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Abstract

The Game Description Language GDL is the stan-
dard input language for general game-playing systems.
While players can gain a lot of traction by an efficient
inference algorithm for GDL, state-of-the-art reasoners
suffer from a variant of a classical KR problem, the in-
ferential frame problem. We present a method by which
general game players can transform any given game de-
scription into a representation that solves this problem.
Our experimental results demonstrate that with the help
of automatically generated domain knowledge, a signif-
icant speedup can thus be obtained for the majority of
the game descriptions from the AAAI competition.

Introduction
General Game Playing (GGP) research seeks to design sys-
tems able to understand new games and use such descrip-
tions to play those games effectively. These systems can-
not be endowed with game-specific algorithms because only
at runtime they will be told the rules of a game. The gen-
eral Game Description Language (GDL) (Love et al. 2006;
Thielscher 2010) has been developed for this purpose and
has become the standard at international GGP competition
since 2005 (Genesereth, Love, and Pell 2005; Genesereth
and Björnsson 2013). GDL uses formal logic to provide play-
ers with a specification of the initial game state, the possi-
ble moves and how they change the position, and the win-
ning conditions. Players also are informed about how much
time they have—the so-called STARTCLOCK—to analyse
the rules and reason their way to a strategy; and how much
time then to decide on every move—the PLAYCLOCK—
once the game has started.

For the selection of moves, two major approaches have
been applied successfully in general game playing. These
are depth-limited game tree search along with solution
concepts like such as Minimax (Kuhlmann, Dresner, and
Stone 2006; Clune 2007; Schiffel and Thielscher 2007);
and guided random simulations along with statistical anal-
ysis (Finnsson and Björnsson 2008; Méhat and Cazenave
2011). For both methods the quality of play depends cru-
cially on the number of nodes in the game tree that can be
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visited under the strict time constraints of the given PLAY-
CLOCK. While ultimately a good strategy makes the differ-
ence, a lot of traction can be gained by an efficient compu-
tation of search nodes (Genesereth and Björnsson 2013).

Game trees in GGP are built by inferring the possible
moves and successor states from the logical descriptions of
preconditions and effects in GDL. Efficient methods exist
that use tailored data structures for this purpose (Schkufza,
Love, and Genesereth 2008; Waugh 2009; Kissmann and
Edelkamp 2010; Saffidine and Cazenave 2011). But a re-
cent comparative assessment of state-of-the-art reasoners
has shown that still they are significantly slower than hand-
made, game-specific algorithms for state update, so bridging
this gap is an open problem (Schiffel and Björnsson 2013).

This is a quintessentially KRR problem: A given rep-
resentation of knowledge needs to be automatically turned
into one that is more efficient to reason with. Specifically,
reasoners for GDL face the classical inferential frame prob-
lem (McCarthy and Hayes 1969; Reiter 1991; Thielscher
1999): If used directly, the logical game description requires
inferring all components of a successor state anew, rather
than updating the current state description only by the com-
ponents that change (Schiffel and Björnsson 2013).

We address this problem by developing a method for auto-
matically transforming any given GDL description into a rep-
resentation that solves the inferential frame problem. Gen-
eral game-playing systems apply this translation during the
STARTCLOCK in order to boost the efficiency of the state
update computation for their game tree search when they
play the game later. The transformation consists of sev-
eral steps. First, the given GDL axioms for state update are
rewritten into syntactically equivalent formulas that describe
the changes between successor states. Second, the resulting
formulas are subjected to automatic logical simplification.
Finally, and crucial for matching the efficiency of a game-
specific implementation, the representation is simplified fur-
ther based on domain-specific knowledge. The latter needs
to be established from the game rules through automated
theorem proving (Haufe, Schiffel, and Thielscher 2012).

Our results in this paper are three-fold. We present a
method by which any GDL game description is automati-
cally turned into a representation that can be used directly
to infer state updates without suffering from the inferential
frame problem. We provide a formal proof of the correct-
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1 role(x).

2 role(o).

3 init(cell(1,1,b)).

4 ...

5 init(cell(3,3,b)).

