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Abstract

Game designs often center on the game mechanics—
rules governing the logical evolution of the game.
We seek to develop an intelligent system that gener-
ates computer games. As first steps towards this goal
we present a composable and cross-domain represen-
tation for game mechanics that draws from AI plan-
ning action representations. We use a constraint solver
to generate mechanics subject to design requirements
on the form of those mechanics—what they do in the
game. A planner takes a set of generated mechan-
ics and tests whether those mechanics meet playabil-
ity requirements—controlling how mechanics function
in a game to affect player behavior. We demonstrate
our system by modeling and generating mechanics in
a role-playing game, platformer game, and combined
role-playing-platformer game.

Introduction
Can an intelligent system design a computer game? Games
are made of mechanics and content. Game mechanics are
rules governing the logical state changes in the game;
they vary widely across game genres (Fullerton, Swain,
and Hoffman 2008; Salen and Zimmerman 2003). Content
encompasses all non-procedural assets in a game includ-
ing art, sounds, animations, levels, and maps. Previous ap-
proaches to automated game generation have focused on
hand-designed game-specific mechanics, generating content
for fixed sets of hard-coded mechanics, or AI design critics
that do not generate games. As a result, most prior work on
game generation revolves around selecting and assembling
components from human provided knowledge and content.

In this paper we explore synthesis of game mechanics
from low-level game engine primitives related to checking
and updating game variables. Choosing the right mechan-
ics for a game involves deciding what players should be al-
lowed to do (and when) and deciding how the game mechan-
ics should function to achieve these goals for player actions.
By automatically designing game mechanics, an intelligent
system can create games unique to each player, generate cre-
ative solutions to design problems humans may have not
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been able to conceive, create games across many domains,
or recombine existing mechanics into new game genres.

Mechanic generation is de novo synthesis of game agent
actions given knowledge of a game domain. We address
mechanic generation with a representation for composable
game mechanics and accompanying techniques to generate
mechanics subject to playability and design requirements.
Generated mechanics take the form of planning operators
in a representation specialized to game mechanics. Our me-
chanic design technique is a “generate-and-test” process:
(1) generating mechanics that meet design requirements on
form and (2) testing mechanics to ensure they meet playabil-
ity requirements. A constraint solver (Answer Set Program-
ming) generates possible mechanics in a given game domain
according to hard (required) or soft (optimized) design re-
quirements. An AI planner tests playability by using gen-
erated mechanics to prove that designer-specified require-
ments for good gameplay can be achieved with the mechan-
ics. For example, players must be able to reach the end of a
level or win a battle without dying. Unlike AI planners that
solve game levels using a fixed set of operators (mechanics),
mechanic generation creates the operators. A planning oper-
ator representation supports our goals for a composable and
domain-independent mechanic representation.

Together, the constraint solver and planner can generate
or adapt game mechanics in a (relatively) domain-agnostic
fashion while ensuring the mechanics achieve desired play
experiences. We demonstrate our mechanic generation sys-
tem in three game domains: platformer game movement me-
chanics, role-playing game (RPG) spell systems, and a do-
main combining the platformer and RPG domains.

Related Work
Game generation systems take a human-specified set of pos-
sible domain content and synthesize possible game mechan-
ics (and game content). Game generation in arcade games
(similar to the games we model) has focused on assigning
collision and movement logic to game entities using pre-
defined tables enumerating possible choices. Researchers
have used evolutionary search (Togelius and Schmidhuber
2008), constraint satisfaction (Smith and Mateas 2010), and
rule-based systems (Treanor et al. 2012) to generate games
meeting soft optimization criteria and/or hard constraints.
Rather than use top-down enumeration of game mechan-

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

530



ics, Cook et al. Mechanic Miner (Cook et al. 2013) used
a bottom-up approach—program reflection—to manipulate
game mechanics by changing the values used in program
functions. We use a top-down mechanic representation that
supports de novo synthesis of mechanics and several (rela-
tively) domain-independent evaluation criteria.

