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Abstract

Object localization is an image annotation task which
consists of finding the location of a target object in an
image. It is common to crowdsource annotation tasks
and aggregate responses to estimate the true annotation.
While for other kinds of annotations consensus is sim-
ple and powerful, it cannot be applied to object local-
ization as effectively due to the task’s rich answer space
and inherent noise in responses.
We propose a probabilistic graphical model to localize
objects in images based on responses from the crowd.
We improve upon natural aggregation methods such as
the mean and the median by simultaneously estimating
the difficulty level of each question and skill level of
every participant.
We empirically evaluate our model on crowdsourced
data and show that our method outperforms simple ag-
gregators both in estimating the true locations and in
ranking participants by their ability. We also propose
a simple adaptive sourcing scheme that works well for
very sparse datasets.

Introduction
Images and videos are a major part of content consumed on-
line. However, this key data form is difficult to handle from
an algorithmic perspective, making image processing chal-
lenging. Humans easily perform tasks that have proven diffi-
cult for computers, such as segmentation, object recognition
and pose estimation. Tasks such as annotating an image with
the best textual description or determining where a speci-
fied object is located in an image are inherently demanding,
since they require a deep understanding of the image, in-
cluding social, cultural or geographical knowledge. For ex-
ample, finding a description for an image containing Apple’s
logo requires knowing the firm and its marketing material.
Or consider the problem of locating the most famous person
in an image of many people. This requires not only image
processing capabilities, but also cultural knowledge. 1
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1Such a question may have a strong cultural bias. If two celebri-
ties appear in the image, each famous in a different country, the
answer likely depends on the responder’s country.

People can easily answer such questions, but building an
automated system for doing so is difficult. The rapid de-
velopment in Internet and mobile technologies and their
widespread adoption have made sharing information simpler
than ever. This has triggered the the rise of new solutions to
such problems. A key example is crowdsourcing, which pro-
vides a strong and cost-effective solution for carrying such
tasks. Crowdsourcing marketplaces, such as Amazon’s Me-
chanical Turk, bring together requesters interested in solving
such a task at hand, and workers who are willing to perform
such tasks for a payment.

Unfortunately, human judgments may vary significantly.
For example: people annotating the same image may provide
different descriptions; when asked whether or not a specific
object appears in an image there may be wide disagreement;
the ranking of multiple items may be very different between
individuals. One way to overcome this is using redundancy
— the requester sources many opinions, then aggregates the
information obtained from the multiple workers into a sin-
gle high quality solution. In some instances aggregating the
information is simple: given many textual descriptions of an
image, the requester can choose the most common one; or
when deciding if an object appears in an image, the question
only has two possible answers (“yes” or “no”), so one can
use the majority vote.

One task where information aggregation is challenging is
determining the location of an object in an image. We re-
fer to this as Hotspotting. Hotspotting has many applica-
tions: knowing the image area corresponding to an object
is vital in training vision algorithms; with popular applica-
tions in image and video sharing such as Instagram, Pinter-
est and YouTube, Hotspotting could enable user-profiling,
non-intrusive advertising, and interactive visual experience.
Hotspotting is a difficult task, that may require social or cul-
tural knowledge, so individuals likely vary in their ability to
perform it. Further, the space of possible answers is enor-
mous, with many answers considered “acceptable”.

One solution is to ask users for a rectangular bounding
box for the object’s location, then aggregate the information
taking the mean or median of the coordinates of the cor-
ners. This clearly treats all workers as equally capable. But
as discussed above, we expect a wide variance in peoples’
abilities to solve Hotspotting tasks. Taking into account the
ability levels of individuals, we could improve performance
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by giving more weight to the opinions of high-aptitude indi-
viduals. But how could we gain such knowledge?

Our contribution: We propose a machine learning model
for information aggregation in Hotspotting tasks. Our ap-
proach is based on a probabilistic graphical model that si-
multaneously estimates the locations of the objects in the
images, the difficulty level of each image and the abilities
of the people performing the task. We evaluate empirically
our model’s ability to infer object locations and rank par-
ticipants by ability using a crowdsourced dataset. Our data
was captured using Amazon’s Mechanical Turk, asking 168
participants to each answer 50 Hotspotting questions (i.e.
50 different image-object pairs). We show that our method
outperforms simple aggregators, both in estimating the true
locations and in ranking participants. We also show that the
quality of our method improves as more data (in the form of
responses by participants) is fed into the model, but that the
quality curve quickly saturates, so the returns from each ad-
ditional participant diminish. Finally, we discuss solutions
for tight budget constraints that allow only sourcing few
opinions and show that in such cases a simple aggregator
can perform well when sourcing the data in an adaptive way.

