
Dynamically Switching between
Synergistic Workflows for Crowdsourcing

Christopher H. Lin Mausam Daniel S. Weld
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

{chrislin,mausam,weld}@cs.washington.edu

Abstract

To ensure quality results from unreliable crowdsourced work-
ers, task designers often construct complex workflows and
aggregate worker responses from redundant runs. Frequently,
they experiment with several alternative workflows to accom-
plish the task, and eventually deploy the one that achieves the
best performance during early trials.
Surprisingly, this seemingly natural design paradigm does
not achieve the full potential of crowdsourcing. In particu-
lar, using a single workflow (even the best) to accomplish a
task is suboptimal. We show that alternative workflows can
compose synergistically to yield much higher quality output.
We formalize the insight with a novel probabilistic graphi-
cal model. Based on this model, we design and implement
AGENTHUNT, a POMDP-based controller that dynamically
switches between these workflows to achieve higher returns
on investment. Additionally, we design offline and online
methods for learning model parameters. Live experiments
on Amazon Mechanical Turk demonstrate the superiority of
AGENTHUNT for the task of generating NLP training data,
yielding up to 50% error reduction and greater net utility
compared to previous methods.

Introduction

Crowdsourcing marketplaces (e.g., Amazon Mechanical
Turk) enable rapid construction of complex workflows (Lit-
tle et al. 2009; Bernstein et al. 2010) that seamlessly mix hu-
man computation with computer automation to accomplish
practical tasks. Example tasks span the range from product
categorization and photo tagging to Audio-Visual transcrip-
tion and interlingual translation. One of the biggest chal-
lenges facing designers of crowdsourced applications is the
variability of worker quality.

Frequently, a task designer will experiment with several
alternative workflows to accomplish the task, but choose
a single one for the production runs (e.g. the workflow
that achieves the best performance during early testing).
In the simplest case, alternative workflows may differ only
in their user interfaces or instructions. For example, one
set of instructions (“Select all correct statements”) might
be the negation of another (“Select all incorrect state-
ments.”) (Barowy, Berger, and McGregor 2012). For a more

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

involved task like text-improvement, one workflow may
present workers with several different improvements of a
text and ask them to select the best one. A second work-
flow might instead present workers with one improvement
and ask them to rate it on a scale from 1 to 10. Other exam-
ples include different workflows for text translation (Shahaf
and Horvitz 2010), alternative interfaces for a task, different
ways of wording instructions, and various ways of collect-
ing Natural Language Processing (NLP) tagging data (our
use case).

After choosing a single workflow, in order to ensure qual-
ity results, task designers often aggregate worker responses
on redundant runs of the workflows (Snow et al. 2008;
Whitehill et al. 2009; Dai, Mausam, and Weld 2010). For
instance, to determine the best text improvement from the
results of the second workflow, the task designer might se-
lect the one with the highest average rating.

Unfortunately, this seemingly natural design paradigm
does not achieve the full potential of crowdsourcing. Select-
ing a single best workflow is suboptimal, because alternative
workflows can compose synergistically to attain higher qual-
ity results.

Suppose after gathering some answers for a task, one
wishes to further increase one’s confidence in the results;
which workflow should be invoked? Due to the very fact that
it is different, an alternative workflow may offer independent
evidence, and this can significantly bolster one’s confidence
in the answer. If the “best” workflow is giving mixed re-
sults for a task, then an alternative workflow is often the best
way to disambiguate. For instance, in our example above, if
workers are having trouble distinguishing between two im-
provements, one might prefer future workers to provide ab-
solute ratings.

Instead of selecting one a priori best workflow, a better
solution should reason about this potential synergy and dy-
namically switch between different workflows. This paper
explains how to do exactly that, making the following con-
tributions:

• We formalize the intuitions underlying workflow-
switching with a novel, probabilistic model relating
worker responses to the accuracy of workers and the dif-
ficulty of alternative workflows for achieving a task.