Complementing game generation systems, Nelson and
Mateas argued for recombinable mechanics to support hu-
man designers (Nelson and Mateas 2008). Researchers have
supported human-defined mechanic analysis with playabil-
ity checking, using simulations in Petri net models (Dor-
mans 2009), model-checking and proof in extensions of the
event calculus (Smith, Nelson, and Mateas 2010; Smith,
Butler, and Popović 2013), and simulations or model-
checking in other action languages (Osborn, Grow, and
Mateas 2013). Our system draws on related logical models
(planning) and further can can generate games using the me-
chanics being modeled.

Mechanic generation and game description languages
(GDLs) share a concern for composable mechanic represen-
tations. The Stanford Game Description Language (Love et
al. 2008) models turn-based, competitive games in a declar-
ative language and has extensions for randomization and
incomplete information (Thielscher 2010). A variety of re-
search efforts have modeled specific classes of games using
similar (context-free or graph) grammar constructs, includ-
ing arcade video games (Schaul 2013), card games (Font et
al. 2013), strategy games (Mahlmann, Togelius, and Yan-
nakakis 2011), action-adventure games (Dormans 2012),
and puzzle games (Lavelle 2013). Grammars are effective
for embedding design knowledge into a generating system,
but are not readily combined across genres. We avoid this
limitation through a cross-domain mechanic representation
that is also amenable to automated generation.

Our model of game mechanic structure draws from work
on domain representations used in AI planning. Planning
is a process of finding a sequence of operations that trans-
form the world from an initial state into a state in which
the goal situation holds. Modern plan representations were
developed to scale traditional AI techniques to complex do-
mains by providing additional problem structure knowledge
to AI search processes. Planning representations can often
be converted (e.g. to SAT problems) to improve the perfor-
mance of other approaches through additional representa-
tional factoring (Russell and Norvig 2009). STRIPS (Fikes
and Nilsson 1972) was one of the earliest planning represen-
tation languages, modeling actions in terms of logical pred-
icates. In STRIPS, operators are a set of preconditions that
must hold before the action can be executed and a set of ef-
fects that add or delete predicates from the state of the world.

The Planning Domain Description Language (PDDL)
(McDermott et al. 1998) is an ongoing project to extend
planning representations to address more complex tasks
while building a shared language for research competi-
tions. PDDL extended STRIPS-like representations with
non-equality constraints, numeric fluents to model contin-
uous domains, operators with duration, and timed initial lit-
erals that modify the world state at fixed times regardless
of agent actions. By modeling mechanics in a similar man-

ner to planning domains we can leverage existing work on
planning technologies to check game playability.

Mechanic Design Formalization
In this section we define the mechanic generation problem,
provide a model for cross-domain composable game me-
chanics, and present methods to automatically generate and
test game mechanics for given game content. Mechanic gen-
eration is the problem of constructing a (set of) game me-
chanic(s) such that they meet playability requirements to
create a desired range of player experiences (allowing and
forbidding action sequences) while meeting design require-
ments on mechanic structure. Playability requirements en-
sure a game is playable to a given goal, potentially sub-
ject to limitations on the states entered or actions taken to
achieve the goal. Design requirements ensure mechanics
adhere to designer requirements for how actions work in
a game. Both playability and design requirements may be
domain-independent or domain-dependent. Together, design
requirements shape mechanics to the form a designer desires
while playability requirements ensure those mechanics have
desired functions in game content.

Mechanic generation uses a game domain definition to
know what may be changed by mechanics. A game domain
defines the entities that make up a game, their parameters,
and how game states change. A game domain consists of a
state model—specifying domain entities, their parameters,
and allowed ranges of values—and a transition model—
specifying how states change from one to another. In our
formulation, the transition model is the set of game mechan-
ics. The focus of this paper is avatar-centric mechanics—
transitions initiated by the player (or other in-game agents)
in the process of controlling an avatar. A solution to the me-
chanic generation problem is a transition model that meets
design and playability requirements, given a state model and
a set of relevant game instances. A game instance defines a
setting from a game domain; e.g., a level in a platformer or
a single battle in a role-playing game. Initial game state is
part of a game instance. Combining a game instance for a
state model with a transition model (including avatar-centric
mechanics) yields a playable game experience.

