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Abstract
The spread of epidemics and malware is commonly modeled
by diffusion processes on networks. Protective interventions
such as vaccinations or installing anti-virus software are used
to contain their spread. Typically, each node in the network
has to decide its own strategy of securing itself, and its ben-
efit depends on which other nodes are secure, making this a
natural game-theoretic setting. There has been a lot of work
on network security game models, but most of the focus has
been either on simplified epidemic models or homogeneous
network structure.
We develop a new formulation for an epidemic containment
game, which relies on the characterization of the SIS model in
terms of the spectral radius of the network. We show in this
model that pure Nash equilibria (NE) always exist, and can be
found by a best response strategy. We analyze the complexity
of finding NE, and derive rigorous bounds on their costs and
the Price of Anarchy or PoA (the ratio of the cost of the worst
NE to the optimum social cost) in general graphs as well as in
random graph models. In particular, for arbitrary power-law
graphs with exponent β > 2, we show that the PoA is bounded
by O(T 2(β−1)), where T = γ/α is the ratio of the recovery
rate to the transmission rate in the SIS model. We prove that
this bound is tight up to a constant factor for the Chung-Lu
random power-law graph model. We study the characteristics
of Nash equilibria empirically in different real communication
and infrastructure networks, and find that our analytical results
can help explain some of the empirical observations.

1 Introduction
The spread of epidemics and malware is commonly modeled
by diffusion processes on networks, such as the SIS or SIR
models (Newman 2003; Grassly and Fraser 2008). They
are typically controlled by vaccinating nodes or installing
antivirus software patches. This involves a certain cost for
the individual (e.g., the economic cost of the vaccine or the
patch). On the other hand, an individual has no incentive
to protect itself if enough of its neighbors are protected (re-
ferred to as herd immunity). This is a natural setting for a
game-theoretical analysis, and is an active area of research
e.g. (Aspnes, Rustagi, and Saia 2007; Aspnes, Chang, and
Yampolskiy 2006; Kumar et al. 2010; Bauch and Earn 2004;
Omic, Orda, and Mieghem 2009; Lelarge and Bolot 2009;
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Grossklags, Christin, and Chuang 2008; Khouzani, Sarkar,
and Altman 2012; Khouzani, Altman, and Sarkar 2012;
Khouzani, Sarkar, and Altman 2011). A large part of this
research has been focused on simplistic assumptions about
either (i) the diffusion process (e.g., a very high transmission
probability), or (ii) the network (e.g., homogeneity, allowing
for differential equation models). All these models involve
individual utility functions with some notion of the cost of
getting infected; these are generally difficult to compute and
analyze in heterogeneous networks, which accounts for the
limited understanding of the dynamics of epidemic games in
realistic scenarios.

(Ganesh, Massoulie, and Towsley 2005) developed a spec-
tral characterization for the dynamics of the SIS model –
they show that an epidemic dies out soon if λ1(G) < γ/α,
where λ1(G) is the spectral radius or the largest eigenvalue
of the adjacency matrix of the contact graphG, while γ and α
are the recovery rate and transmission rate of the SIS model,
respectively. We use T to denote the threshold γ/α. This
result is extended to other models in (Prakash et al. 2012) –
this is analogous to the characterization of differential equa-
tion based epidemic models in terms of the reproductive
number, R0 (Newman 2003). While λ1(G) > T implies
the epidemic lasts “long” in some families of graphs (and
in practice, in many networks, this holds if λ1(G) is much
larger than T ), the precise converse derived by (Ganesh,
Massoulie, and Towsley 2005) is in terms of the spectral
gap of the Laplacian of G. A natural approach for con-
taining an epidemic, motivated by this characterization, is
to design interventions (e.g., vaccination) so that λ1 be-
comes smaller than T , as discussed in (Tong et al. 2012;
Mieghem et al. 2011).