• We specify the problem of switching between work-

87

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

flows as a Partially-Observable Markov Decision Process
(POMDP), and implement the POMDP policy in our task
controller, AGENTHUNT.

• Optimal control requires estimating the parameter values
for the POMDP. We describe two unsupervised methods
that use an expectation-maximization (EM) algorithm for
learning these latent variables: 1) an offline approach, and
2) an online approach that uses reinforcement learning
(RL) to couple learning with control (Sutton and Barto
1998).

• We evaluate the benefits of our approach first in a sim-
ulated environment and then with live experiments on
Amazon Mechanical Turk. We show that AGENTHUNT
outperforms the state-of-the-art single-workflow task con-
troller, TURKONTROL, (Dai, Mausam, and Weld 2011),
achieving up to 50% error reduction and greater net utility
for the task of generating NLP training data. Surprisingly,
we also show that our adaptive RL method yields almost
as high a utility as the approach requiring an explicit train-
ing phase.

By using our system, available at
http://cs.washington.edu/node/7714, task designers can
combine simple training-free deployment with powerful
optimized control.

Probabilistic Model for Multiple Workflows

Many of the commonly employed jobs in crowdsourcing
may be modeled abstractly as the task of selecting a sin-
gle correct answer from a set of alternatives — for example,
labeling classification data or choosing the best of two arti-
facts in an iterative improvement scenario. For this scenario,
several previous researchers have designed probabilistic
models that combine multiple answers from noisy workers
(Sheng, Provost, and Ipeirotis 2008; Whitehill et al. 2009;
Dai, Mausam, and Weld 2010).

We follow and extend Dai et al.’s probabilistic genera-
tive model (2010; 2011), which assumes that the task has
2 answer choices. They define the accuracy of a worker’s
answer to be: a(d,γw) =

1
2 [1+(1− d)γw]. Here d is the in-

herent difficulty of the task and γw is the error parameter
of worker w. Our key contribution (Figure 1) is an exten-
sion to this model, which allows for the existence of multi-
ple workflows to complete the same task. It includes multi-
ple, workflow-specific error parameters for each worker and
workflow-specific difficulties.

For our model, there are K alternative workflows that a
worker could use to arrive at an answer. Let dk ∈ [0,1] de-
note the inherent difficulty of completing a task using work-
flow k, and let γk

w ∈ [0,∞) be worker w’s error parameter for
workflow k. Notice that every worker has K error parame-
ters. Having several parameters per worker incorporates the
insight that some workers may perform well when asked the
question in one way (e.g., visually) but not so well when
asked in a different way (e.g., when asked in English, since
their command of that language may not be great).

The accuracy of a worker w, a(dk,γk
w), is the probabil-

ity that she produces the correct answer using workflow k.

b γ d

v

W

T

K

δ

Figure 1: Worker’s answer b depends on the difficulty of the ques-
tion d (generated by δ), worker’s error parameter γ and the ques-
tion’s true answer v. There are W workers, who complete T tasks,
all of which can be solved using a set of K different workflows. b
is the only observed variable.

We rewrite Dai et al.’s definition of worker accuracy accord-
ingly:

a(dk,γk
w) =

1
2

(
1+(1−dk)γk

w
)

(1)

As a worker’s error parameter and/or the workflow’s diffi-
culty increases, a approaches 1/2, suggesting that worker
is randomly guessing. On the other hand, as the stated pa-
rameters decrease, a approaches 1, when the worker always
produces the correct answer.

Figure 1 illustrates the plate notation for our generative
model, which encodes a Bayes Net for responses made by
W workers on T tasks, all of which can be solved using a
set of K alternative workflows. The correct answer ,v, the
difficulty parameter ,d, and the error parameter ,γ, influence
the final answer ,b, that a worker provides, which is the only
observed variable. d is generated by δ, a K-dimensional ran-
dom variable describing a joint distribution on workflow dif-
ficulties. The answer bk

w that worker w with error parameter
γk

w provides for a task using workflow k is governed by the
following equations:

P(bk
w = v|dk) = a(dk,γk

w) (2)

P(bk
w �= v|dk) = 1−a(dk,γk

w) (3)
An underlying assumption is that given the workflow diffi-
culty ,dk, the bk

w’s are independent of each other. This is in
line with Dai et al.’s assumptions for the single workflow
case. δ encodes the assumption that workflows may not be
independent of each other. The fact that one workflow is easy
might imply that a related workflow is easy. Finally, we as-
sume that the workers do not collaborate with each other
and that they are not adversarial, i.e., they do not purposely
submit incorrect answers.