As a running example to illustrate our definitions, con-
sider a simple role-playing game (RPG) battle game domain.
RPG battles involve two opposing parties taking turns to at-
tack one another using various spells until one party is slain;
the Dungeons and Dragons tabletop RPGs are a paradig-
matic example. The RPG state model has a player character
and an enemy, each with health and mana resources. One
game instance has the player starting with 3 health and 5
mana (a spell-casting resource) while the enemy has 2 health
and 2 mana. Many variant instances may be considered si-
multaneously when mechanics are generated. A playability
requirement can ensure that, over all given instances, the
player can kill the enemy (reduce enemy health to 0 or less)
without being killed. A design requirement can specify that
all spells have a cost—e.g. requiring that every spell cost the
avatar that uses it some resource (health or mana). Mechanic
generation asks: given these requirements what spells should
be in the game?
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A system that solves the mechanic generation problem
requires a state and transition model representation, a pro-
cess to search for transition models that meet design crite-
ria within the state model, and a process to test that transi-
tion models meet playability criteria across a provided set
of game instances (potentially all valid game instances in
that space). Below we present our state and transition models
to generate avatar-centric mechanics as planning operators.
Planning operators are a natural representation for game me-
chanics as operators were designed to represent domains in-
volving sequential choices while readily allowing compo-
sition of operator preconditions and effects. Our operator
representation can directly reference variables in the game
engine to operate at a very low level of primitives. We use
a constraint solver to search for a transition models (me-
chanics) that meet design criteria. Constraint solvers are a
valuable generic approach to search combinatorial spaces
that readily encode hard and soft requirements on solutions
(Smith and Mateas 2011). We use a planner to validate tran-
sition models against playability criteria. Planners are ef-
fective for proving the presence or absence of play traces
(sequences of mechanic choices and state updates) within a
game domain.

State Model
Our representation for game domains uses a subset of the
ideas used in PDDL with extensions specific to games. Cur-
rently we focus on turn-based domains with deterministic
actions to simplify our early exploratory work. The state
model defines a domain of game entities in terms of their
allowed states as these are core to modeling avatar-centric
mechanics (state transitions).

The state model is a set of terms defining entities, param-
eters, and allowed parameter value ranges for entity parame-
ters in the game world (AbsRange) or mechanic changes to
those values (RelRange). Terms have the following forms:

Entity(e) Parameter(p) Has(e, p)
AbsRange(p, e, r) RelRange(p, e, r)

where e is a symbol representing an entity, p is a parame-
ter of an entity, and r is a range of values, which may be
discrete or continuous. For simplicity parameters currently
range over integer values.

Referring back to our example RPG spell system we
might define the player:

Entity(Player)
Parameter(Health) Parameter(Mana)
Has(Player,Health) Has(Player,Mana)

AbsRange(Health, P layer, [0, 3])
AbsRange(Mana, P layer, [0, 5])

RelRange relates to the transition model described in the
next section.

Game instances give concrete settings for state model
entities and parameters. We use fluents to represent these
values in our planning model, allowing states to change
according to the transition model. In our RPG exam-
ple, we can set player health to initially be 3 using
Initial(Health(Player), 3) where Initial sets entity pa-
rameter values that hold at the beginning of the game.

Mechanic Model
A set of mechanics define a transition model that allows for-
ward simulation and playability checks as planning. Con-
sider modeling an RPG spell that causes damage over a pe-
riod of time. Such a spell needs to specify several things:
conditions on when the spell may apply (e.g. not affecting
dead characters), how much damage is done, and at what
time(s) the damage is done. To address examples like this
we have drawn from PDDL’s action schemas to define an
avatar-centric mechanic as a tuple: 〈i, P,E〉 where i is a
unique identifier for a mechanic, P is a set of the precondi-
tions needed for mechanics to occur, and E is a set of effects
of performing the mechanic.

Our preconditions and effects extend traditional PDDL
action schemas with time-indexing and coordinate frames
of reference. Time-indexing allows preconditions to refer-
ence state at times other than the present and allows effects
to reference states other than the next game state. Games of-
ten incorporate delayed effects or checks on historical state,
motivating our time-indexing extension. Coordinate frames
distinguish between traditional world-state terms and “per-
ceived” avatar-relative versions of world terms. Absolute
frames of reference model requirements on the state of the
world. Relative frames of reference capture the intuitive no-
tion that many avatar-centric game mechanics have precon-
ditions and effects relative to an avatar, rather than absolute
world state (e.g. adjacency as relative position).