Our contributions. We develop a novel formulation
of an epidemic containment game motivated by the above
characterization of the SIS model (Ganesh, Massoulie, and
Towsley 2005; Prakash et al. 2012), and approaches to con-
tain it by reducing the spectral radius (Tong et al. 2012;
Mieghem et al. 2011). In this way, our formulation uniquely
incorporates a realistic infection model in general heteroge-
neous networks. We characterize the structure of the equilib-
ria in the resulting game in different graphs, and then study
their properties empirically using real world networks. We
discuss our contributions in greater detail below.

1. A game formulation based on spectral properties. We
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introduce the Epidemic Containment (EC) game on a net-
work G(V,E) of players, for the SIS model of epidemic
spread. The individual actions of a player are either to be
secured (which has a fixed cost, corresponding to the price
of a vaccination/anti-virus software) or not. If a player is not
secured and if λ1(G′) > T , whereG′ is the graph induced by
the insecure nodes, he or she incurs a high cost of infection,
since the epidemic is likely to last long (this is formally de-
fined later). We show that pure Nash equilibria (NE) always
exist in an EC game, and can be found by a best response
strategy. Further, a minimum cost Nash equilibrium is also a
social optimum, and we show that finding the social optimum
is NP-complete, in general.
2. Structure of equilibria in arbitrary graphs. We derive
bounds on the cost of the worst NE and the Price of Anarchy
in terms of the maximum degree in general graphs. There can
be an exponential number of Nash equilibria, and the ratio of
the maximum cost of any NE to that of the social optimum
(also referred to as the price of anarchy, and denoted by PoA)
can be Ω(∆(G)), where ∆(G) denotes the maximum node
degree in G. When G has a power law degree sequence with
exponent β > 2, we show that the cost of the social optimum
is in the interval

[
c1n/T

2(β−1), c2n/T
(β−1)], for constants

c1, c2; this implies that the PoA is O
(
T 2(β−1)). Further, we

show that a Θ
(
T (β−1))-approximation to the social optimum

can be computed in polynomial time.
3. Structure of equilibria in random graph models. We study
the structure of NE in Erdős-Rényi and Chung-Lu random
graph models; the latter has been shown to be relevant for a
broad class of real world networks. We prove that in Erdős-
Rényi graphs G(n, p), if p = Ω(log n/n) (which is needed
for the graph to be connected), and if T 2 = O(np), every NE
has cost Ω(n), and the PoA is Θ(1). We consider the Chung-
Lu model (Chung and Lu 2006b) defined by a power-law
weight vector with exponent β (defined formally later), which
gives a random graph with degree sequence close to a power
law. We prove that when β > 2, and the weight sequence and
T satisfy additional weak assumptions, the social optimum
has cost Θ

(
n

T 2(β−1)

)
, and can be approximated by picking

high weight nodes. Note that this corresponds to the upper
bound we prove for general power law graphs. In contrast,
the worst cost NE is Ω(n), which can be obtained by favoring
low weight nodes, which leads to a PoA of Θ

(
T 2(β−1)) in

this model.
4. Empirical analysis of the properties of the equilibria. We
study the structure of equilibria in EC games in seven dif-
ferent real and random networks, on which malware could
spread. Our main observations are summarized below: (i) We
find that estimates of the minimum cost of NE scale as
Θ
(

n
T 2c(β−1)

)
for the scale free networks, where c is a small

constant close to 1, which is close to our bounds for gen-
eral graphs and the Chung-Lu model; (ii) We compute a
lower bound on the PoA and find that it scales roughly as
Θ
(
T 2c′(β−1)) where c′ is a constant close to 1, which is

again close to our theoretical bounds; (iii) An interesting
observation is that the degree distribution in the graph in-
duced by the insecure nodes in random NE is very close to
the degree distribution in the graph G in most networks; (iv)

We study the community structure in the networks, and find
that generally larger communities have a disproportionately
high fraction of secure nodes, in contrast to their size. This
might be useful in understanding what kinds of nodes have
the greatest incentive to secure themselves; (v) Finally, we
consider Stackelberg strategies, to explore how to mitigate
the effects of distributed control and the PoA by influencing
a small set of nodes. We find that the cost of random NE
reduces quite a bit for a small fraction of high degree nodes
secured initially.
Organization. We first describe the formal model and defi-
nitions and then discuss the results for general graphs. We
then discuss the results for random graphs, and the simulation
results. We summarize the related work and then conclude.
Many proofs and other details are omitted because of the
space limitations, and are available in (Saha, Adiga, and
Vullikanti 2014).