Hotspotting Tasks: A Hotspotting problem consists of a
set of images, each containing a target object. The goal is
to find the location of the object in each image. We make
the simplifying assumption that the location is captured by
a bounding box, so it can be expressed by the corners of a
rectangle. The data comprises the responses of multiple par-
ticipants to each of the images. We call each image-object
pair an item, and each person providing responses a partic-
ipant. Each participant examines every item, and chooses
the location for the target object to the best of their ability.
Given a sequence Q of items, and a set P of participants,
we have |Q| · |P | locations, each of which is a tuple Rpq :=
(xtl, ytl, xbr, ybr) where (xtl, ytl) are the x and y coordi-
nates of the top left corner, and (xbr, ybr) are those of the
bottom right corner. The output is a set Y = (y1, . . . , y|Q|)
of estimated object locations, where each yq is a 4-tuple of
Cartesian coordinates for the object in item q.

DALE: Difficulty, Ability and Location
We propose a probabilistic graphical model for Hotspotting
tasks, which we refer to as the Difficulty-Ability-Location-
Estimation model, or DALE for short. In addition to the par-
ticipants’ responses regarding the location of each object,
our model may also have access to “ground truth” infor-
mation, in the form of the correct location of some of the
objects. This allows the DALE model to improve its estima-
tion regarding the location of the other objects (i.e. the ones
not in the “ground truth” set), as this information is useful
for better estimating the participants’ ability levels, which
in turn is valuable for estimating the locations of the other
objects. The output of the model includes the estimated lo-
cation of each object Y = (y1, . . . , y|Q|), and additional in-
formation including the difficulty level of each item and the
ability levels of each of the participant. The correct object
locations, item difficulty levels and abilities of participants
are modeled as unobserved random variables, whereas the

responses of the participants are observed variables.
The model’s structure is determined by conditional in-

dependence assumptions regarding the variables. In land-
mark work (Pearl 1988) introduced Bayesian Networks (also
called directed graphical models), encoding assumptions of
conditional independence through a graph where each vertex
represents a variable and where edges represent dependen-
cies between the variables. Our model is based on the exten-
sion of Bayesian Networks called a factor graph (see (Koller
and Friedman 2009)), which describes the factorial struc-
ture of the joint probability distribution among the variables.
Once we define the model’s structure as a factor graph and
set the observed variables to the observed values, namely
the responses of the participants, approximate message pass-
ing (Koller and Friedman 2009) allows inferring marginal
probability distributions of the target unknown variables: the
true locations of the objects in the images, the ability of each
participant, and the difficulty of each item.

The Graphical Model: Each participant expresses her
opinion regarding an object’s location by choosing a bound-
ing box for each item. Even a participant fully aware of an
object’s location is unlikely to draw the exact bounding box
for the “true location” (if such a notion even exists). How-
ever, such informed participants tend to choose a bounding
box whose corners are close to the corners of the “true”
bounding box. In other words, if a participant correctly rec-
ognizes the object, the closer a location is to the true corner
of the object, the higher the probability of the participant to
select it. Given the bounding box representing the object’s
true location and the one provided by the participant, we
measure the distance between the two using Jaccard Sim-
ilarity (described below). Using this notion we can phrase
our assumption as follows: a participant who is aware of the
object’s true location is likely to select a bounding box that
is “close” to the true bounding box (i.e. the bounding boxes
are likely to have a high Jaccard similarity).