Our planning model implements semantics for a sub-
set of PDDL with extensions appropriate to our definition.
AbsRange is used to specify valid absolute frame of ref-
erence values while RelRange is used for relative frames
of reference. Preconditions test game state; we allow tests
for equality, inequality, and lesser-than and greater-than re-
lations. All preconditions and effects are tuples of the form
〈frame, time, condition〉; where frame indicates a co-
ordinate frame of reference, time specifies a time-index,
and condition specifies a game state value to check for
(or update). In our formalism, a condition takes the form
F (parameter(entity), value) where F is a logical func-
tion that either tests two values and returns a boolean value
(for preconditions) or updates an entity parameter value (for
effects). Testing for the avatar currently being alive would
be 〈Absolute, 0, GreaterThan(Health(Player), 0)〉.

Effects update game state. For absolute frames of ref-
erence updates set state to a particular value (constrained
within AbsRange); for relative frames of reference up-
dates change state values by a given amount (constrained
within RelRange). A spell that checks for the enemy being
alive and reduces enemy health by 1 on the two next turns is:
〈DamageOverT ime,
{〈Absolute, 0, GreaterThan(Health(Enemy), 0)〉},
{〈Relative, 1, Update(Health(Enemy),−1)〉,
〈Relative, 2, Update(Health(Enemy),−1)〉}〉

Mechanic recombination occurs when one mechanic
references another mechanic having occurred. Fight-
ing game or rhythm game combo systems exemplify
avatar-centric recombination. Mechanic recombination
naturally encodes event-relevant mechanics, rather than
being limited to mechanics that reference state. For me-
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chanic recombination we allow preconditions and effects
to reference the event of a mechanic occurring with
Performed(i). Semantically, a mechanic as a precondition
requires that mechanic to have (or not have) occurred
at a time index. For example, a double-jump may re-
quire a player to have jumped at the previous time-step:
〈Absolute,−1, Equal(Performed(Jump), P layer)〉
When Performed(i) appears as an effect the precondi-
tions and effects of that mechanic are applied. The mechanic
using Performed(i) as an effect indicates the time to apply
the performed mechanic. Note that frames of reference are
not relevant for mechanic indexes (these are provided by the
indexed mechanics themselves) and are ignored.

As in PDDL, we assume inertial state and circumscrip-
tion: any entity parameter not affected by a mechanic con-
tinues to hold its previous value. Performed(i), however,
is treated as an event and not subject to inertial state.

Mechanic Generation
Mechanic generation creates a set of mechanics within a
game domain subject to playability and design requirements.
We use a constraint solver to search for a set of mechanics
constrained to meet the given design requirements. Design
requirements help avoid low-quality mechanic solutions.
Hard design requirements (as used by Smith and Mateas
(2011)) enforce conditions on the form of mechanics or re-
lations among a set of mechanics—e.g. not allowing a me-
chanic to have both equality and non-equality preconditions
for the same game state or requiring no two mechanics to
have identical preconditions and effects. Soft design require-
ments (as reviewed by (Togelius et al. 2011)) give optimiza-
tion criteria for what makes (sets of) mechanics better or
worse—e.g. aiming to minimize the number of precondi-
tions and effects used by a mechanic in favor of simplic-
ity. Playability is evaluated using a planner (described in the
next section) to prove a player can meet playability require-
ments on given test game instances.

We use Answer Set Programming (ASP) (Baral 2003)—a
form of declarative programming—to implement the con-
straint solver and planner (see also (Gebser, Grote, and
Schaub 2010)). In our ASP implementation, preconditions
and effects index the mechanic they are part of. Hard re-
quirements are integrity constraints on combinations of
preconditions and effects; soft requirements optimize over
weighted and prioritized sums of terms. Hard and soft re-
quirements may refer to to parts of one or more mechanics.
Implementing both the generation and testing components
of our system in ASP allows a single monolithic synthesis
process; either part may be run independently (or use other
systems such as GGP players (Love et al. 2008)).