2 Preliminaries and Model
The Epidemic Containment (EC) game involves an undi-
rected graph G(V,E) on the set V of players or nodes. The
neighbor set and degree of a node v are denoted by N(v)
and d(v) respectively. Let ∆ = ∆(G) denote the maximum
degree and let λ1 = λ1(G) denote the first eigenvalue of
the adjacency matrix of G. We assume the SIS model of
epidemic spread (Newman 2003; Ganesh, Massoulie, and
Towsley 2005), in which nodes are in states Susceptible (S)
or Infected (I). Initially, some source node gets infected and
all other nodes are susceptible. Each infected node v infects
each of its neighbors u currently in state S at rate α (the
transmission rate); if neighbor u gets infected, it switches
to state I. Also, each infected node v switches back to state
S at rate γ. T = γ/α is referred to as the threshold. The
characterization of (Ganesh, Massoulie, and Towsley 2005;
Prakash et al. 2012) implies that the epidemic dies out quickly
(in o(n) time) if λ1(G) < T . Each node x decides indepen-
dently whether to become secured/vaccinated (denoted by
ax = 1) or not (denoted by ax = 0); ax is the strategy
selected by node x, and a = (a1, a2, ..., an) denotes the
strategy profile of all the nodes. We use a−x to denote the
strategy profile of the players other than x.

If node x decides to get secured, i.e., ax = 1, it incurs a
cost C (e.g., the cost of a vaccination or anti-virus software).
If node x does not get secured, i.e., ax = 0, its cost (denoted
by cost(x,a)) depends on whether or not the epidemic dies
out quickly or not in the connected component containing x
(restricted to the graph induced by the insecure nodes) under
the strategy profile a – we let L < C and Le > C denote
the costs in the former and latter cases, respectively. The
motivation is that if the epidemic does not die out quickly in
the component containing node x, then x is more likely to
be infected, and incurs a higher cost than C; however, if the
epidemic dies out quickly, the cost incurred is much smaller
than C. Let S = S(a) = {x ∈ V : ax = 1} denote the set
of secure nodes in the strategy profile a. We call the graph
G[V − S(a)] induced by the set V − S(a) of insecure nodes
as the “attack” graph. LetGx[V −S(a)] denote the connected
component of G[V − S(a)] that contains x. Following the
characterization of (Ganesh, Massoulie, and Towsley 2005;
Prakash et al. 2012), we have for any v ∈ V and strategy
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profile a:

cost(v,a) =


C, if av = 1,

L, if av = 0 and λ1(Gv[V − S(a)]) < T,

Le, if av = 0 and λ1(Gv[V − S(a)]) > T .

An instance of the EC game is defined by the tuple
(G,T,C, L, Le). For a strategy profile a, the social cost
cost(a) =

∑
v∈V cost(v,a). If the epidemic dies out quickly,

then cost(a) = |S|C + |V − S|L where S = S(a); other-
wise, cost(a) = |S|C + |Ve|Le + |V − S − Ve|L, where Ve
is the set of insecure nodes x that are part of those compo-
nents of the attack graph where the epidemic lasts long (i.e.
λ1(Gx[V − S(a)]) > T ). The optimum social cost of an
instance is denoted by COPT where, COPT = mina cost(a).

A strategy profile a is said to be a Nash Equilibrium (NE)
if for any player i, and any alternative strategy a′i for player i,
we have cost(i,a) 6 cost(i,a′), where a′j = aj for all j 6= i.
That is, a strategy profile a is a NE, if no player i can benefit
by switching his/her strategy, given that a−i is fixed (Nisan
et al. 2007).