6 init(control(x)).

7

8 legal(P,mark(M,N)) :- true(control(P)), true(cell(M,N,b)).

9 legal(x,noop) :- true(control(o)).

10 legal(o,noop) :- true(control(x)).

11 next(cell(M,N,x)) :- does(x,mark(M,N)). %r1

12 next(cell(M,N,o)) :- does(o,mark(M,N)). %r2

13

14 next(cell(M,N,O)) :- %r3

15 does(P,mark(J,K)),

16 true(cell(M,N,O)),

17 ( distinct(M,J) or distinct(N,K) ).

18

19 next(control(x)) :- true(control(o)). %r4

20 next(control(o)) :- true(control(x)). %r5

Figure 1: A GDL description of Tic-Tac-Toe (without the definition of termination and goalhood). Positions are encoded using
the features control(P ), where P ∈ {x, o}; and cell(X,Y, Z), where X,Y ∈ {1, 2, 3} and Z ∈ {x, o, b} (with b =̂ “blank”).

ness of this translation, and we present experimental results
obtained with a state-of-the-art reasoner, Fluxplayer (Schif-
fel and Thielscher 2007; Schiffel and Björnsson 2013), that
demonstrate a significant efficiency gain for the majority of
the GDL game descriptions from the AAAI GGP competi-
tion (Genesereth and Björnsson 2013).

Our result has implications beyond the specific game de-
scription language used for GGP. The update axioms in GDL
can be viewed (Schiffel and Thielscher 2011) as general
successor state axioms (SSAs), which provide the standard
solution (Reiter 1991) to the frame problem—the represen-
tational aspect thereof, to be more specific—in the classi-
cal KR formalism for reasoning about actions, the Situation
Calculus (McCarthy and Hayes 1969). Any standard rea-
soner for actions based on some form of SSAs can therefore
profit from our techniques if a straightforward implementa-
tion requires to compute unchanged fluents individually.

The remainder of the paper proceeds as follows. After a
brief introduction to GDL, we show how game descriptions
can be rewritten into a direct representation of the changes
effected by moves. We prove the correctness of the overall
translation. We show how the result can be further simplified
using automatically derived, game-specific knowledge. We
present our experimental results and conclude.

Game Description Language
GDL has been developed to formalise the rules of any finite
game with complete information in such a way that the de-
scription can be automatically processed by a GGP system.

Game descriptions in GDL are sets of normal logic pro-
gram clauses (Lloyd 1987) that may include negation and
disjunction in the bodies. Especially designed for game de-
scriptions, the language uses a few pre-defined predicates:

role(R) R is a player
init(F) F holds in the initial position
true(F) F holds in the current position

legal(R,M) player R has legal move M
does(R,M) player R does move M

next(F) F holds in the next position
terminal the current position is terminal

goal(R,N) player R gets goal value N
distinct(X,Y) X,Y syntactically different terms

In GDL it is assumed that gameplay happens synchronously,

that is, all players move simultaneously and the world
changes only in response to moves.

As an example, Figure 1 shows an excerpt of a GDL de-
scription for the simple game of Tic-Tac-Toe.1 GDL imposes
some syntactic restrictions on a set of clauses with the inten-
tion to ensure an unambiguous interpretation of the rules and
finiteness of the set of derivable predicate instances (Love et
al. 2006). Let it suffice to say that any valid GDL description
• must be stratified (Apt, Blair, and Walker 1987) and al-

lowed (Lloyd and Topor 1986);
• has predicate next only in the head of clauses while true

and does can only appear in clause bodies.
Stratified logic programs are known to admit a unique an-
swer set (Gelfond 2008).