Mechanic generation creates mechanics by choosing pre-
conditions and effects for each mechanic while ensuring the
mechanics conform to design requirements. Some design
requirements apply across types of games (not requiring a
state hold and not hold at the same time) while others are
more domain-specific (spells should be “balanced” in terms
of resource costs to execute vs effects on avatars). Given a
set of operators, a planner proves whether a plan exists for
given game content subject to playability requirements. The

process of generating mechanics using a constraint solver
and testing those mechanics with a planner repeats until all
hard requirements are met and all soft requirements are op-
timized. While this is an expensive process we have started
with small game domains to explore the relevant research
problems. Note also that many games use relatively small
sets of mechanics (e.g. RPG spell systems, platformer move-
ment mechanics, card game rules, etc.).

Playability Checking
We use a simple planner that proves that playability require-
ments can be met in game instances with a given set of me-
chanics. The planner uses playability requirements as goal
situations to prove whether a plan exists that can meet playa-
bility requirements. For convenience we use ASP as our im-
plementation language for the planner.

Playability requirements come in three forms: (1) goals,
(2) maintenance goals, and (3) engine constraints. Goals
give a game agent target situations to seek; the planner must
prove the presence of a plan that meets the goal. Mainte-
nance goals give situations that begin true and must hold
throughout the plan (e.g. being alive); the planner must
prove a plan achieving the goals always upholds main-
tenance goals. Maintenance goals are useful for specify-
ing failure criteria in a game as the negation of a failure
state must always hold. Engine constraints enforce seman-
tics mapping to non-avatar rules in a game engine (e.g. pre-
venting two entities from occupying the same space); the
planner must follow these constraints when making plans.
In our RPG battle example, the player goal is to kill all en-
emies while maintaining the state of being alive (not being
killed) and an engine constraint ensures the player cannot
drop below 0 mana.

Building our model off planning domain representations
provides a simple, factored logical model of the game
world that affords game mechanic combination and synthe-
sis while also yielding playable games. The planner can for-
ward simulate a game instance using player choices among
generated mechanics and enforce player victory or failure
based on goals and maintenance goals. Game state, allowed
operators, and goals can be presented through a simple text-
based interface.

Mechanic Adaptation
Instead of generating mechanics from scratch, mechanic
adaptation starts with a set of mechanics and produces a
minimally changed set of mechanics. Mechanic adaptation
uses mechanic generation for iterative design. In iterative
design a set of mechanics are tested and adjusted to meet
new insights about the game—adaptation requirements. Me-
chanic adaptation is given the same inputs as mechanic gen-
eration along with an initial set of mechanics and new adap-
tation requirements. Adaptation requirements specify addi-
tional playability or design requirements for mechanic gen-
eration. New playability requirements may indicate addi-
tional goal states for the player to pursue or identify un-
wanted states. New design requirements may control the
amount of change to make to a set of mechanics. The defini-
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tion of ‘minimal change’ varies by game domain and must
be specified to adapt mechanics.

Mechanic adaptation takes the same input game state and
transition models as mechanic generation augmented with
a pre-existing set of game mechanics. Adaptation adds or
removes preconditions and effects from existing mechan-
ics and may also generate new mechanics. Changes to me-
chanics must meet designer-specified criteria for minimality
while adhering to all adaptation requirements. We adapt me-
chanics by having the constraint solver perform the standard
generation process but seeded with the additional mechan-
ics. The previous set of design requirements are given along
with new adaptation requirements and a definition of mini-
mality (e.g. minimizing the total number of changes made).
Mechanic adaptation performs the same loop of generating
and testing possible mechanics as in mechanic generation.

Examples
Our game domain formalism supports a variety of avatar-
centric mechanic systems. In this section we illustrate how to
represent a simple role-playing game (RPG), a simple plat-
former, and a game that merges these two systems. RPGs
require a balanced and diverse set of character spells. Plat-
formers are games where a character navigates physical ob-
stacles in a virtual space, exemplified by the Super Mario
Bros. games. Platformers require a finely tuned and widely
reused small set of spatial navigation mechanics. We gener-
ate spells in the RPG and movement mechanics in the plat-
former. By concatenating these two domains we illustrate
how our model affords cross-domain mechanic generation.

