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Abstract

Social influence has been widely accepted to explain
people’s cascade behaviors and further utilized in many
related applications. However, few of existing work
studied the direct, microscopic and temporal impact of
social influence on people’s behaviors in detail. In this
paper we concentrate on the behavior modeling and sys-
tematically formulate the family of behavior propaga-
tion models (BPMs) including the static models (BP
and IBP), and their discrete temporal variants (DBP and
DIBP). To address the temporal dynamics of behavior
propagation over continuous time, we propose a con-
tinuous temporal interest-aware behavior propagation
model, called CIBP. As a new member of the BPM fam-
ily, CIBP exploits the continuous-temporal functions
(CTFs) to model the fully-continuous dynamic variance
of social influence over time. Experiments on real-world
datasets evaluated the family of BPMs and demon-
strated the effectiveness of our proposed approach.

The society is such highly-connected that our behaviors will
inevitably affect and meanwhile be affected by others around
us (Kelman 1958). The social influence works in either an
implicit way via influencing one’s interests and emotions,
or an explicit way via propagating behaviors from one to an-
other. As shown in the literature, individuals usually have in-
centives to directly adopt the behaviors of their neighbors in
the network (Easley and Kleinberg 2010). We refer to such
phenomenon under the explicit and direct social influence as
behavior propagation.

The behavior propagations are fundamental for the fa-
mous viral marketing (Subramani and Rajagopalan 2003)
which promotes products via word-of-mouth recommen-
dation and expects to cause cascade adoption behaviors.
However, most related work (Chen, Wang, and Wang 2010;
Goyal, Lu, and Lakshmanan 2011; Jiang et al. 2011; Chen,
Lu, and Zhang 2012) focused on the optimal design of mar-
keting strategies by selecting most influential seed users ef-
fectively and efficiently based on the given social network,
but didn’t study the modeling of propagation-driven behav-
iors. In our previous work (Zhang et al. 2013b; 2013c), we
have studied the direct impact of social influence on peo-
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ple’s friend-making behaviors in terms of friendship propa-
gation, and proposed cascade (discrete) approaches to mod-
eling the temporal behaviors by discretizing the continuous
time. However, the network is always evolving and the so-
cial influence is continuously changing. Discrete approaches
are unable to capture the continuous dynamics due to its dis-
crete nature. Thus, an interesting and challenging question
is: Can we depict and learn the fully-continuous temporal
dynamics of social influence for behavior propagation?

In this work, we generalize our previous work and formu-
late the family of behavior propagation models. More im-
portantly, we address the problem of modeling and learning
the continuous temporal dynamics of behavior propagations
over the evolving social networks, and to this end we design
continuous behavior propagation models.

Why Are Continuous Models Needed?

Intuitively and ideally, a sufficiently fine-grained time dis-
cretization may lead to nearly-continuous modeling. Nev-
ertheless, this is impractical because shortening the span
of each time interval will inevitably reduce the observed
behavior data in each interval and consequently lead to
immature or over-fitted models. It also results in the in-
crease of both the number of intervals and the complexity
of model learning. Unlike previous work which usually re-
gards the network as static or discrete, we propose to directly
model the continuous variation of behavior propagations
over continuous-evolving social networks. The proposed na-
tive continuous models are remarkably distinguished from
the discrete ones by the following inherent merits.

First of all, among the major differences between the dis-
crete and continuous models is that the discrete model can
only consider the partial orders among user behaviors (or-
ders are wiped out for behaviors within the same interval)
while the continuous model considers the total orders. As
one’s previous behaviors may influence her interests and
subsequent behaviors, we believe the order of behaviors
should be carefully considered.

Second, the performance of discrete models is heavily de-
pendent on the quality of discretization. Factually, it’s of-
ten difficult for us to choose the most appropriate discretiza-
tion granularity, which varies for different users and differ-
ent scenarios. In contrast, the continuous approach doesn’t
treat each interval discretely, but looks at the whole picture.
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Third, discrete models can only reveal the dynamics in the
past, but not for the future. On the contrary, continuous mod-
els can see the long-range dependency of the social influence
over time and capture the change tendency in the future. In
this sense, continuous models can learn user profiles better,
and further predict time-aware behaviors in the future more
precisely.