The semantics of a set of game rules has been informally
described by a state transition system by Genesereth, Love,
and Pell (2005) and later formalised as follows (Schiffel and
Thielscher 2010). Let G |= A denote that atom A is true
in the unique answer set of a stratified set of rules G. The
players in game G are R = {r : G |= role(r)}. The initial
state is {f : G |= init(f)}. A move m is legal in state S =
{f1, . . . , fk} if G ∪ Strue |= legal(r,m), where

Strue
def
= {true(f1)., true(f2)., . . . , true(fk).}

A joint move M in state S assigns each role r ∈ R a legal
move. The state transition from S via M is defined by

{f : G ∪ Strue ∪Mdoes |= next(f)} (1)

Here, Strue is as above and

Mdoes def
= {does(r1,m1)., . . . , does(rn,mn).}

assuming that joint moveM assignsmi to player ri. Finally,
a terminal state is any S such that G ∪ Strue |= terminal;
and a goal value for player r ∈ R in state S is any v for
which G ∪ Strue |= goal(r, v) holds.

Solving the Inferential Frame Problem in GDL
The inferential frame problem in GDL is the problem of hav-
ing to compute anew all the elements of a state that persist

1A word on the syntax: We use a Prolog-style notation for GDL
rules as we find this more readable than the usual prefix notation
used at competitions. Variables are denoted by uppercase letters.
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after a move. For example, in Tic-Tac-Toe when a player
marks a cell then all the other cells remain unchanged. In
GDL this persistence has to be represented explicitly by a
frame rule, as r3 in Fig. 1. Hence, when a reasoner updates
a state it has to recompute the values of all the cells that
persist. In contrast, consider the following rule:

fnext(cell(M,N,O)):- does(P,mark(M,N)),true(cell(M,N,O)).

where fnext/1 is a new predicate to represent that a true ele-
ment changes to false in the next state. Intuitively, this fnext
rule says that a cell loses its previous mark when it gets
marked by a player. In contrast to frame rule r3, which has
to be executed once for every individual cell that persists,
the fnext rule only has to be executed once per turn.

Our solution to the inferential frame problem in GDL is to
translate frame rules such as r3 into fnext rules and then use
the latter instead. In this way, rather than having to compute
everything that persists, the reasoner will compute every-
thing that changes to false. In most of the domains there are
far less changes to false than persisting state features, so we
expect an improvement in the performance of the reasoner.

Preliminaries
Let φ = {v1/t1, . . . , vn/tn}. φ is said to be a substitution
when each vi is a variable and each ti is a term, and for no
distinct i and j is vi the same as vj . We denote by Eq(φ)
the formula

∧
vi/ti∈φ vi = ti. Let l be a literal and let φ =

{v1/t1, . . . , vn/tn} be a substitution. The instantiation of
l by φ, written lφ, is formed by replacing every occurrence
of vi in l by ti. The instantiation of a set of literals L by
φ, written Lφ, is the set of the instantiations of the literals
of L by φ. Atom a subsumes atom b, or a � b, if there
is a substitution φ such that aφ = b. For sets of atoms A
and B, we say that A subsumes B, or A � B, if there is a
substitution φ such that Aφ ⊇ B.

We consider logic programming notation as an alternative
to first order logic notation, interpreting the symbol ← as
logical implication, every comma as ∧, every or as ∨ and
every not as ¬, and assuming all free variables are univer-
sally quantified from the outside. We identify a set of for-
mulas with the conjunction of its elements, and sometimes
we omit the curly braces among the elements of a set. For a
rule r, by headr we refer to the atom in the head, by bodyr
we refer to the set of conjuncts in the body, and by doesr we
refer to the set of positive literals of predicate does/2 in the
body. A next rule is a rule whose head is an atom of pred-
icate next/1, and by Gnext we refer to the next rules of a
GDL description G. An fnext rule is a rule whose head is an
atom of predicate fnext/1. We assume that fnext/1 does not
appear anywhere in a given GDL description. Let r be a next
rule with head next(f), then we say that r is a frame rule
if true(f) belongs to the body of the rule. In this case we
denote by condr the condition bodyr \ ({true(f)} ∪ doesr)
and we may write r as:

next(f)← true(f) ∧ doesr ∧ condr
For example, in the Tic-Tac-Toe description, the next rules
are r1, r2, . . . , r5 (cf. the labels in Fig. 1); r3 is the unique

frame rule; doesr3 is {does(P,mark(J,K))}; and condr3
is {M 6= J ∨N 6= K}. Let P be a set of predicates and A a
set of ground atoms of predicates from P , the closed world
assumption (Reiter 1978) over predicates P in A, written
CWAP (A), is the set of formulas p(~x) ↔