Role-Playing Game
We define RPG combat mechanics using a set of entity at-
tributes and resources (here health and mana for the player
and a set of enemies) as above. Playability requirements
give: a player goal situation of having all enemies dead, a
player maintenance goal of not being dead; and an engine
constraint preventing negative mana. Together, these playa-
bility requirements encode the basic notion of an RPG bat-
tle as killing an opponent without being killed while hav-
ing bounded resources. Two domain-independent design re-
quirements give: a hard requirement to prevent mechanics
from having preconditions that force a predicate to equal
more than one value and a soft requirement to minimize the
number of preconditions and effects of mechanics to pro-
duce the simplest set of mechanics. Many domains have a
notion of actions having costs; our domain-specific version
of costs requires all actions incur a mana or health cost.

Our system generated a variety of RPG spells using the
game domain, a game instance with two enemies, and the
playability and design requirements above. Playtraces are
plans: a series of entity actions (spells used) that inflict dam-
age and cost health or mana. One example spell was given
above, others typically have simple effects such as inflicting
damage at a single time point or affecting multiple targets:
〈DamageAll, {},
{〈Relative, 1, Update(Health(Enemy1),−1)〉,
〈Relative, 1, Update(Health(Enemy2),−1)〉,
〈Relative, 1, Update(Mana(Player),−2)〉}〉

init enemy

goal

Figure 1: Platformer level showing a playtrace using a gen-
erated mechanic set. Arrows indicate generated mechanics,
dotted arrows indicate gravity.

where there are no preconditions and the effects damage
both enemies while costing the player mana. Note that we
have given human-readable names to the mechanics; inter-
nally i (the name) is an integer. Also note that our exam-
ples were chosen to illustrate the most semantically sensible
mechanics generated; by definition all mechanics achieve
playability and design requirements.

Platformer
We define two-dimensional platformers as a set of entities
(here the player, blocks, and enemies) each assigned spatial
coordinates (Figure 1). The platformer has playability re-
quirements for: a player goal situation of reaching the end, a
player maintenance goal of not overlapping with an enemy;
and an engine constraint preventing the overlap of any en-
tity and a block. Another engine constraint enforces gravity
by requiring all entities to move down one unit each turn if
that space is not occupied by a block. We reused two design
requirements from the RPG example: preventing exclusive
pre-conditions and minimizing the number of mechanic pre-
conditions and effects. A third soft requirement optimizes
for as few mechanics as possible (to create a “tighter” game
system) and a fourth soft requirement minimizes the num-
ber of different entities referenced by mechanics (favoring
motion of a single avatar).

Figure 1 illustrates a simple platformer level and shows
one trace found by the planner that moves the player avatar
to the goal position. The planner generated mechanics
for moving forward, jumping, and double-jumping (in-
dicated by arrows). Dotted arrows indicate the effects
of gravity. DoubleJump illustrates an event precondi-
tion requiring Jump to have occurred immediately before:
〈Jump,
{〈Relative, 1, Equal(Y pos(e), Y pos(Block)+1)〉,
〈Relative, 1, Equal(Xpos(e), Xpos(Block))〉},
{〈Relative, 1, Update(Xpos(e), 1)〉,
〈Relative, 1, Update(Y pos(e), 1)〉}〉
〈DoubleJump,
{〈Relative, 1, Equal(Y pos(Player), Y pos(Block)+1)〉,
〈Relative, 1, Equal(Xpos(Player), Xpos(Block))〉,
〈Absolute,−1, Equal(Performed(Jump), P layer)〉},
{〈Relative, 1, Update(Xpos(Player), 1)〉,
〈Relative, 1, Update(Y pos(Player), 2)〉}〉
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Combined Game
To test the modularity of our representation we concatenated
the previous two domains to create a “platformer-RPG”
game. All game state definitions are unchanged: com-
bining RPG resources and platformer location only
makes entity state more complex. We retain the previ-
ous playability requirements from both domains with
conjunctive (all criteria must be met) goals, mainte-
nance goals, and engine requirements. With these simple
changes we can generate mechanics appropriate to the
domain such as attacking at a distance with a spell:
〈MagicMissile,

{〈Relative, 0, Equal(Xpos(Enemy), 2)〉,
〈Relative, 0, Equal(Y pos(Enemy), 0)〉},
{〈Relative, 0, Update(Health(Enemy),−1)〉}〉

where the preconditions check for an enemy two spaces in
front of the player and the effect reduces enemy health.