The availability of multiple workflows with independent
difficulties introduces the possibility of dynamically switch-
ing between them to obtain the highest accuracy for a given
task. We now discuss our approach for taking advantage of
this possibility.

A Decision-Theoretic Agent
In this section, we answer the following question: Given
a specific task that can be accomplished using alternative

88

workflows, how do we design an agent that can leverage the
availability of these alternatives by dynamically switching
between them, in order to achieve a high quality solution?
We design an automated agent, named AGENTHUNT, that
uses a POMDP (Sondik 1971; Russell and Norvig 2002),
which is a clean and flexible framework for sequential deci-
sion making under uncertainty that is able to capture all the
assumptions of our problem.

A POMDP is defined as a set of states, a set of actions,
a set of observations, a set of state transition probabilities,
a set of observation probabilities, and a reward function. In
this framework, the agent does not have access to the exact
world state. Instead, it can only rely on observations that it
receives from the world as it takes actions to infer its current
belief — a probability distribution over world states. Solv-
ing a POMDP entails computing a policy, a mapping from
beliefs to actions that maximizes its expected long-term re-
ward.

For AGENTHUNT, a state is a K + 1 tuple
(d1,d2, . . . ,dK ,v), where dk is the difficulty of the kth

workflow and v is the true answer of the task. Notice that
AGENTHUNT can not observe any component of its state.
At each time step, AGENTHUNT has a choice of K + 2
actions — it can submit one of two possible answers or
create a new job with any of the K workflows. The process
terminates when AGENTHUNT submits any answer. When
AGENTHUNT creates a new job using workflow k, it will
receive an observation bk

w containing one of the 2 answers
chosen by some worker w. This information allows AGEN-
THUNT to update its belief using bk

w and its knowledge of
γk

w. Figure 2 is a flow-chart of decisions that AGENTHUNT
has to take.

None of the actions changes what world-state AGEN-
THUNT is in; this POMDP is a purely sensing POMDP, so
every transition function is the identity map.

The reward function maintains the value of submitting a
correct answer and the penalty for submitting an incorrect
answer. Additionally, it maintains a cost that AGENTHUNT
incurs when it creates a job. We can modify the reward func-
tion to match our desired budgets and accuracies.

In many crowdsourcing platforms, such as Mechanical
Turk, we cannot preselect the workers to answer a job. How-
ever, in order to specify our observation probabilities, which
are defined by our generative model, we need access to fu-
ture workers’ parameters. To simplify the computation, our
POMDP assumes that every future worker is an average
worker. In other words, for a given workflow k, every fu-
ture worker has an error parameter equal to γk = 1

W ∑w γk
w

where W is the number of workers.
After submitting an answer, AGENTHUNT can update its

records about all the workers who participated in the task us-
ing what it believes to be the correct answer. We follow the
approach of Dai et al. (2010), using the following update
rules: For a worker w who submitted an answer using work-
flow k, γk

w ← γk
w −dkα, should the worker answer correctly,

and γk
w ← γk

w +(1− dk)α, should the worker answer incor-
rectly, where α is a learning rate. Any worker that AGEN-
THUNT has not seen previously begins with the average γk.

The Crowd

Update
posteriors

for dk and v

N
Y

Choose the
best next
workflow

k START

task

Ready to
submit?

Submit
most likely v

Create a
job using

workflow k

k
 bw

Figure 2: AGENTHUNT’s decisions when executing a task.