We model the process by which a participant p ∈ P
chooses the locations for each item q ∈ Q. The location
participant p assigns to item q, denoted by rpq , is comprised
of the bounding box corners (xtlpq, y

tl
pq, x

br
pq, y

br
pq). We assume

every participant has an underlying ability ap ∈ R which de-
termines her ability to recognize the correct location of each
item q ∈ Q, and that each item q has an inherent difficulty
dq ∈ R which determines how likely it is that a participant
p ∈ P would correctly recognize the object’s location. Our
modelling is based on a simple generative process: the par-
ticipant’s ability is sampled from a Gaussian distribution re-
flecting the distribution of ability levels in the population of
participants; the item’s difficulty is sampled from a Gaus-
sian distribution reflecting the distribution of item difficulty
levels; a “performance noise” for each participant-item pair,
which may be positive or negative, is added to the partici-
pant’s ability. If this ability plus the random noise exceeds
the sampled difficulty of the item, the participant recognizes
the object’s location and selects the true corners perturbed
by small Gaussian noise (reflecting judgement errors or in-
accuracy); if they do not know the location, they give a ran-
dom answer (based on the middles of grid quadrants with a
large perturbing noise). Hence, DALE is defined as a joint
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Figure 1: Factor graph for the difficulty-Ability-Location-Estimation (DALE) model.

probabilistic model. The factor graph is given in Figure 1.
It has two parts. The first part models the ability of a par-
ticipant p to correctly recognize the object’s location in the
image q (left of Figure 1), and the other ties the location of
the bounding box given by the participant p for item q to
whether they recognized the object or not, as represented by
the variable cpq . cpq takes on Boolean values: 1 when the
participant p recognizes the object’s location in item q, and
0 when they don’t. Recognizing the correct location is mod-
eled as an interaction of the ability ap ∈ R of participant p,
and the difficulty dq ∈ R of item q. We assume the variable
depends on the difference tpq := ap − dq via the following
equation:

P (cpq = T |tpq, τq) :=

∫ ∞
−∞

φ(
√
τq(x− tpq))θ(x) dx

= Φ
(√
τqtpq

)
. (1)

Here φ is the standard Gaussian density φ(x) :=√
2π
−1

exp(−x2/2), Φ denotes the sigmoidal cumulative
Gaussian distribution Φ(t) :=

∫ t

−∞ φ(x) dx, and θ(·) de-
notes the Heaviside step function. This integral representa-
tion indicates an alternative way to view this probability: a
binary process resulting from evaluating the step function
θ on a variable t with an added Gaussian noise of variance
τ−1.

The response rpq is modeled as a mixture of two distri-
butions. If participant p recognizes the object’s location, we
constrain her response to be the correct location for object
with random Gaussian noise added to each coordinate in the
bounding box. Namely, constrained to be (xtl∗ + εtlx , y

tl∗ +
εtly , x

br∗+εbrx , y
br∗+εbry ) where the correct object location is

yq = (xtl∗, ytl∗, xbr∗, ybr∗), and εtlx , ε
tl
y , ε

br
x , ε

br
y are sampled

from a Gaussian distribution (with a mean of zero and a low
variance σ2

l ). The random noise for the x coordinate of the
top left corner is shown in Figure 1 as dxtlqp. A similar vari-
able occurs for the bottom right corner, and two additional
variables occur for the y coordinate noise (these are omitted
in the Figure to avoid a cumbersome presentation).

If the participant does not recognize the object’s location,
we assume the top left corner is randomly chosen from a

Gaussian distribution with wide variance σ2
h, whose mean

location is the middle of the top left quadrant, and the bot-
tom right corner is randomly chosen from a wide variance
Gaussian distribution with mean location in the middle of
the bottom right quadrant. The mixture is expressed in Fig-
ure 1 using a gate, marked by a dashed pair of boxes, which
switches the factor connecting to rpq , depending on the state
variable cpq is in. Gates were proposed in (Minka and Winn
2008) as a flexible expression for mixture models in factor
graphs. Gates represent conditional independence relations
that are context-dependent, and are suited for approximate
message passing inference. Note the same gate in Figure 1
controls all the coordinate responses at the same time: if cpq
is true then all responses are constrained to be the true an-
swer plus a low variance Gaussian noise.

We discuss how DALE infers the required information.
The data is given as triplets of the form participant-item-
location L := {lp1q1 , . . . , lpnqm} where n is the number of
participants,m the number of items, and lpiqj is the location
participant i provides for the object in item j (consisting of
the top left x and y coordinates and the bottom right x and
y coordinates). We may also obtain a set of “ground truth”
locations holding the true location for some items, of the
form Y = {yqi1,...,yqir

}, though DALE can operate without
these. Given the data L and Y, our goal is to obtain ap-
proximate posterior (marginal) distributions: the Gaussian
distribution p(yq|R,Y) over the correct locations of the ob-
jects in all the images; 2 the Gaussian density p(ap|R,Y)
over the ability level ap of participants p, with means µ̃p and
variances σ̃2

p; the Gaussian density p(dq|R,Y) over the dif-
ficulties dq of items q with means µ̃q and variances σ̃2

q ; and
the Bernoulli distribution p(cpq|R,y) of “correctness” cpq
indicating whether participant p recognized the correct loca-
tion of the object in item q, given by success probabilities
πpq .