∨
p(~t)∈A ~x = ~t

for every p ∈ P , where ~x is a tuple of distinct variables, ~t
is a tuple of ground terms and ~x = ~t is interpreted as usual.
We may define the state transition from a state S via a joint
move M as:

{f : CWAP (A) ∪Gnext |=FOL next(f)} (2)
where A is the unique answer set of the program G′ = (G \
Gnext) ∪ Strue ∪Mdoes, P are the predicates that appear
in G′, and |=FOL is the entailment relationship in first-order
logic under the unique names assumption. Using the fact
that predicate next/1 does not appear in G′, the following
theorem is easy to prove.
Theorem 1 The definitions of the state transitions (1) and
(2) are equivalent.

The Translation
We describe the translation for a GDL description G with a
set of players R. We say that f is a fluent of G if f ∈ S for
some state S of G. For the simple case where G is ground
and there is a single player p ∈ R, for every fluent f and
every move m we have the fnext rule:

fnext(f)← true(f) ∧ does(p,m) ∧
∧

r∈Fr (f,m)

¬condr

where Fr (f,m) is the set of frame rules r with head next(f)
and doesr ⊆ {does(p,m)}. Intuitively, the rule says that
f changes to false by move m if none of the conditions
hold for f to persist. For this simple case the translation
is straightforward: For every fluent f and every move m we
replace the frame rules from G by the new fnext rules, and
we modify the state transition definition so that f belongs to
a successor state if either next(f) is entailed or f is true in
the previous state and fnext(f) is not entailed.

The general case requires two generalizations. First, the
translation is defined for possibly non ground atoms a of
predicate next/1. For any such atom a the frame rules in
G, written FrG(a), are the set of frame rules r ∈ G such
that a � headr. For example, r3 is a frame rule for atom
next(cell(X,Y, Z)) but not for next(cell(X,Y, b)).

Second, the translation is defined for a set of possibly non
ground atoms of predicate does/2. For this we introduce
the concept of a general joint move. We say that M is a
joint move of G if it is a joint move in some state S of G. A
general joint moveM ofG is a set of |R| atoms of predicate
does/2 such that the first terms of two distinct elements of
M are different. Intuitively, a general joint move is a set of
does/2 atoms that can be instantiated to a joint move. Every
joint move M of G is also a general joint move of G, and
the set

⋃
1≤i≤|R|{does(Pi, Ai)} is a general joint move of

any G with |R| players. For the Tic-Tac-Toe description,
M1 = {does(x, noop), does(o, noop)}
M2 = {does(x, noop), does(o,mark(A,B))}
M3 = {does(P1, noop), does(P2,mark(A,B))}
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are some other general joint moves. For a general joint move
M, by IM we denote the set of inequalities pi 6= pj for ev-
ery two distinct atoms does(pi,mi), does(pj ,mj) ∈ M.
For example, IM1

and IM2
are {x 6= o} and IM3

is
{P1 6= P2}.

Translation for an atom and a general joint move
We first define the translation for an atom a of predicate
next/1 and a general joint moveM of G. We assume that a
andM have different variables that do not appear in G.

The set of unifiers of a rule r ∈ FrG(a) with a and
M, written Ur(a,M), is the set of substitutions φ such that
(headr ∪ doesr)φ ⊆ (a ∪M)φ.

For example, Ur3(next(cell(X,Y, Z)),M1) = ∅, while
Ur3(next(cell(X,Y, Z)),M2) has many elements, includ-
ing {X/M,Y/N,Z/O,A/J,B/K,P/o}.

For a rule r ∈ FrG(a), ifM subsumes Mdoes for a joint
move M , then we may rewrite r as r(a,M):

next(f)← true(f) ∧M∧ IM ∧ condr ∧
∨

φ∈Ur(a,M)

Eq(φ)

The set IM is added to guarantee that if the body holds then
M is instantiated to a joint move. Formally, we have the
following proposition.