Learning the Model

In order to behave optimally, AGENTHUNT needs to learn
all γ values, average worker error parameters γ, and the joint
workflow difficulty prior δ, which is a part of its initial be-
lief. We consider two unsupervised approaches to learning
— offline batch learning and online RL.

Offline Learning

In this approach we first collect training data by having a set
of workers complete a set of tasks using a set of workflows.
This generates a set of worker responses, b. Since the true
answer values v are unknown, an option is supervised learn-
ing, where experts label true answers and difficulties. This
approach was used by Dai et al. (2011). But, this is not a
scalable option, since it requires significant expert time up-
front.

In contrast, we use an EM algorithm, similar to that pro-
posed by Whitehill et al. (2009) to learn all parameters
jointly. For EM purposes, we simplify the model by remov-
ing the joint prior δ, and treat the variables d and γ as pa-
rameters. In the E-step, we keep parameters fixed to com-
pute the posterior probabilities of the hidden true answers:
p(vt |b,d,γ) for each task t. The M-step uses these prob-
abilities to maximize the standard expected complete log-
likelihood Q over d and γ :

Q(d,γ) = E[ln p(v,b|d,γ)] (4)

where the expectation is taken over v given the old values of
γ and d.

After estimating all the hidden parameters, AGENTHUNT

can compute γk for each workflow k by taking the average
of all the learned γk parameters. Then, to learn δ, we can fit
a Truncated Multivariate Normal distribution to the learned
d. This difficulty prior determines a part of the initial belief
state of AGENTHUNT. We complete the initial belief state by
assuming the correct answer is distributed uniformly among
the 2 alternatives.

Online Reinforcement Learning

Offline learning of our model can be very expensive, both
temporally and monetarily. Moreover, we can not be sure
how much training data is necessary before the agents are
ready to act in the real-world. An ideal AI agent will learn
while acting in the real world, tune its parameters as it
acquires more knowledge, while still producing meaning-
ful results. We modify AGENTHUNT to build its RL twin,

89

AGENTHUNTRL, which is able to accomplish tasks right
out of the box.

AGENTHUNTRL starts with uniform priors on difficul-
ties of all workflows. When it begins a new task, it uses the
existing parameters to recompute the best policy and uses
that policy to guide the next set of decisions. After complet-
ing the task, AGENTHUNTRL recalculates the maximum-
likelihood estimates of the parameters γ and d using EM
as above. The updated parameters define a new POMDP
for which our agent computes a new policy for the future
tasks. This relearning and POMDP-solving can be time-
consuming, but we do not have to relearn and resolve after
completing every task. We can easily speed the process by
solving a few tasks before launching a relearning phase.
Exploration vs. Exploitation: As in all of RL,
AGENTHUNTRL must also make a tradeoff between taking
possibly suboptimal actions in order to learn more about its
model of the world (exploration), or taking actions that it be-
lieves to be optimal (exploitation). AGENTHUNTRL uses a
modification of the standard ε-greedy approach (Sutton and
Barto 1998). With probability ε, AGENTHUNTRL will uni-
formly choose between suboptimal actions. The exception
is that it will never submit an answer that it believes to be
incorrect, since doing so would not help it learn anything
about the world.

Experiments

This section addresses the following three questions. 1) In
practice, how much value can be gained from switching be-
tween different workflows for a task? 2) What is the trade-
off between cost and accuracy? and 3) Previous decision-
theoretic crowdsourcing systems have required an initial
training phase; can reinforcement learning provide similar
benefits without such training? We choose an NLP label-
ing task, for which we create K = 2 alternative workflows
(described below). To answer the first two questions, we
compare two agents: TURKONTROL, a state-of-the-art con-
troller for optimizing the execution of a single (best) work-
flow (Dai, Mausam, and Weld 2010), and our AGENTHUNT,
which can switch between the two workflows dynamically.
We first compare them in simulation; then we allow the
agents to control live workers on Amazon Mechanical Turk.

We answer the third question by comparing AGENTHUNT
with AGENTHUNTRL.