To perform the inference using our DALE model we use
approximate message passing (see (Koller and Friedman
2009) for a survey of such approaches). Our implementa-

2By “location” we refer to four Gaussian variables — top left
x, top left y, bottom right x and bottom right y.
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tion used Infer.NET (Minka et al. 2010), a toolkit for proba-
bilistic inference. We used the expectation-propagation (EP)
algorithm (Minka 2001). EP is an approach for calculating
posterior distributions of target variables on an input factor
graph that iteratively computes messages passed along the
edges, propagating information in the graph. The underlying
factor graph in our model is a loopy graph, as we have mul-
tiple participants who respond to the same set of multiple
questions. In addition, the messages in some of the nodes,
such as those connected to the gate, are approximations.
Therefore, to obtain the resulting posterior distributions the
EP procedure runs iteratively until it converges.

Empirical Analysis
We tested our DALE model using 168 participants using
Amazon’s Mechanical Turk. Our Hotspotting set consisted
of 50 images, each with a target object. Figure 2, illustrates
two example items (finding a partially hidden logo, or find-
ing a pharmacy based on its common sign in Europe, re-
flecting cultural knowledge). For each of the items, we have
carefully marked the true location of the object manually,
yielding a set of ground truth answers.

Figure 2: Top: Hotspotting the Lenovo logo in a mall. Bot-
tom: Hotspotting a pharmacy. Participants are expected to
have (or acquire) cultural knowledge, exerting effort to lo-
cate and mark the target object in a busy scene.

Participants were awarded a performance bonus based on
comparing their responses to a “ground truth” set. We used
the Jaccard Similarity to measure score participants. For sets
A,B, the Jaccard similarity is defined as |A∩B||A∪B| . In our task
the Jaccard similarity is the area in the intersection of the
two bounding boxes (zero if non-intersecting) divided by the
area of the union of the bounding boxes. We consider an ob-
ject location to be correct if its bounding box has a Jaccard
similarity of at least α = 0.5 with the ground truth. We use
the mean and the median as two natural benchmark aggre-
gators to compare our model with. We measure the qual-
ity of each aggregator against the ground truth according to
two metrics. First, with Location Quality Metric: Given
a threshold parameter 0 < α < 1, the location quality is
the number of questions for which the aggregator scored
above α in terms of Jaccard similarity to the ground truth.
Secondly, using an Ability Quality Metric: Every partic-
ipant has a Jaccard similarity for each of her items com-

pared with the aggreator’s response for that item. Summing
these gives a total score per participant, reflecting her over-
all performance, measured according to the aggregators’ in-
ferred object locations. We rank participants by total score
to get the aggregator’s ranking. We then measure the dis-
tance between this ranking and the participant ranking based
on the ground truth to obtain the aggregator’s ability qual-
ity. We measure distances between two participant rankings
(the aggregator’s ranking and the ground truth ranking) us-
ing Kendall Tau rank correlation coefficient (Kendall 1938;
Sen 1968). 3 Figure 3 is a histogram of the performance lev-
els of participants, measured by total score (sum of Jaccard
similarities to the ground truth). Recall success in an item
is defined as having a Jaccard similarity of at least α = 0.5
with the ground truth. The shape roughly follows a Gaussian
distribution.

Figure 3: Participants’ performance Histogram

We compared DALE’s quality with simple aggregators
using the two quality metrics, when all aggregators used all
168 participant opinions over all items. The mean aggrega-
tor has a very poor performance due to its sensitivity to out-
liers. To address this, we filtered out β = 25% of the partici-
pants with most extreme locations, in the spirit of robust ag-
gregation (this was done for all aggregators for consistency
4). DALE outperformed all benchmark aggregators, for both
the location quality and ability quality metrics (under our
choice of parameters), as shown in Figure 4 depicting the
aggregator quality metrics on the entire input data. A paired
t-test shows that the results for the location quality metric
are significant at the p = 0.08 level. A similar comparison
of the participant ability ranking shows higher significance
(p < 0.05), but this should be taken with a grain of salt, as
ability rankings are not independent. 5 Figure 4 thus shows
that DALE is better than simple heuristics both in determin-

3Kendall Tau is defined as the difference between the number
of concordant pairs and the number of discordant pairs normalized
by 1

2
n(n− 1) where n is the number of the items in the ranking. It

results in a coefficient −1 ≤ τ ≤ 1 where agreement in rankings
is captures by increasing values of τ (-1 showing perfect disagree-
ment and 1 showing perfect agreement).