Richer AI Design
To further develop the design tasks in the previous example
domains we extended our system to generate mechanics for
multilevel progressions, multiagent games, and map controls
to mechanics. These additions illustrate how our representa-
tion can model some more complex design tasks that directly
relate to mechanics.

Multilevel Progression
Platformers (and most game genres) often gradually intro-
duce new mechanics to players over a sequence of lev-
els. Generalizing mechanic generation to include require-
ments on which mechanics are used along a progression
requires two additions: planning across multiple levels and
providing requirements on mechanic use. To implement
multilevel progression we augmented the initial state and
playability requirement definitions with a level index of the
form Initial(level, paramter(entity), value). Playability
checks must ensure the given mechanic set can yield valid
playtraces for all levels provided, treating each as a separate
planning problem with the same set of mechanics.

The constraint solver can enforce various notions of pro-
gression across multiple levels. For example, we have re-
quired an increasing number of mechanics be used in each
level over a level progression. We have also required that the
specific mechanics used in each level reappear in all subse-
quent levels. By using increasingly complex game instances
the generated mechanic sequences can introduce weaker and
stronger (larger effect) versions of the same mechanic. This
has produced the DoubleJump mechanic above. These pro-
gression requirements encode a notion of training players by
needing to master additional skills (c.f. Butler et al. (2013);
Dormans (2010); Andersen, Gulwani, and Popović (2013)).
We have used our atomic representation to require the pro-
gressive introduction of preconditions or effects (as in the
DoubleJump introduction of an event precondition).

Multiagent Games
RPG battles typically involve competing agents. To incorpo-
rate multiagent modeling we augmented our planner to track

actions and perceived state relative to each agent. We now
indicate agent-specific goals and maintenance goals (engine
constraints are currently treated as universal).

Playability checks optimize toward all agent (potentially
competing) goals. To ensure plans are possible we typically
require that the player can achieve her goal situation before
any opposition, but that both goal situations can be achieved
within a prescribed number of plan steps. Alternatively, we
have also provided goals that are intended to improve player
experience without directly negating the player’s mainte-
nance goals (e.g. trying to minimize player health, rather
than kill the player). Adding multiagent modeling is compu-
tationally costly but allows broader modeling of competition
(or collaboration) interactions. True adversarial agent inter-
actions, however, will require a more sophisticated planner
or adoption of general-purpose adversarial game players.

Controls
Platformers depend heavily on the game controls. Our mod-
ular representation can readily map a given set of input
buttons to generated mechanics. We define the input com-
mands, add these controls as additional preconditions for
mechanics, and require there is always a single unambigu-
ous mechanic for an input. Hard design requirements state
that all mechanics have at least one input and no two me-
chanics with the same preconditions use the same set of
inputs. Additional soft design requirements encode a sim-
ple notion of “intuitive” mappings by maximizing the use
of overlapping sets of buttons for mechanics with effects
on overlapping sets of entity-parameter states. Automated
control generation can make a game playable on different
game platforms (e.g. via mobile phone touch screen or game
controller) though this will require more detailed represen-
tations of control “feel” (Swink 2009).

Conclusions
In this paper we formalized the mechanic design problem,
presented a domain-independent representation for avatar-
centric mechanics, and illustrated how to generate and com-
bine mechanics using a constraint solver and planner. By
using a domain-independent representation our system can
readily work in a variety of game domains, focusing on
the higher-level problems of designing mechanics rather
than genre-specific concerns. Developing more sophisti-
cated playability requirements—such as reasoning on tra-
jectories of actions or states—can support a broader class
of design concerns. Further, reasoning over the space of po-
tential gameplay outcomes will be needed to control for ex-
pected gameplay outcomes. Formally modeling these tasks
provides insight into challenges in the game design process.
Autonomous mechanic generation (given designer initial in-
puts) holds promise for creating AI designers that generate
games starting from mechanics.
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