Implementation

The POMDP must manage a belief state over the cross prod-
uct of the Boolean answer and two continuous variables
— the difficulties of the two workflows. Since solving a
POMDP with a continuous state space is challenging, we
discretize difficulty into eleven possible values, leading to
a (world) state space of size 2× 11× 11 = 242. To solve
POMDPs, we run the ZMDP package1 for 300 seconds
using the default Focused Real-Time Dynamic Program-
ming search strategy (Smith and Simmons 2006). Since we
can cache the complete POMDP policy in advance, AGEN-
THUNT can control workflows in real time.

1http://www.cs.cmu.edu/˜trey/zmdp/

Only two states -- Vermont and Washington -- this year joined five others
requiring private employers to grant leaves of absence to employees with
newborn or adopted infants

Which of the
following sets of
tags best describes
the word
"Washington" in
the way it is used in
the above
sentence?

Which of the following Wikipedia articles defines
the word “Washington” in exactly the way it is
used in the above sentence?

Washington
http://en.wikipedia.org/wiki/Washington
Washington, D.C., formally the District of
Columbia and commonly referred to as
Washington, "the District", or simply D.C., is
the capital of the United States....

Washington (state)
http://en.wikipedia.org/wiki/Washington_(state)
Washington () is a state in the Pacific Northwest
region of the United States located north of
Oregon, west of Idaho and south of the
Canadian province of British Columbia, on the
coast of the Pacific Ocean....

location

us_county
location
citytown

Figure 3: In this NER task, the TagFlow is considerably harder
than the WikiFlow since the tags are very similar. The correct tag
set is {location} since Washington State is neither a county nor a
citytown.

Since we have discretized difficulty, we also modify the
learning process slightly. After we learn all values of d, we
round the values to the nearest discretizations and construct
a histogram to count the number of times every state appears
in the training data. Then, before we use the implicit joint
distribution as the agent’s starting belief state, we smooth it
by adding 1 to every bin (Laplace smoothing).

Evaluation Task: NER Tagging

In order to test our agents, we select a task that is needed by
several colleagues: labeling training data for named-entity
recognition (NER) (Sang and Meulder 2003). NER tagging
is a common problem in NLP and information extraction:
given a body of text (e.g., “Barack Obama thinks this re-
search is not bad.”) and a subsequence of that text (e.g.,
“Barack Obama”) that specifies an entity, output a set of tags
that classify the type of the entity (e.g., person, politician).
Since machine learning techniques are used to create pro-
duction NER systems, large amounts of labeled data (of the
form described above) are needed. Obtaining the most accu-
rate training data at minimal cost, is therefore, an excellent
test of our methods.

The Two Workflows In consultation with NER domain
experts we develop two workflows for the task (Figure 3).
Both workflows begin by providing users with a body of
text and an entity, like “Nixon concluded five days of pri-
vate talks with Chinese leaders in Beijing.” The first work-
flow, called “WikiFlow,” first uses Wikification (Milne and
Witten 2008; Ratinov et al. 2011) to find a set of possi-
ble Wikipedia articles describing the entity, such as “Nixon
(film)” and “Richard Nixon.” It displays these articles (in-
cluding the first sentence of each article) and asks workers
to choose the one that best describes the entity. Finally, it

90

-300

-250

-200

-150

-100

-50

0

10 100 1000 10000

Av
er

ag
e

N
et

 U
til

ity

Penalty for an Incorrect Answer

AgentHunt
TurKontrol

Figure 4: In simulation, as the importance of answer correctness
increases, AGENTHUNT outperforms TURKONTROL by an ever-
increasing margin.

returns the Freebase2 tags associated with the Wikipedia ar-
ticle selected by the worker.

The second workflow, “TagFlow,” asks users to choose
the best set of Freebase tags directly. For example, the Free-
base tags associated with “Nixon (film)” is {/film/film},
while the tags associated with “Richard Nixon” includes
{/people/person, /government/us-congressperson,
/base/crime/lawyer}. TagFlow displays the tag sets
corresponding to the different options and asks the worker
to choose the tag set that best describes the entity mentioned
in the sentence.