Proposition 1 Let a,M and r be defined as above. For any
joint move M in a state S such thatM�Mdoes, the sets

{f : CWAP (A) ∪ r |=FOL next(f)} (3)

and {f : CWAP (A) ∪ r(a,M) |=FOL next(f)} (4)

are the same (A and P are as in (2)).

Proof: (⇒) Let g ∈ (3), we prove that g ∈ (4). If
g ∈ (3) then there is a substitution α such that α only
mentions variables in r, headrα and bodyrα are ground,
CWAP (A) |=FOL bodyrα and headrα is next(g). Given
that r ∈ FrG(a) there is a substitution β that only mentions
variables in a such that aβ = headr. Also, given thatM�
Mdoes there is a substitution γ that only mentions variables
in M such that Mγ = Mdoes. Let δ be the composition
βγα and let headr be of the form next(h). We show that
all the elements of bodyr(a,M)δ are entailed by CWAP (A):
true(f)δ is entailed because true(f)β = true(h) and
true(h)α is entailed by CWAP (A), (M ∧ IM)δ is en-
tailed becauseMγ is equal to Mdoes, which is entailed by
CWAP (A), condrδ is entailed because condrα is entailed
by CWAP (A), and for the disjunction

∨
φ∈Ur(a,M)Eq(φ)

we have that δ ∈ Ur(a,M) and Eq(δ)δ is a tautology.
Finally, given that aβ = headr and headrα is next(g)
we have that aδ is next(g), and given that the elements of
bodyr(a,M)δ are entailed by CWAP (A) we have that next(g)
is entailed by CWAP (A) ∪ r(a,M) and g ∈ (4).

(⇐) Similar to the other direction. 2

In r(a,M) we are considering all substitutions φ ∈
Ur(a,M), but we only need to consider the most general
ones. For this, we define a selection of unifiers of r with a
andM as a set S ⊆ Ur(a,M) such that: (1) for every α ∈
Ur(a,M), there exists β ∈ S such that (headr∪doesr)β �

(headr∪doesr)α, and (2) for every α, β ∈ S, if α 6= β, then
(headr ∪ doesr)α 6� (headr ∪ doesr)β. The selections of
most general unifiers are unique up to variable renaming, so
to simplify the presentation we abuse notation by referring to
the selection of most general unifiers, denoted by U∗r (a,M).
Then we may define r∗(a,M) as we did for r(a,M) but us-
ing U∗r (a,M) instead of Ur(a,M), and Proposition 1 still
holds if we use r∗(a,M) in (4) instead of r(a,M). In the
Tic-Tac-Toe description, r∗3(next(cell(X,Y, Z)),M2) is:

next(cell(X,Y, Z))← true(cell(X,Y, Z))∧
does(x, noop) ∧ does(o,mark(A,B)) ∧ x 6= o∧
(M 6= J ∨N 6= K)∧
(X =M ∧ Y = N ∧ Z = O ∧A = J ∧B = K ∧ P = o)

The set of rules {r∗(a,M) | r ∈ FrG(a)} represents
the persistence of the fluents g such that a � next(g) when
a joint move M with M � Mdoes is performed. Then
we may define the translation of a for M in G, written
TG(a,M), as the first-order fnext rule:

fnext(f)← true(f) ∧M∧ IM∧( ∧
r∈FrG(a)

∧
φ∈U∗

r (a,M)

¬∃~x(condr ∧ Eq(φ))
)

where a is next(f) and ~x are the variables appearing in r.
We add the existential quantifier inside the rule because we
have to make sure that for no possible substitution of the
variables the conditions hold. Intuitively, the rule says that
an instance of f changes to false after doing an instance of
M if none of the conditions hold for f to persist. This gen-
eralizes the simple case, where all the elements are ground
and M is a singleton set. In the Tic-Tac-Toe description,
TG(next(cell(X,Y, Z)),M2) is:

fnext(cell(X,Y, Z))← true(cell(X,Y, Z))∧
does(x, noop) ∧ does(o,mark(A,B)) ∧ x 6= o∧
¬∃MJNKOP(

(M 6= J ∨N 6= K)∧
X = M ∧ Y = N ∧ Z = O ∧ A = J ∧ B = K ∧ P = o

)
The following proposition states formally the role of
TG(a,M).