Contributions

To the best of our knowledge, this is the first time the fully-
continuous temporal dynamics of behavior propagation is
modeled carefully and the family of behavior propagation
models (BPMs) is formulated systematically. The main con-
tributions of this paper can be summarized as follows.

Firstly, we formulate the static and discrete behavior prop-
agation models including BP/IBP and DBP/DIBP, and pro-
pose the fully-continuous temporal dynamic behavior propa-
gation model, CBP and CIBP, in which the social influence
is modeled as a continuous function of the time. Besides,
in CIBP the behaviors are modeled as the co-effect of both
behavior propagations and personal interests. These models
form the family of behavior propagation models (BPMs).

Furthermore, we introduce the continuous-temporal func-
tions (CTFs) to depict the dynamics of social influence over
continuous time utilizing the flexible mixture of basis func-
tions. We study how to select the appropriate CTF and con-
trol its complexity in experimental study.

Moreover, we conduct extensive experiments on real-
world datasets to evaluate the performance of our proposed
CIBP model and the whole behavior propagation model
family. Results show that the CIBP outperforms both the
state-of-the-art static and dynamic models, and can improve
the performance of behavior prediction significantly.

Related Work
There is a popular belief that friends may influence each
other and thus tend to exhibit similar behaviors (Chua,
Lauw, and Lim 2011). The social relationships, recently,
have been found beneficial for item recommendation and
behavior prediction tasks (Konstas, Stathopoulos, and Jose
2009; Ma 2013; Cheng et al. 2012), and approaches have
been proposed to incorporate the social relationships into
predictive models (Ma, King, and Lyu 2009; Ma, Lyu, and
King 2009; Ma et al. 2011; Ma 2013; Zhao et al. 2013). A
major line of research focuses on the better and faster vi-
ral marketing based on the social influence (Chen, Wang,
and Wang 2010; Goyal, Bonchi, and Lakshmanan 2011;
Goyal, Lu, and Lakshmanan 2011; Guo et al. 2013; Zhang
et al. 2013d; Jiang et al. 2011; Chen, Lu, and Zhang 2012),
but most of them focused on the cascade behaviors over the
static network topology. Other researchers took the quanti-
tative analysis of social influence recently (Tang et al. 2009;
Goyal, Bonchi, and Lakshmanan 2010; Liu et al. 2010;
Wang et al. 2012; Bakshy et al. 2011; Cui et al. 2011). Fur-
thermore, Ye et al. (2012) and Chen et al. (2013) respec-
tively developed behavior models incorporating the social
influence on peoples’ interests, and we studied the direct
friendship propagation using behavior models in our previ-
ous work (Zhang et al. 2013a; 2013b; 2013c) . In this paper,

we propose to study the variance of social influence from
the perspective of continuous modeling, which can capture
both the microscopic and macroscopic variation of social in-
fluence and overcome the deficiencies of static or discrete
approaches.

Temporal modeling has attracted attentions in other ar-
eas. Among them are the temporal topic models for docu-
ments. The DTM (Blei and Lafferty 2006) and DMM (Wei,
Sun, and Wang 2007) are two famous dynamic topic mod-
els for discrete data based on the Markov assumptions over
state transitions in the time domain. Unlike them, the TOT
model (Wang and McCallum 2006) parameterizes a continu-
ous distribution over time associated with each topic, but as-
sumes the word distribution in each topic stays invariant. On
the contrary, the cDTM (Wang, Blei, and Heckerman 2008)
captures the continuous variance of the word distributions
of each topic using the Markov chain modeling. The collab-
orative filtering with temporal dynamics (Koren 2009) has
also been studied. However, none of them studied the tempo-
ral dynamics of behavior propagations and social influence,
which is quite different from the traditional topic analysis.