Experimental Setup

First, we gather training data using Mechanical Turk. We
generate 50 NER tasks. For each task, we submit 40 identi-
cal WikiFlow jobs and 40 identical TagFlow jobs to Mechan-
ical Turk. At $0.01 per job, the total cost is $60.00 including
Amazon commission. Using our EM technique, we then cal-
culate average worker accuracies, γWF and γT F , correspond-
ing to WikiFlow and TagFlow respectively. Somewhat to our
surprise, we find that γT F = 0.538 < γWF = 0.547 — on av-
erage, workers found TagFlow to be very slightly easier than
WikiFlow. Note that this result implies that AGENTHUNT
will always create a TagFlow job to begin a task. We also
note that the difference between γT F and γWF controls the
switching behavior of AGENTHUNT. Intuitively, if AGEN-
THUNT were given two workflows whose average difficul-
ties were further apart, AGENTHUNT would become more
reluctant to switch to a harder workflow. Because we find
TagFlow jobs to be slightly easier, for all experiments, we
set TURKONTROL so it creates TagFlow jobs. We also use
this training data to construct both agents’ initial beliefs.

Experiments using Simulation

We first run our agents in a simulated environment. On each
run, the simulator draws states from the agents’ initial be-
lief distributions. We fix the reward of returning the correct
answer to 0, and vary the reward (penalty) of returning an
incorrect answer between the following values: -10, -100,

2www.freebase.com

80
82
84
86
88
90
92
94
96
98

100

10 100 1000 10000

Av
er

ag
e A

cc
ur

ac
y

(%
)

Penalty for an Incorrect Answer

AgentHunt
TurKontrol

Figure 5: In simulation, as the importance of answer correct-
ness increases, both agents converge to 100 percent accuracy, but
AGENTHUNT does so more quickly.

-1,000, and -10,000. We set the cost of creating a job for
a (simulated) worker to −1. We use a discount factor of
0.9999 in the POMDP so that the POMDP solver converges
quickly. For each setting of reward values we run 1,000 sim-
ulations and report mean net utilities (Figure 4).

We find that when the stakes are low, the two agents be-
have almost identically. However, as the penalty for an in-
correct answer increases, AGENTHUNT’s ability to switch
between workflows allows it to capture much more utility
than TURKONTROL. As expected, both agents submit an in-
creasing number of jobs as the importance of answer correct-
ness rises and in the process, both of their accuracies rise too
(Figure 5). However, while both agents become more accu-
rate, TURKONTROL does not increase its accuracy enough
to compensate for the exponentially growing penalties. In-
stead, as AGENTHUNT experiences an almost sublinear de-
cline in net utility, TURKONTROL sees an exponential drop
(Figure 4). A Student’s t-test shows that for all settings of
penalty except -10, the differences between the two sys-
tems’ average net utilities are statistically significant. When
the penalty is -10, p < 0.4, and at all other reward settings,
p < 0.0001. Thus we find that at least in simulation, AGEN-
THUNT outperforms TURKONTROL on all our metrics.

We also analyze the systems’ behaviors qualitatively. As
expected, AGENTHUNT always starts by creating a TagFlow
job, since γT F < γWF implies that TagFlows lead to higher
worker accuracy on average. Interestingly, although AGEN-
THUNT has more available workflows, it creates fewer ac-
tual jobs than TURKONTROL, even as correct answers be-
come increasingly important. We also split our problems
into three categories to better understand the agents’ behav-
iors: 1) TagFlow is easy, 2) TagFlow is hard, but WikiFlow
is easy, and 3) Both workflows are difficult.