Proposition 2 Let a and M be defined as above. For any
joint move M in a state S such thatM�Mdoes, the sets

{f : CWAP (A) ∪ FrG(a) |=FOL next(f)} (5)

and

{f : a � next(f), f ∈ Strue and
CWAP (A) ∪ TG(a,M) 6|=FOL fnext(f)} (6)

are the same (A and P are as in (2)).

Proof Sketch: It holds that f ∈ (5) iff there is a rule
r ∈ FrG(a) such that CWAP (A) ∪ r |=FOL next(f) iff
(by Proposition 1) there is a rule r ∈ FrG(a) such that
CWAP (A) ∪ r(a,M) |=FOL next(f) iff a � next(f),
f ∈ Strue and CWAP (A) ∪ TG(a,M) 6|=FOL fnext(f) iff
f ∈ (6).

2
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The complete translation
To replace the frame rules from the GDL description we have
to make sure that the new fnext rules cover any possible
move of the game. For this we introduce the concept of a
move covering, a set of general joint moves such that for ev-
ery joint move M in a state that is reachable from the initial
state there is an element of the set that subsumes Mdoes.
For example, the singleton set {

⋃
1≤i≤|R|{does(Pi, Ai)}}

is a generic move covering for any gameG with |R| players.
Another move covering for the Tic-Tac-Toe description is

C1 = {{does(x, noop), does(o,mark(A,B))},
{does(o, noop), does(x,mark(A,B))}} (7)

Now given an atom a of predicate next/1 and a move cov-
ering C we can replace the frame rules FrG(a) by the fnext
rules

⋃
M∈C TG(a,M). For every fluent f such that a �

next(f) and every joint move M in a reachable state S there
is anM ∈ C that subsumes Mdoes. Then by Proposition 2,
next(f) is entailed by a frame rule if and only if fnext(f) is
not entailed by the fnext rules, and we can redefine the state
transition just like in the simple case.

In order to translate many atoms at the same
time we define a translation basis as a set X =
{〈a1, C1〉, . . . , 〈an, Cn〉} where each ai is an atom of
predicate next/1 and each Ci is a move covering. In the
Tic-Tac-Toe description, for example,

X1={〈next(cell(X,Y, Z)), C1〉, 〈next(control(X)), C1〉}

is a translation basis, where C1 is as in (7). The translation
of X in G, written GX , is⋃

〈a,C〉∈X

( ⋃
M∈C

TG(a,M)
)

In the Tic-Tac-Toe example, after some logical simplifica-
tions we obtain that Gχ1 is the following set of rules:

fnext(cell(X,Y, Z))← does(o,mark(X,Y )) ∧
does(x, noop) ∧ true(cell(X,Y, Z))

fnext(cell(X,Y, Z))← does(x,mark(X,Y )) ∧
does(o, noop) ∧ true(cell(X,Y, Z))

fnext(control(X)) ← true(control(X))

Let FX be the set {f | f is a fluent and for some 〈a, C〉 ∈
X , a � next(f)} of fluents that are translated in GX , and let
FrXG be the set

⋃
〈a,C〉∈X FrG(a) of the frame rules inG that

have been translated in GX . We define the X -translation
state transition from a state S via a joint move M as:

{f : CWAP (A) ∪ (Gnext \ FrXG) |=FOL next(f)} ∪
{f ∈ FX ∩ Strue : CWAP (A) ∪GX 6|=FOL fnext(f)} (8)

Theorem 2 The definitions of the state transitions (1), (2)
and (8) are equivalent.