Behavioral Propagation Models

In our previous work (Zhang et al. 2013a; 2013b), we pro-
posed a probabilistic generative model, called LaFT-LDA,
to model the friend-making behaviors based on the transitiv-
ity of friendship. Here we extend this approach as the static
BP model for general behavior propagation modeling. Let
U = {u1, u2, · · · , uN} and V = {v1, v2, · · · , vM} be the
user set and item set, respectively. The BP model is a kind
of behavior model which assumes the behavior is caused by
the behavior propagation via friends (or intermediaries). For
each user u and one of her adopted item v, as illustrated in
Fig. 1(a), the BP model explains this behavior using a two-
step process: u selects an intermediary y from Y (u), i.e. the
friends set of u, and then adopts the item v which is already
adopted and then recommended by y. Based on the assump-
tion that u and v are independent conditioned on y, the prob-
ability of the behavior (u, v), i.e. user u adopts item v, can
be written as:

P (v|u) =
∑

y∈Y (u)

P (v|y)P (y|u). (1)

As the personal interests are shown beneficial for behav-
ior prediction in our later work (Zhang et al. 2013c), here
we incorporate the interests into the BP model to build the
interest-aware behavior propagation model, i.e. IBP model.
As illustrated in Fig. 1(b), the IBP model considers the co-
effect of personal interests and behavior propagations by
combining the classic pLSA (Hofmann 1999) and BP model.
Let Z = {z1, z2, · · · , zK} be the set of latent interest areas.
Now the generative probability of the aforementioned item-
adoption behavior denoted by (u, v) is defined as:

P (v|u) =
∑

y∈Y (u)

∑
z∈Z

P (v|z, y)P (y|u)P (z|u)

=
∑

y∈Y (u)

P (v|y)P (y|u) ·
∑
z∈Z

P (v|z)P (z|u),
(2)
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Figure 1: The family of behavior propagation models.1

where y and z are assumed independent.
Both the BP and IBP models assume the world is static.

However, as one may make new friends, and one’s trusts and
interests are also varying, temporal models are expected to
capture such variation. A popular method is to discretize the
continuous time into periods, and infer the models for each
period based on the Markov assumption (Zhang et al. 2013b;
2013c; Chen, Hsu, and Lee 2013). The DIBP model, shown
in Fig. 1(c), is the discretized version of IBP model, and sim-
ilarly we can draw the discrete DBP model corresponding to
BP. As we discussed before, the discrete models face many
difficulties and drawbacks. In the following section, we’ll
present our idea on modeling the fully-continuous temporal
dynamics of behavior propagation.

Temporal Dynamics of Behavior Propagation

In this section, we focus on the continuously temporal dy-
namic interest-aware behavior propagation model, called
CIBP based on the IBP and DIBP. The interest-unaware
counterpart, i.e. CBP based on BP and DBP, can be derived
by removing the interest factor easily.

The CIBP Model

The static IBP model includes three probabilistic selec-
tion steps: intermediary selection, interest selection and
item selection from corresponding probabilistic distribu-
tions, which are assumed static w.r.t. time. In this paper, we
argue that all these distributions are varying with time. we
propose to use the continuous-temporal function (CTF) to
depict the fully-continuous dynamic change of the related
factors. Specifically, we use the intermediary preference
CTF fu,y(t; θ) and the interest preference CTF gu,z(t;φ) to

1The DBP and CBP models are omitted here due to space lim-
itations, but they can be derived from the corresponding DIBP and
CIBP models easily by removing the interest factor z.

express one’s preference for intermediaries and interest ar-
eas, and use the item favoritism CTF ry,v(t;ψ) and the item
popularity CTF sz,v(t;χ) to denote the recommendations of
each item from intermediaries and its popularity in each in-
terest areas. Each function is a real-valued single-variable
continuous function over time t defined for each pair of ob-
jects. By introducing the CTFs, we can capture both the mi-
croscopic variation and global tendency of the hidden distri-
butions, without concerning the granularity of discretization.

Without loss of generality, we’ll discuss the design of the
CTFs by taking the example of the intermediary preference
CTF f(t; θ). In this study, we adopt the linear basis function
model (Bishop 2006) that involves a linear combination of
fixed nonlinear functions of the input variable t, of the form

f(t; θ) =

J∑
j=0

wjϑj(t; θ) = wTϑ(t; θ), (3)

where each ϑj(t; θ) is a basis function. Usually, we set the
first term as the static time-invariant factor by defining an
additional dummy basis function ϑ0(t; θ) = 1. The subse-
quent items are time-variant factors w.r.t. time. In this study
we consider 6 types of popular basis functions, including the
linear, polynomial, quadratic, Gaussian, sigmoid and expo-
nential function.