This is illustrated in Figure 1. In Figure 1(a), a1 is not NE,
since any of the unsecured nodes can secure itself and get its
cost reduced from Le to C. On the other hand, a2 in Figure
1(b) is a NE. This is because v6 cannot benefit by switching
from secure to insecure (as λ1 of the attack graph becomes
more than T ), and none of the insecure nodes benefit by
switching to a secured state (as that would only increase its
cost from L to C). The following observation gives a simple
characterization of a NE in the EC game.

(a) Not a Nash Equilibrium (b) A Nash Equilibrium
Figure 1: Example of an EC game where λ1 = 3.13 and T = 2.
(a) Strategy profile a1 where three nodes are secured but spectral
radius of the attack graph is more than T = 2; (b) Strategy profile
a2 where one node (v6) is secured and spectral radius of the attack
graph is below T , is a NE. For a1, the epidemic is likely to last long
while for a2, the epidemic dies out quickly.

Observation 1. For an instance (G,T,C, L, Le) of the EC
game, a strategy profile a is a NE if and only if S(a) is a
minimal set of secured nodes such that λ1(G[V − S(a)]) <
T .

The proof is in (Saha, Adiga, and Vullikanti 2014). From
the above observation it follows that, for this game formula-
tion, the best NE corresponds to the social optimum. There-
fore, from now on we use the terms “social optimum” (de-
noted by SOPT and its cost COPT) and “best NE” interchange-
ably. To simplify the notation, for the rest of the paper, we

will focus on instances (G,T,C, L, Le) of the EC game,
where C = 1, L = 0 and Le > 1. Under this assumption
and from Observation 1, it follows that if a is a NE, then
cost(a) = |S(a)|. All our results extend naturally to the
general case. The Price of Anarchy (PoA) is defined as the
ratio between the cost of the worst equilibrium and the social
optimum cost, that is, PoA = maxa:a is NE cost(a)

COPT

We will also study Stackelberg strategies, in which a cen-
tralized authority is allowed to control the strategies of a
fraction of agents, while the remainder act non-cooperatively
(Roughgarden 2001).

3 Existence and complexity of Nash
Equilibria

We first discuss some properties about Nash equilibria and the
complexity of computing them. It follows from observation 1
that the smallest set S such that λ1(G[V − S]) < T is a NE,
and is also the social optimum. Further, it follows that a pure
NE can be computed by iteratively choosing nodes into a
minimal subset of secured nodes. Please see (Saha, Adiga,
and Vullikanti 2014) for more details.

Computing the social optimum is computationally chal-
lenging, as shown below. The proof follows from a reduction
of vertex cover problem to EC game problem (Saha, Adiga,
and Vullikanti 2014).
Lemma 2. Finding the social optimum of an EC game is NP
complete. Moreover, the cost of social optimum cannot be
approximated within a factor of 1.3606 unless P=NP.

4 The structure of NE in general graphs
We consider bounds for arbitrary power law graphs
(see (Saha, Adiga, and Vullikanti 2014) for additional re-
sults on other graph classes). Let ni denote the number
of nodes of degree i in G, for i ∈ {1, . . . , dmax}. We as-
sume the degree sequence of G is a power law with expo-
nent β, so that ni ∝ 1/iβ . Define E0(x) =

∑dmax

i>x ni and

E1(x) =
∑dmax

i>x i · ni. We first observe the following useful
property.
Lemma 3. LetG be a power law graph with exponent β > 2
and let x 6 cdmax for a constant c < 1. Then, (1) E0(x) =
Θ
(
n/xβ−1

)
and (2) E1(x) = Θ

(
n/xβ−2

)
.

See (Saha, Adiga, and Vullikanti 2014) for a proof.
Theorem 4. Let G be a power law graph with exponent
β > 2, where β is a constant and let T 2 6 cdmax for a
constant c < 1. Then, there exist constants c1 and c2 such
that c1

(
n/T 2(β−1)) 6 COPT 6 c2

(
n/T (β−1)).