Proof Sketch: Given Theorem 1 it suffices to prove that the
update transitions (2) and (8) are equivalent. It holds that
f ∈ (2) iff either (i) CWAP (A) ∪ (Gnext \ FrXG) |=FOL
next(f) orCWAP (A)∪FrXG |=FOL next(f) iff either (i) or
for some 〈a, C〉 ∈ X , CWAP (A)∪FrG(a) |=FOL next(f)

iff either (i) or (by Proposition 2) for some 〈a, C〉 ∈ X it
holds that a � next(f), and also f ∈ Strue and for ev-
ery 〈a, C〉 ∈ X such that a � next(f) and every M ∈ C
such thatM � Mdoes it is the case that that CWAP (A) ∪
TG(a,M) 6|= fnext(f) iff either (i) or f ∈ FX , f ∈ Strue
and CWAP (A) ∪GX 6|=FOL fnext(f) iff f ∈ (8). 2

Empirical Evaluation
Implementing the Translation
The translation described in the previous section is paramet-
ric over a translation basis X . Early experimentation indi-
cated that the generic singleton move covering could be im-
proved by partially grounding the role and action terms.

In a preliminary step, we perform a simple reachability
analysis to compute a superset of the domain of the next and
does predicates. This allows us to identify the roles R in
the game, as well as the fluent names F and for each role
r, the action names Ar for that role. We can then define the
direct move covering CD = {

⋃
r∈R{does(r, mr)} : m1 ∈

A1, . . . ,m|R| ∈ A|R|}. In Tic-Tac-Toe, we obtain the roles
{x, o}, the fluent names {control, cell}, and the same action
names {mark, noop} for both roles.

CD = {{does(x, noop), does(o, noop)},
{does(x, noop), does(o,mark(A,B))},
{does(x,mark(A,B)), does(o, noop)},
{does(x,mark(A,B)), does(o,mark(C,D))}}

The direct move covering sometimes contains general
joint moves that can never appear in the reachable states of
the game. It is possible to use the theorem proving tech-
nique described by Haufe, Schiffel, and Thielscher (2012)
to derive automatically whether an instance of a given gen-
eral joint moves can ever occur in a reachable state. Never
occurring general joint moves can safely be removed from
the covering. We call CP the pruned move covering result-
ing from CD after pruning provably impossible general joint
moves. In Tic-Tac-Toe, we obtain CP = C1 as in (7).

The corresponding direct translation basis is XD =
{〈next(f), CD〉 : f ∈ F}, and the pruned translation basis
is XP = {〈next(f), CP 〉, f ∈ F}.

The rest of the implementation follows the first order logic
description provided in the previous section to obtain an en-
coding in a GDL-like form. The only difference is that since
GDL does not allow direct universal quantification, we need
to introduce auxiliary predicates to capture the universally
quantified variables.

Experimental Results
We implemented the two described translations to generate
alternative game rule encodings and we used the FluxPlayer
system to process them. The FluxPlayer system is based on
ECLiPSe Prolog and has been participating in GGP compe-
titions since 2006.

We can now proceed to measure whether the proposed
translations improve the performance of a game engine
based on the FluxPlayer system. In its standard operational
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Table 1: Time needed for a minimax search up to depth d
using various encodings, in seconds.