Let Yt(u) and Yt̄(u) be the set of friends (i.e. intermedi-
aries) of user u exactly before and at time t, respectively.
Let Zt and Vt be the set of available interest areas and
items exactly before time t, respectively. Vt(y) denotes the
items adopted by y before time t. Given the CTFs, we define
the corresponding continuously temporal probability density
functions (PDFs):

P (y|u, t,Θ) =

{
fu,y(t;θ)∑

y′∈Yt(u) fu,y′ (t;θ) if y ∈ Yt(u)

0 otherwise
, (4)

P (z|u, t,Θ) =

{
gu,z(t;φ)∑

z′∈Zt
gu,z′ (t;φ)

if z ∈ Zt

0 otherwise
, (5)

P (v|y, t,Θ) =

{
ry,v(t;ψ)∑

v′∈Vt(y) ry,v′ (t;ψ) if v ∈ Vt(y)

0 otherwise
, (6)

P (v|z, t,Θ) =

{
sz,v(t;χ)∑

v′∈Vt
sz,v′ (t;χ) if v ∈ Vt

0 otherwise
. (7)

In such formulation, we allow all the factors including in-
termediaries, interest areas and items to change at any time,
and one’s behavior at any time is considered as the interplay
of all current available factors by that time.

Now we can incorporate the continuous time fully into
the basic static IBP model to build the CIBP model using
the temporal PDFs defined in terms of CTFs. As illustrated
in Fig. 1(d), CIBP assumes the following generative process
for each item-adoption behavior (u, v) at time t:
1. Sample an intermediary y ∈ Yt(u) according to

the temporal dynamic intermediary selection probability
P (y|u, t) at time t;

2. Sample an interest area z ∈ Zt according to the temporal
dynamic interest selection probability P (z|u, t) at time t;
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3. Sample an item v ∈ Vt according to the joint temporal
dynamic item selection probability P (v|y, t) ·P (v|z, t) at
time t.

Thus the probability of the behavior that u adopts an item
v at time t can be written as:

P (v|u, t,Θ) =
∑

y∈Yt(u)

P (v|y, t,Θ)P (y|u, t,Θ)

·
∑
z∈Zt

P (v|z, t,Θ)P (z|u, t,Θ),
(8)

where Θ is the collection of parameters of the model.

Model Inference

The parameters Θ = {θ, φ, ψ} of CIBP can be obtained
by maximizing the likelihood. Let Vu = {〈v1, t1〉, 〈v2, t2〉,
· · · , 〈vm(u), tm(u)〉} be the behavior log of user u, and
V =

⋃
u∈U Vu. Let Y and Z record the latent intermedi-

ary and interest area for each behavior in V. Here, instead
of looking at the likelihood for the observed data (U and V),
we consider the log-likelihood function of the complete data
(U,Y,Z and V):

logL(Θ;U,Y,Z,V) = logP (Y,Z,V|U,Θ)

=
∑
u∈U

∑
〈v,t〉∈Vu

(
logP (y|u, t,Θ) + logP (z|u, t,Θ)

+ logP (v|y, t,Θ) + logP (v|z, t,Θ)
)
.

(9)

It’s intractable to learn the parameters directly for the ex-
istence of hidden variables y and z. In this study we employ
the expectation-maximization (EM) algorithm for model in-
ference. Instead of maximizing the log-likelihood defined in
Eq. 9, the EM algorithm here maximizes the expectation of
the log-likelihood iteratively.

In the E-step, we calculate the expectation of the log-
likelihood given current estimation Θg . For each observable
behavior (u, v) at time t, we compute the posterior distri-
bution of hidden variables y and z, given the data and the
current values of parameters:

P (y, z|u, v, t,Θg
)

=
P (y, z|u, t,Θg) · P (v|y, z, t,Θg)

P (v|u, t,Θg)

=
P (y|u, t,Θg) · P (z|u, t,Θg) · P (v|y, t,Θg) · P (v|z, t,Θg)∑

y′∈Yt(u) P (v|y′, t,Θ)P (y′|u, t,Θ) · ∑z′∈Zt
P (v|z′, t,Θ)P (z′|u, t,Θ)

.