Proof. We first consider the lower bound. Consider any
strategy profile a that is a NE; let I = {v : av = 0} be the
set of insecure nodes in a. We have λ1(G[I]) >

√
∆(G[I]).

Let A = {v : d(v) > T 2}. It follows that for any node
v ∈ A, dG[I](v) < T 2, for otherwise, λ1(G[I]) would be at
least T . This implies that any node v ∈ A is either secured
(i.e., has av = 1) or at least dG(v)− T 2 neighbors of v are
secured. Let D be the smallest set such that for any v ∈ A
either: (i) v ∈ D, or (ii) at least d(v)−T 2 neighbors of v are
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in D. Then, cost(a) > |D|. Because of the power law degree
distribution, it follows that |A| = Θ

(
n/T 2(β−1)). Observe

that re := 1
2

∑
v∈A(d(v) − T 2) denotes a lower bound on

the number of edges with end points in D which need to be
removed. Since G is a power law graph with exponent β,

re =
1

2

dmax∑
i>T 2

(
i− T 2

)
ni = Θ(1)

∫ ∞
T 2

n
(
z − T 2

)
zβ

dz

= Θ
(
n/T 2(β−2)

)
. (1)

Next, note that |D| is minimized if the largest degree nodes
are selected. Consider the largest index j such that

∑
i>j i ·

ni = E1(j) > re; then, |D| >
∑
i>j ni = E0(j). From

Lemma 3 and (1), it follows that j = Θ
(
T 2
)

and therefore,
(again from Lemma 3) E0(j) = Θ

(
n/T 2(β−1)).

For the upper bound, we note that λ1(G[I]) 6 ∆(G[I]).
Therefore, if all the nodes in B = {v : d(v) > T} are
secured, then, λ1(G[I]) < T . Consider any minimal set
B′ ⊆ B such that λ1(G[V −B′]) < T . From Observation 1,
B′ is a NE and therefore, COPT 6 |B|. From Lemma 3, it
follows that |B| = E0(T ) = Θ

(
n/T (β−1)).

Corollary 5. Let G be a power law graph with exponent
β > 2, where β is a constant and let T 2 6 cdmax for a
constant c < 1. Then, the PoA is O

(
T 2(β−1)).

5 The structure of NE in random graph
models

We now analyze the structure of Nash equilibria in EC games
in different random graph models.

The Erdős-Rényi model
In Erdős-Rényi random graph model G(n, p), each pair of
vertices has an edge between them with probability p. The
spectral radius ofG(n, p) = (1+o(1)) max{np,

√
∆} (Kriv-

elevich and Sudakov 2001).
Lemma 6. For p > c

n , where c is a suitably large con-
stant and np > (1 + δ)T 2 for any positive constant δ, for

any G ∈ G(n, p), almost surely COPT = Ω
(

n2p
np+logn

)
and

PoA is O
(
np+logn

np

)
.

See (Saha, Adiga, and Vullikanti 2014) for a proof. Note
that the connectivity threshold in G(n, p) is p = Ω(log n/n).
This implies that if np > (1 + δ)T 2, any NE has cost Ω(n)
above the connectivity threshold and hence, the PoA is Θ(1).

Random power law graphs
We consider a random graph model by Chung and Lu (Chung
and Lu 2006b; 2006a). Given a weight sequence w =
(w(v1, V ), w(v2, V ), ..., w(vn, V )) for nodes vi ∈ V , the
Chung-Lu model G(w) defines the random graph G(V,E)
as follows: for every pair vj , vk ∈ V , vj is adjacent to vk with
probability w(vj ,V )w(vk,V )∑

vi∈V
w(vi,V ) . Extending the notion discussed

in Section 4, we say that G(w) has a power-law weight se-
quence with exponent β > 2 if the number of nodes with

weight i ∝ 1/iβ ; for succinctness, we refer to such a G as
a Chung-Lu power law graph with exponent β. It is easy to
see that the expected degree of any node vi equals its weight
w(vi, V ). For any V ′ ⊆ V , let w(V ′), wmax(V ′), wmin(V ′)
and w̃(V ′) denote the expected average degree, maximum
weight, minimum weight and second order average degree
respectively of G[V ′], the graph induced by V ′.