4As an equal number of participants from either side is re-
moved, this has no influence on the median.

5We observed that the ability quality metric of DALE is highest
when feeding the entire dataset for low α values (i.e. α < 0.5).
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ing object locations and in deciding who the stronger partic-
ipants are. The choice of α influences the evaluation against
other aggregators, but not the learning itself. For different
choices of both α and β we achieve similar results.

Figure 4: Aggregators’ quality in the location quality metric
and ability quality metric.

DALE’s output includes not only the posterior distribu-
tions for the object locations, but also those of the participant
ability parameters ap and item difficulty parameters. These
can be used to rank the participants by ability or items by
difficulty. Figure 5 shows the ability levels ap of the partici-
pants, sorted from lowest to highest. It shows that the model
infers big differences in ability levels. These inferred abili-
ties cause DALE to infer object locations that depend more
on high aptitude participants than low aptitude ones.

Figure 5: Inferred participant abilities (worst to best).

Figure 6 is a scatter plot showing how DALE’s partic-
ipants’ ability parameters correlate with their total scores
based on the ground truth (i.e. number of items to which the
participant responded correctly, based on a threshold Jac-
card similarity of α = 0.5). The plot shows strong positive
correlation, with a Pearson correlation factor of 0.71. Note

However, for higher α values (which mean the accuracy has to
be very high in order for a response to be considered “correct”),
the ability quality metric is improved by screening more outliers.
Further, for extremely high or low values of α (α > 0.75 or
α < 0.25), the location quality metric of DALE improves when
removing more outliers (i.e. increasing β), making DALE more
similar to the median. This may be as a result of having a relatively
low number of participants.

that the relation need not be linear, as the ability parameter
should not be interpreted as the number of items a partici-
pant would answer correctly. We expect the difficulty level
of an item to be negatively correlated with the number of
participants who responded correctly to the question, and
indeed these have a Pearson correlation of −0.38. Unsur-
prisingly, these plots show that participants who responded
correctly to more items tend to be inferred to have higher
ability levels, and that questions who were answered cor-
rectly infrequently tend to be inferred to have high difficulty.

Figure 6: The correlation between participant’s abilities and
number of items answered correctly (using α = 0.5).

Figure 7 shows how the quality of DALE’s output im-
proves as more data is used. The x-axis shows the number
of participants whose data was fed in as input, and the y-
axis shows the resulting location quality metric of the out-
put. For any given number of participants on the x axis, we
have sampled 5000 player subsets of that given size. The plot
shows the average location quality under these subsets. The
plot shows that the DALE model’s quality improves as more
data is fed in, but that the quality tends to saturate, showing
that the gain of adding another participant diminishes.

Figure 7: Location Quality Metric by participation size
(number of samples) for α = 0.5 and β = 0.48

Adaptive Sourcing
The discussion regarding Figure 7 indicates that achieving
a good performance using DALE requires a large dataset of
responses. In many scenarios collecting many responses is
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costly, so aggregators that have a high quality for very sparse
or small datasets may be preferred. We investigate a simple
heuristic for “budgeted” settings called adaptive sourcing.
Suppose we have the budget to get b responses of a single
participant to a single item. Adaptive sourcing is a technique
in which we choose an item to be answered that we are most
uncertain about. 6 Intuitively, those are the answers on which
a consensus has not formed yet. For the space of bound-
ing boxes, we propose a heuristic based on Jaccard similar-
ity to quantify consensus. Let R̂q be the aggregate response
for question q using an aggregator of choice, based on the
current data at hand. We define ψq , the confidence level of

item q as
∑

p∈P
J(Rpq,R̂q)
|P | where J(Rpq, R̂q) is the Jaccard

index between the aggregate response and that of partici-
pant p. This is a measure of agreement, as it measures the
average participants’ similarity to the aggregated response.
Our adaptive sourcing scheme works by iteratively collect-
ing a single response for the current item with minimal con-
fidence, qmin := arg minq∈Q ψq . Figure 8 shows the loca-
tion quality metric of adaptive vs. non-adaptive approaches
for the median aggregator, where the non-adaptive approach
distributes the budget across all questions uniformly. The
x axis is the number of item responses sourced. Figure 8
clearly shows that the adaptive sourcing outperforms uni-
form non-adaptive sourcing for any budget.