In the first case, both agents terminate quickly, though
AGENTHUNT spends a little more money since it also re-
quests WikiFlow jobs to double-check what it learns from
TagFlow jobs. In the second case, TURKONTROL creates an
enormous number of jobs before it decides to submit an an-
swer, while AGENTHUNT terminates much faster, since it
quickly deduces that TagFlow is hard and switches to creat-
ing easy WikiFlow jobs. In the third case, AGENTHUNT ex-
pectedly creates more jobs than TURKONTROL before ter-

91

AGENTHUNT TURKONTROL TURKONTROL300 AGENTHUNTRL
Avg Accuracy (%) 92.45 85.85 84.91 93.40

Avg Cost 5.81 4.21 6.26 7.25
Avg Net Utility -13.36 -18.35 -21.35 -13.85

Table 1: Comparisons of accuracies, costs, and net utilities of various agents when run on Mechanical Turk.

minating, but AGENTHUNT does not do too much worse
than TURKONTROL, since it correctly deduces that gather-
ing more information is unlikely to help.

Experiments using Mechanical Turk

We next run the agents on real data gathered from Mechan-
ical Turk. We generate 106 new NER tasks for this experi-
ment, and use gold labels supplied by a single expert. Since
in our simulations we found that the agents spend on aver-
age about the same amount of money when the reward for
an incorrect answer is -100, we use this reward value in our
real-world experiments.

As Table 1 shows, AGENTHUNT fares remarkably bet-
ter in the real-world than TURKONTROL. A Student’s t-test
shows that the difference between the average net utilities
of the two agents is statistically significant with p < 0.03.
However, we see that TURKONTROL spends less, leading
one to naturally wonder whether the difference in utility can
be accounted for by the cost discrepancy. Thus, we modify
the reward for an incorrect answer (to -300) for TURKON-
TROL to create TURKONTROL300, which spends about the
same amount of money as AGENTHUNT.

But even after the modification, the accuracy of AGEN-
THUNT is still much higher. A Student’s t-test shows that
the difference between the average net utilities of AGEN-
THUNT and TURKONTROL300 is statistically significant at
p < 0.01 showing that in the real-world, given similar bud-
gets, AGENTHUNT produces significantly better results than
TURKONTROL. Indeed, AGENTHUNT reduces the error of
TURKONTROL by 45% and the error of TURKONTROL300
by 50%. Surprisingly, the accuracy of TURKONTROL300
is lower than that of TURKONTROL despite the additional
jobs; we attribute this to statistical variance.

Adding Reinforcement Learning

Finally, we compare AGENTHUNT to AGENTHUNTRL.
AGENTHUNTRL’s starting belief state is a uniform distri-
bution over all world states and it assumes that γk = 1 for all
workflows. To encourage exploration, we set ε= 0.1. We test
it using the same 106 tasks described above. Table 1 shows
that while AGENTHUNTRL achieves a slightly higher ac-
curacy than AGENTHUNT, the difference between their net
utilities is not statistically significant (p= 0.4), which means
AGENTHUNTRL is comparable to AGENTHUNT, suggest-
ing that AGENTHUNT can perform in an “out of the box”
mode, without needing a training phase.

Related Work

The benefits from combining disparate workflows have been
previously observed. Babbage’s Law of Errors suggests that

the accuracy of numerical calculations can be increased by
comparing the outputs of two or more methods (Grier 2011).
However, in previous work these workflows have been com-
bined manually; AGENTHUNT embodies the first method
for automatically evaluating potential synergy and dynam-
ically switching between workflows.

Modeling repeated labeling in the face of noisy workers
has received significant attention. Romney et al. (1986) are
one of the first to incorporate a worker accuracy model to
improve label quality. Sheng et al. (2008) explore when it
is necessary to get another label for the purpose of machine
learning. Raykar et al. (2010) propose a model in which the
parameters for worker accuracy depend on the true answer.
Whitehill et al. (2009) and Dai et al. (2010) address the con-
cern that worker labels should not be modeled as indepen-
dent of each other unless given problem difficulty. Welin-
der et al. (2010) design a multidimensional model for work-
ers that takes into account competence, expertise, and an-
notator bias. Kamar et al. (2012) extracts features from the
task at hand and use Bayesian Structure Learning to learn
the worker response model. Parameswaran et al. (2010) con-
duct a policy search to find an optimal dynamic control pol-
icy with respect to constraints like cost or accuracy. Karger
et al. (2011) develop an algorithm based on low-rank matrix
approximation to assign tasks to workers and infer correct
answers, and analytically prove the optimality of their algo-
rithm at minimizing a budget given a reliability constraint.