We derive the following results for the bounds on the best
and the worst NE in this graph.

Lemma 7. Let G(w) be a Chung-Lu random power law
graph on n nodes with power law exponent β > 2 and
wmin(V ) a constant. Let T be the epidemic threshold such
that wmax(V ) > (1 + δ)T 2 for a constant δ > 0 and T =
Ω(log n). Then, COPT = Ω( n

T 2(β−1) ), almost surely.

The complete proof is available in (Saha, Adiga, and Vul-
likanti 2014). We show that if any node of weight at least
(1 + ε)T 2 is left unvaccinated, then, almost surely, the eigen-
value of the residual graph is more than T . We make use
of volume arguments and concentration bounds for node
degrees.

Lemma 8. Let G(w) be a Chung-Lu random power law
graph on n nodes with power law exponent β > 2 and
wmin(V ) a constant. Let T be the epidemic threshold such
that wmax(V ) > (1+δ)T 2 and T > (1+γ)w̃(G) log2 n for
any positive constants δ and γ. Then, COPT = O

(
n

T 2(β−1)

)
almost surely.

Lemma 9. In a Chung-Lu random power law graph G(w)
of n nodes and power law exponent β > 2 and wmin(V )
a constant, if wmax(G) > (1 + δ)T 2w(V ) for any positive
constant δ and T = Ω(log2 n), then the cost of the worst
NE is Θ(n). Therefore, the size of the largest vaccinated set
corresponding to NE is Θ(n).

Combining Lemmas 7 and 9, we have the following tight
bound for the price of anarchy of the EC game.

Theorem 10. Consider a Chung-Lu random power law
graph G(w) of n nodes and power law exponent β > 2 and
wmin(V ) a constant, such that wmax(G) > (1 + δ)T 2w(V )
for any positive constant δ and T = Ω(log2 n). The PoA of
the EC game in G(w) is Θ(T 2(β−1)) almost surely.

6 Empirical results

Table 1: Networks used in our experiments and their relevant
properties: Five real (Leskovec 2011; Opsahl and Panzarasa 2009)
and two synthetic graphs.

Graph,G Nodes,n λ1(G) ∆(G) β

AS (Oregon-1) 10670 58.72 2312 2.23
P2P (Gnutella-6) 8717 22.38 115 NA
Irvine-net 1899 48.14 255 1.34
Brightkite 58228 101.49 1134 2.01
Enron-email 36692 118.42 1383 1.86

Barabasi-Albert 5000 12.51 151 2.61
Chung-Lu power law 4235 62.31 1878 2.1
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(b) Estimated PoA
Figure 2: (a) Minimum cost and (b) PoA of NE (on y-axis), as
a function of T (x-axis). The minimum costs are normalized by
network size. Results are shown for seven networks (see Table 1).

We now study characteristics of Nash equilibria of EC
game in several social/communication networks and two ran-
dom graph models, as summarized in Table 1. We study
the costs of the cheapest and random NE, PoA, degree dis-
tributions in random NE, community structure and effects
of Stackelberg strategies. We estimate the maximum and
minimum NE cost by two heuristics, that we call the High
Degree (HDG) and Low Degree (LDG) strategies; these are
obtained by running iterative strategies for finding NE by
removing nodes in decreasing or increasing order of their
degrees, respectively (see (Saha, Adiga, and Vullikanti 2014)
for details). From Section 4, it follows that the NE resulting
from HDG has cost within a Θ(T β−1) factor of the social
optimum in general power law graphs and the NE resulting
from LDG is within a Θ(1) factor of the maximum cost NE
in random power law graphs. Our main observations are:
1. Minimum and Maximum Cost of NE: For all networks,
the estimated minimum cost of NE decreases with T (see
Figure 2(a)). For power law graphs, we find that the estimated
minimum cost of any NE scales as cn