Game G d k-states O XD XP
amazons 1 2.13 0.10 0.10 0.08
battle 1 2.31 0.82 0.98
beatmania 6 598 20.5 21.3
blocks 14 1240 30.3 24.7
brawl 3 55.5 36.2 15.1 13.9
breakthrough 4 268 66.4 26.2 21.5
bunk t 3 259 22.3 39.8 15.1
buttons 13 2390 56.9 88.9
checkers 5 26.9 21.0 23.2 13.7
chinesecheckers1 6 134 33.2 7.97
chinesecheckers2 6 139 42.0 11.7 10.7
chinesecheckers3 6 139 50.5 21.9 12.6
chinesecheckers4 6 53.2 22.3 30.1 11.7
chinesecheckers6 6 128 78.0 519 23.5
chinesecheckers6 1 118 37.2 193-simultaneous
chomp 3 65.6 16.2 9.50 9.19
crisscross 9 139 25.5 18.6 15.8
doubletictactoe 3 259 22.3 41.0
dup-statelarge 9 350 38.0 38.6
dup-statemedium 10 1400 76.9 70.5
firefighter 5 1190 10.8 12.9
hanoi 13 1040 40.5 38.0
knightstour 10 2690 72.5 101
knightthrough 3 65.2 13.9 4.56 4.10
max knights 2 4.10 2.18 7.59
minichess 8 188 20.4 40.5 24.7
nim1 8 740 47.5 50.9 46.9
nim2 5 997 28.0 35.7 29.7
nim3 3 158 3.15 4.51 3.54
nim4 3 169 3.44 4.81 3.85
numbertictactoe 2 104 3.68 3.08 2.50
othello-comp2007 6 20.3 57.9 57.8
othellosuicide 6 20.3 58.0 57.7
pancakes6 8 2020 24.8 41.7
pawn whopping 5 234 24.0 25.7
pawntoqueen 7 5.28 58.4 34.9 34.7
pentago 2008 5 2830 62.8 125 81.8
point grab 3 1010 18.0 193
racer 1 2.71 0.26 0.36
racetrackcorridor 3 350 84.8 295
roshambo2 5 1120 18.6 235
ruledepthexp 13 16.4 37.6 39.1
ruledepthlinear 20 2100 33.0 35.0
sheep and wolf 7 31.1 19.5 7.21 5.16
skirmish 5 42.4 26.6 10.5 9.58
statespacelarge 9 350 26.6 23.9
statespacemedium 10 1400 89.2 74.3
sum15 8 624 36.2 29.8 26.1
tictactoe 9 986 56.6 48.9 43.7
tictactoeserial 6 86.4 54.4 47.8 40.4
tictictoe 3 143 18.5 12.6
wallmaze 6 289 88.6 144

mode, FluxPlayer uses the underlying Prolog implementa-
tion and Prolog’s assert and retract mechanism to maintain
the set of fluent instances holding in the current game state.

Measuring engine speed in GGP is typically done by select-
ing games from previous GGP competitions and running the
game engine related part of standard search algorithms. Fol-
lowing recent work by Schiffel and Björnsson (2013), we
use the time needed for a naive minimax search to estimate
the raw performance. The benchmark domains have been
used in international or local GGP competitions and can be
found online.2

We translate each game under consideration using the di-
rect and the pruned translation bases. The time needed for
the transformation between the classical and proposed en-
codings falls under ten second. The translation is performed
once per game and all GGP competitions so far use much
longer STARTCLOCK and PLAYCLOCK, so we can disregard
the transformation time from our considerations.

Table 1 aggregates the results. For each game G under
consideration, d is the maximal depth reachable in an iter-
ative deepening minimax search within 3 minutes using the
classical state transition. We then measure the time (in sec-
onds) needed to perform a full minimax search up to d with
the proposed encodings: the original state transition O, the
direct translation XD, and the pruned translation XP .

As an additional precaution, we output with each encod-
ing the number of visited states in the minimax search. As-
serting that all encodings induce the same number of visited
states for a given search depth increases the confidence in
the correctness of the implementation. The k-states column
indicates the number of states (in thousands) involved in the
search.

Discussion and Conclusion
When the theorem proving approach cannot rule out any
general joint move, the XD and XP encodings are identical.
This happens mostly in games with simultaneous moves, in
particular in single-agent problems.

We can see that in an important fraction of the domains,
the pruned frame encoding XP leads to an engine at least
twice as fast as the original encoding. Expectedly, using
a pruned action covering always improves the performance
over the naive action covering. Nevertheless, the naive move
covering encoding already provides a notable improvement
over the original encoding in a majority of the games.

The existence of domains for which our translation pro-
vides no improvement should not deter from its adoption,
in particular from a portfolio perspective. Indeed, a general
game player can benchmark the original and the translated
encodings during the set-up time, and use the faster one in
the PLAYCLOCK.

We have shown that our translation could indeed improve
the performance of reasoners in General Game Playing.
While our presentation and evaluation were focussed on the
Game Description Language, our approach can be applied
to other successor state axioms-based action formalisms.
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