(10)

Then we compute the expectation of the log-likelihood
given Θg:

Q(Θ,Θ
g
) = E

(
logL(Θ;U,Y,Z,V)|Θg)

=
∑
u∈U

∑
〈v,t〉∈Vu

∑
y∈Yt(u)

∑
z∈Zt

(
log

fu,y(t; θ)∑
y′∈Yt(u) fu,y′ (t; θ)

+ log
ry,v(t;ψ)∑

v′∈Vt(y) ry,v′ (t;ψ)
+ log

gu,z(t;φ)∑
z′∈Zt

gu,z′ (t;φ)

+ log
sz,v(t;χ)∑

v′∈Vt
sz,v′ (t;χ)

)
· P (y, z|u, v, t,Θg

).

(11)

In the M-step, we try to maximize the above expectation
to get the new estimation for Θ. However, the existence of
the summations in the denominators makes the optimization
complex. To avoid the evaluation of summation each time,
we introduce the probabilistic regularization to the CTFs. In
this way, the Q-function can be rewritten as:

Q(Θ,Θ
g
) =

∑
u∈U

∑
〈v,t〉∈Vu

∑
y∈Yt(u)

∑
z∈Zt

(
log fu,y(t; θ) + log ry,v(t;φ)

+ log gu,z(t;ψ) + log gz,v(t;χ)
)
· P (y, z|u, v, t,Θg

)

+ τ1
∑
u∈U

∑
t

⎛
⎝1 −

∑
y′∈Yt(u)

fu,y′ (t; θ)

⎞
⎠

+ τ2
∑
y∈Y

∑
t

⎛
⎝1 −

∑
v′∈Vt(y)

ry,v′ (t;ψ)

⎞
⎠

+ τ3
∑
u∈U

∑
t

⎛
⎝1 −

∑
z′∈Zt

gu,z′ (t;φ)

⎞
⎠

+ τ4
∑
z∈Z

∑
t

⎛
⎝1 −

∑
v′∈Vt

sz,v′ (t;χ)

⎞
⎠ ,

(12)

where τ1, τ2, τ3 and τ4 are the Lagrange multipliers.
As each CTF is also a combination of basis functions,

it’s rather complicated to obtain the parameters for these
functions by maximizing the expectation directly. Here, we
take an alternative approach by learning the optimal func-
tion value at each time t first and then estimating the best
parameters for the functions.

Taking the intermediary preference CTF as example, for
each user u and one of her friend y, we take the derivative of
the Q-function at any time t w.r.t. fu,y(t; θ):

∂Q(Θ,Θg)

∂fu,y(t; θ)
=

∑
〈v,t〉∈Vu

∑
z∈Zt

P (y, z|u, v, t,Θg)

fu,y(t; θ)
− τ1 = 0,

(13)
and we get

τ1fu,y(t; θ) =
∑

〈v,t〉∈Vu

∑
z∈Zt

P (y, z|u, v, t,Θg). (14)

Summing both sides over y, we get:

τ1 =
∑

〈v,t〉∈Vu

∑
z∈Zt

P (z|u, v, t,Θg). (15)

Thus the optimal value of fu,y(t; θ) is given as:

f̃u,y[t] =

∑
v∈Vu,t

∑
z∈Zt

P (y, z|u, v, t,Θg)∑
v∈Vu,t

∑
z∈Zt

P (z|u, v, t,Θg)
. (16)

Similarly, we get the optimal values for other CTFs. With the
learned values w.r.t. the time series, the parameters θ, φ, ψ
and χ for the CTFs can be estimated easily using gradient
descent or Newton methods. We omit the details due to the
limit of space.

By repeating the E-step and M-step, the EM algorithm im-
proves the estimations of model parameters iteratively until
they converge to a local log-likelihood maximum.
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Experimental Evaluation

In this section, we evaluate the effectiveness of our model
through comprehensive experiments on real-world datasets.