T 2c′(β−1) for constants
c, c′ where c′ is close to 1 (particularly 0.5 6 c′ 6 1.5) (see
Figure 3(a) for results for the AS network and (Saha, Adiga,
and Vullikanti 2014) for other networks), which is quite close
to our theoretical bounds for general power law graphs and
the Chung-Lu power law model. The estimated maximum
cost of NE in most networks turns out to be close to the
network size for 0 < T < 1

2λ1(G) (see (Saha, Adiga, and
Vullikanti 2014) for results on the maximum cost of NE).
2. PoA: In all the networks, the PoA is an increasing function
of T (see Figure 2(b)). Further, for scale-free networks,
the estimated PoA scales as cT 2c′(β−1) for constants c, c′,
with 0.5 6 c′ 6 1.5 (see Figure 3(b) for results for the AS
network), which is also quite close to our analytical bounds.
3. Degree distribution of secured nodes in NE: We exam-
ine the degree distribution of secured nodes in random NE,
obtained by running iterative strategies for finding NE by
removing nodes in random order. Results show that, secured
nodes tend to have higher degrees, compared to unsecured
nodes. See (Saha, Adiga, and Vullikanti 2014) for plots.
4. Stackelberg strategies: As defined earlier, a Stackelberg
strategy involves securing a small fraction of nodes in a cen-
tralized manner by a leader (or central authority), while the
remaining nodes act non-cooperatively. In our experiments,
we consider a specific Stackelberg intervention strategy in
which high degree nodes are secured by the leader, which

works well in both arbitrary and random graphs, as discussed
earlier. However, we find that such degree based Stackelberg
strategies have little effect in reducing the maximum cost of
NE and the random NE cost. As shown in Figure 4(a), the
PoA does not change by much, though the cost of random
NE reduces slightly (Figure 4(b)). The sudden drop in the
plots happens when the Stackelberg strategy itself suffices.
5. Distribution of secured nodes among communities: We
study the community structure in NE to understand relation-
ships between the secured nodes. We find that to get small
equilibria, it generally suffices to secure nodes in a few “im-
portant” communities (as shown in Figure 5 for the P2P
network). This holds for different small equilibria computed
with strategies HDG and HEC (HEC strategy is obtained by
iteratively securing nodes in decreasing order of their princi-
pal eigenvector components.) One reason might be that nodes
contributing to the high eigenvalue seem to be concentrated
only in a few communities, because underlying communities
typically have uneven degree distributions.
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Figure 3: Minimum cost of NE and PoA (y-axis) estimated with
HDG and LDG strategy,as a function of T (x-axis), along with the
best fit function of the form cn

T2c′(β−1)
and kT 2k′(β−1) respectively,

where constants c′ and k′ are close to 1 (see n, β values in Table 1).
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(a) Effects on PoA
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(b) Effects on Random NE cost
Min NE cost

Figure 4: Effects of Stackelberg strategies on inefficiency metrics.
Plots in (a) and (b) show the change in PoA and random NE cost

Min NE cost (on y-
axis) as different fractions (x-axis) of high degree nodes are secured
as part of Stackelberg strategy. Results are shown for five networks
and threshold set to T = 0.3λ1(G).

7 Related Work
A fundamental property about the dynamics of epidemics
in many models is that of a phase transition from a small
number of infections, to a large number of infections; this is
characterized in terms of the reproductive number in differ-
ential equation based models (Newman 2003), and in terms
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Figure 5: Secured nodes in the smallest NE (estimated with the
HDG and HEC strategy) as distributed among the communities of
P2P network. For each of the biggest 10 communities, the left bar
shows the fraction of nodes that the community has. The other two
bars show the fraction of secured nodes each community has. The
middle and the right bar show them for NE’s computed with the
HDG and HEC strategy respectively. In to both the NE’s, secured
nodes are concentrated in few “important” communities.

of the spectral radius for SIS/SIR models defined on net-
works (Ganesh, Massoulie, and Towsley 2005; Prakash et al.
2012). This has motivated the development of interventions
for controlling epidemics or malware spread that reduce the
reproductive number or the spectral radius (Newman 2003;
Tong et al. 2012; Mieghem et al. 2011) which is by vacci-
nations or anti-virus software as the case may be. However,
it is commonly observed that there is limited compliance to
directives to get vaccinated, or to install anti-virus software,
because of the competing incentives. There is a large litera-
ture on modeling such behavior using non-cooperative game
models.

