings of the Second Annual Workshop on Computational
Learning Theory, 269–284.
Nesterov, Y. 2007. Gradient methods for minimizing com-
posite objective function. Core discussion papers.
Rakhlin, A.; Shamir, O.; and Sridharan, K. 2012. Mak-
ing gradient descent optimal for strongly convex stochastic
optimization. In Proceedings of the 29th International Con-
ference on Machine Learning, 449–456.
Xiao, L., et al. 2010. Dual averaging methods for regular-
ized stochastic learning and online optimization. Journal of
Machine Learning Research 11(2543-2596):4.

899