We construct 5 real-world datasets from real-world aca-
demic collaborative social networks, including sci-comp
(Science Computation), comp-edu (Computer Education),
simu (Simulation) and sec-priv (Security & Privacy) from
Microsoft Academic Search2, and comp-ling (Computa-
tional Linguistics) from the ACL Anthology Network3. In
the above datasets, we consider 3 types of behaviors: uw (use
a specific word in the paper title), ct (cite a specific paper)
and ca (co-author with another researcher). For the uw be-
havior we removed the stopwords from the paper titles. The
statistics of the datasets are shown in Tbl. 1.

Table 1: The statistics of our datasets.
dataset # users # pub. # words # uw # ct # ca

sci-comp 181,035 178,363 69,803 2,165,143 3,602,373 665,512
comp-edu 62,071 47,308 24,451 640,094 561,754 214,594

simu 38,832 29,200 15,941 398,147 587,567 132,718
sec-priv 65,884 63,122 29,493 827,426 1,600,772 279,488

comp-ling 15,835 19,424 10,709 309,637 243,102 126,508

Evaluation Methodology

We evaluate our models by examining their performance in
temporal behavior prediction. For each dataset, we collected
the data in 1981–2000 for model training, and the next 5
years were taken for testing. We only considered the indi-
viduals who had at least 10 friends (co-authors) by 2000.

In this study, we evaluate the performance of all behavior
propagation modes, including the static BP and IBP models,
discrete-temporal DBP and DIBP models and the proposed
continuous-temporal CBP and CIBP models. The hierarchy
among them is shown in Fig. 2.

Figure 2: The hierarchy of BPMs family.

We found our data quite sparse, and thus split the data
by year for discrete models. To be fair, one year is taken as
a basic time unit for continuous models. For each user at
each year, only the items had ever adopted by her friends are
considered for training and test because our focus is the di-
rect behavior propagation. The items adopted by the user are
positive instances and others are negative. Here we only pre-
dict the occurrence of each behavior and don’t consider the

2http://academic.research.microsoft.com
3http://clair.eecs.umich.edu/aan

Table 2: The overall prediction performance for the ca be-
havior on all datasets.

Dataset Metric Static Models Discrete Models Continuous Models
BP IBP DBP DIBP CBP CIBP

sec-priv MAP 0.4334 0.4435 0.4543 0.4660 0.4657 0.4723

AUC 0.5676 0.6018 0.6020 0.6262 0.6167 0.6391

comp-ling MAP 0.4495 0.4582 0.4725 0.4787 0.4742 0.4996

AUC 0.6018 0.6466 0.6218 0.6673 0.6346 0.6901

simu MAP 0.4064 0.5126 0.4653 0.5313 0.4794 0.5189
AUC 0.5967 0.6790 0.6206 0.6910 0.6446 0.6915

sci-comp MAP 0.4026 0.4139 0.4359 0.4493 0.4519 0.4717

AUC 0.6533 0.6345 0.6589 0.6493 0.6724 0.6632

comp-edu MAP 0.3840 0.4142 0.4093 0.4374 0.4300 0.4572

AUC 0.5412 0.5269 0.5643 0.5303 0.6150 0.5330

(a) Performance in MAP (b) Performance in AUC

Figure 3: The performance comparison of models for all be-
haviors prediction on sec-priv.

number of the occurrences. We evaluate their prediction per-
formance using MAP (Mean Average Precision) and AUC
(Area Under the ROC Curve).

Overall Performance Comparison

Firstly, we present the average performance of the models
for each behavior prediction in the 5 testing periods. For the
limit of space, we illustrate the results for ca behavior on
each datasets in Tbl. 2, and results for all of the three behav-
iors on sec-priv in Fig. 3.

First of all, we see the interest-aware models, includ-
ing IBP, DIBP and CIBP, outperform their corresponding
interest-unaware models BP, DBP and CBP, respectively.
This reveals that the behavior propagation is usually influ-
enced by personal interests and incorporating the interest
into the behavior propagation models can really improve the
prediction performance.