There are several works in this regard based on dif-
ferential equation models, e.g., (Bauch and Earn 2004;
Khouzani, Sarkar, and Altman 2012; Khouzani, Altman,
and Sarkar 2012; Khouzani, Sarkar, and Altman 2011;
Galvani, Reluga, and Chapman 2007; Reluga 2010). These
commonly rely on simplified assumptions about uniform mix-
ing of the players in the population which greatly simplifies
the problem and enables the derivation of tight analytical
bounds and a detailed characterization. However, it is not
easy to extend these approaches to heterogeneous networks.
The work of (Aspnes, Rustagi, and Saia 2007) was among the
first to study these problems on networks, especially from an
algorithmic perspective and was further developed in (Kumar
et al. 2010). They characterize NE in terms of the network
properties, such as the maximum degree and conductance,
and develop algorithms for approximating the PoA. However,
both these approaches focus on an SIR model with a transmis-
sion probability of 1, so that it suffices to consider connectiv-
ity instead of percolation. (Omic, Orda, and Mieghem 2009)
develop a formulation by combining a N -intertwined, SIS
epidemic model with a non-cooperative game model, which
simplifies the diffusion process by a mean-field approxima-
tion. Our EC game formulation incorporates a realistic epi-
demic model over a generous heterogeneous network, thus
bridging both these approaches.

A common issue with all such game-theoretical formu-
lations is that they involve utility functions that require
quite a lot of non-local information to compute, and it is
not clear how implementable such games might be. For
instance, in most epidemic game formulations (e.g., (Asp-

nes, Chang, and Yampolskiy 2006; Kumar et al. 2010;
Omic, Orda, and Mieghem 2009)), whether they be network-
based or not, the utility function involves a term of the form
“pv(a)” (or something similar), which corresponds to the
probability that node v gets infected, given the strategy vec-
tor a. In general, this is computationally hard to estimate,
and requires a lot of information about the network.

The approach of (Kumar et al. 2010) attempts to address
some of these issues by limiting the amount of graph infor-
mation needed in the utility function; specifically, they fix
a parameter d, and consider pv(a) restricted to the graph
induced by nodes within distance d of node v. The utility
function in our EC game also involves such a global quantity
in the form of the spectral radius, which determines the cost
cost(v,a) for node v. However, from the characterization of
(Ganesh, Massoulie, and Towsley 2005), it follows that the
epidemic duration is dependent on the spectral radius, which
can be a good proxy for estimating this cost.

Other network security aspects have also been extensively
studied via non-cooperative games, e.g., Interdependent Se-
curity games (IDS) (Kearns and Ortiz 2004) and the security
game models of Grossklags et al. (Grossklags, Christin, and
Chuang 2008). Another related thread is the use of Stackel-
berg strategies, e.g., (Jain, Conitzer, and Tambe 2013).

8 Conclusion
Our EC game formulation allows for a tractable way to incor-
porate realism in both the network and disease models; this is
a natural game-theoretic analogue of the approaches to reduce
the spectral radius to control epidemics. The main technical
contribution of our paper is the analysis of the rich network
effects in the structure of equilibria, which might give further
insights to understanding the incentives for individuals to
secure themselves, and to affect it. We obtain tight bounds on
the maximum and minimum cost NE, and the PoA in general
and random graphs. We find it interesting that our empirical
results on several real and random networks corroborate well
with our analytical bounds. Our results show that the PoA is
high in general, and degree based Stackelberg strategies do
not help in mitigating it; developing more effective strategies
is an interesting open problem. The spectral properties of
general and random graphs that we identify would be useful
in future studies of the epidemic processes in these networks.
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