Figure 8: Performance of adaptive vs. non-adaptive sourcing
(using median, and thresholded Jaccard scoring of α = 0.5).

Related Work
Several approaches for information aggregation were pro-
posed. One prominent method is voting, studied in social
choice theory (Sen 1986). One of the earliest results in this
field is Condorcet’s Jury Theorem which bounds the prob-
ability that a set of agents using majority voting would
reach the correct decision (Austen-Smith and Banks 1996;
McLennan 1998; List and Goodin 2001). The related field
of judgment aggregation (List and Puppe 2009) examines
aggregating judgments on interconnected propositions given
in a formal logic language into collective judgments on
these propositions. However, such results are typically re-
stricted to settings where the space of answers is very small,

6This heuristic mimics an active learning method where we ex-
amine the variable that maximizes the expected entropy reduction.

making voting a tractable mechanism. In our setting the
answer space is to big to use such approaches. Various
mechanisms were proposed to incentive participants to ex-
ert effort and provide opinions, including prediction mar-
kets (Pennock and Sami 2007), strategyproof learning (Ev-
eraere, Konieczny, and Marquis 2007; Dekel, Fischer, and
Procaccia 2008) and crowdsourcing contests (Howe 2006;
Archak 2010; Chawla, Hartline, and Sivan 2012; Gao et al.
2012). An approach to the incentive problem is Games with
a Purpose (von Ahn 2006), where games are designed so
that data collected could be used as useful inputs for algo-
rithms. (Ahn, Liu, and Blum 2006) proposed Peekaboom,
a game designed to incentivize work on Hotpostting tasks.
We deal with the orthogonal topic of aggregating informa-
tion once the agents have already provided their opinions.

Our model outperforms simpler aggregators such as the
mean or median by making probabilitic inference on peo-
ple’s ability to solve the Hotspotting task. Psychologists
noted that people significantly vary in their ability to per-
form cognitive tasks (Lubinski 2004; Schmidt and Hunter
2004) and designed tests for measuring human intelligence.
The way our DALE model relates a participant’s ability and
her knowing where the object is located is somewhat remi-
niscent of “Item Response Theory” from psychology (Ham-
bleton, Swaminathan, and Rogers 1991), which was used to
develop such IQ tests. Recent work extends the concept of
individual IQ to collective intelligence (Woolley et al. 2010).
Some computational methods for aggregating opinions have
recently been proposed (Lyle 2008; Bachrach et al. 2012a;
2012b; Kosinski et al. 2012; Demartini 2012), but they
rely heavily on having a small answer space and thus can-
not be used for Hotspotting tasks. Our approach is simi-
lar to machine learning approaches for aggregating labels
given to images (Whitehill et al. 2009; Raykar et al. 2010;
Welinder et al. 2010; Yan et al. 2011), but we exploit the
physical / spacial nature of the Hotspotting problem.

Conclusions
We proposed DALE, a probabilistic graphical model for
Hotspotting: determining the locations of objects in images.
DALE also models the participant abilities and item diffi-
culties so as to yield accurate results. Though DALE outper-
forms heuristic techniques given large datasets, its advan-
tage shrinks for sparse datasets. In light of this, we proposed
and evaluated an adaptive sourcing approach to Hotspotting,
by obtaining opinions for images with least consensus and
aggregating information using the median.

Several directions remain open for future work. Can better
results be achieved using different noise models and gener-
ative processes? Can active learning techniques be used in
the DALE mode to achieve an adaptive sourcing scheme
that chooses the next opinion to source based on the ex-
pected reduction in uncertainty? Could the information re-
garding question difficulty and participant ability outputted
by DALE be used to construct good incentive schemes? Is
there a way to combine DALE with algorithms from com-
puter vision to achieve a smaller search space and better re-
sults? Finally, Can DALE framework be applied to other do-
mains such as Natural Language Processing?
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