Furthermore, the temporal models usually perform better
than the static BP and IBP models. By capturing the tem-
poral change, they can get more precise modeling on user
profiles and behavior propagations, and achieve better pre-
diction performance.

Moreover, as expected, we observe that the performances
of continuous models exceed those of discrete ones. Unlike
DBP and DIBP which split the time into discrete periods
and assume the evolving models along the periods form a
Markov chain, the continuous CBP and CIBP depict the con-
tinuous variance of social influence and personal interests
over time. Besides, CIBP performs best in most of our ex-
periments by modeling the continuously temporal dynamics
of both social influence and personal interests.
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(a) Performance comparison on sec-
priv

(b) Performance comparison on comp-
ling

(c) Performance comparison on simu

Figure 4: The temporal prediction performance of all models for the ca behavior prediction.

Temporal Performance Comparison

Now we evaluate the predictive power of our model for tem-
poral behaviors by observing the performance variance of
the models in each testing period. Due to the limit of space,
we present the results for the ca behavior on three of our
datasets in Fig. 4. Comparing with discrete and static meth-
ods, our proposed CBP and CIBP exhibit not only better
performance but also better stability. Because the static and
discrete models can only result in fixed models by the last
training period, their prediction capability will inevitably de-
crease as time goes by. On the contrary, the CBP and CIBP
can capture the change tendency with the continuous CTFs
and adjust their predictions according to time, and conse-
quently achieve better performance.

CTF Selection

Among the key components of the CBP and CIBP models
are the CTFs, which depict the temporal dynamics of each
factor. We’re interested in that what function can explain the
temporal dynamics of social influence better and thus per-
form better in the prediction tasks.

(a) Performance in MAP (b) Performance in AUC

Figure 5: The performance comparison of CIBP models with
different CTFs for the ca behavior prediction on sec-priv.

We report the average performance of the CIBP model us-
ing different CTFs for the ca behavior on sec-priv in Fig. 5.
Results reveal that the Gaussian function and sigmoid func-
tion perform better than others on most occasions. This is
reasonable because the social influence and personal inter-
ests usually change slowly and gradually. Compared to oth-
ers, the two winner functions are smoother and can model

(a) Performance in MAP (b) Performance in AUC

Figure 6: The performance variance of CIBP with different
number (J) of basis functions in the CTFs for the uw behav-
ior prediction on sec-priv.

the gentle variance with less risk of over-fitting. The vari-
ance depicted by them usually becomes more and more slow
with time goes by, and nearly stay at some value in far fu-
ture. This also conforms to the actual influence change. Be-
sides, Gaussian function describes more complete lifecycle
of social influence including ups and downs.

Performance vs. Complexity

Now we study the relation between the performance of CIBP
and the complexity of the inside CTFs by observing how the
prediction performance varies when adjusting the complex-
ity parameter J .

Experimental results of the ca behavior prediction on sec-
priv are shown in Fig. 6. When J = 0, our CIBP degen-
erates to the static IBP and performs worst. Increasing J
improves the performance at first and achieves the peak at
J = 3. After that the continuous increase of J leads to de-
crease of performance due to the overfitting problem. The
prediction for the 5th test period suffers much more than
that for the 1st one from that. We note that increasing J also
requires longer time for model inference. In our experiments
we find the most appropriate value for J is 2 or 3.

Conclusion

As a popular phenomenon in social networks, the behavior
propagation is fundamental for many upper-layer applica-
tions. Existing research work usually addresses the behav-
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ior propagation based on the assumption that the social in-
fluence is static all the time or at least in a period. In this
paper, we argue the social network is always evolving and
the social influence is continuously changing. We firstly for-
mulate the family of behavior propagation models (BPMs)
systematically, and then present a continuous temporal gen-
erative model, i.e. CIBP, to address the temporal dynam-
ics of behavior propagations. It’s a new member of BPMs
and designed to capture the continuous varying dynamics of
interest-aware behavior propagations using elaborate CTFs.
We conduct extensive experiments to evaluate the perfor-
mance of BPMs for behavior prediction. Evaluation results
show that the proposed CIBP outperforms other static or dis-
crete behavior propagation models significantly.
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