Snow et al. (2008) show that for labeling tasks, a small
number of Mechanical Turk workers can achieve an ac-
curacy comparable to that of an expert labeler. For more
complex tasks, innovative workflows have been designed,
for example, an iterative improvement workflow for creat-
ing complex artifacts (Little et al. 2009), find-fix-verify for
an intelligent editor (Bernstein et al. 2010), iterative dual
pathways for speech-to-text transcription (Liem, Zhang, and
Chen 2011) and others for counting calories on a food plate
(Noronha et al. 2011). Lasecki et al. (2011) design a system
that allows multiple users to control the same interface in
real-time. Control can be switched between users depend-
ing on who is doing better. Kulkarni et al. (2012) show the
crowd itself can help with the design and execution of com-
plex workflows.

An AI agent makes an efficient controller for these
crowdsourced workflows. Dai et al. (2010; 2011) create a
POMDP-based agent to control an iterative improvement
workflow. Shahaf and Horvitz (2010) develop a planning-
based task allocator to assign subtasks to specific humans or
computers with known abilities.

Weld et al. (2011) discuss a broad vision for the use of
AI techniques in crowdsourcing that includes workflow opti-

92

mization, interface optimization, workflow selection and in-
telligent control for general crowdsourced workflows. Our
work reifies their proposal for workflow selection.

Conclusion & Future Work

We demonstrate that alternative workflows can compose
synergistically to produce much higher quality results
from crowdsourced workers. We design AGENTHUNT, a
POMDP-based agent that dynamically switches between
these workflows to obtain the best cost-quality tradeoffs.
Live experiments on Mechanical Turk demonstrate the ef-
fectiveness of AGENTHUNT. At comparable costs, it yields
up to 50% error reduction compared to TURKONTROL,
a strong baseline agent that uses the best single work-
flow. Moreover, for a new task, AGENTHUNT can oper-
ate out of the box since it does not require any explicit
learning phase to tune its parameters. A software pack-
age of our implementation is available for general use at
http://cs.washington.edu/node/7714.

In the future, we wish to understand the limits of AGEN-
THUNT by experimenting with tasks that may have many
more alternative workflows. We also hope to extend the abil-
ity of AGENTHUNT in solving tasks that go beyond choos-
ing one of 2 known alternatives. Another interesting di-
rection for the future is to apply Bayesian Reinforcement
Learning (Ross, Chalb-draa, and Pineau 2008), an elegant
way to handle the exploration-exploitation tradeoff. We also
wish to work on task allocation where we can preselect dif-
ferent workers for different tasks.

Acknowledgements
We thank Xiao Ling for generating our training and testing
data. We thank Lydia Chilton, Mitchell Koch, Peng Dai, Rob
Miller, Michael Bernstein, Eytan Adar, Haoqi Zhang, Car-
los Guestrin, David Alan Grier, and the anonymous review-
ers for helpful comments. We thank Trey Smith for making
ZMDP available and Jacob Whitehill for making the soft-
ware for GLAD available. This work was supported by the
WRF / TJ Cable Professorship, Office of Naval Research
grant N00014-12-1-0211, and National Science Foundation
grants IIS 1016713 and IIS 1016465.

References
Barowy, D. W.; Berger, E. D.; and McGregor, A. 2012. Automan:
A platform for integrating human-based and digital computation.
Technical report, University of Massachusetts, Amherst.
Bernstein, M. S.; Little, G.; Miller, R. C.; Hartmann, B.; Ackerman,
M. S.; Karger, D. R.; Crowell, D.; and Panovich, K. 2010. Soylent:
A word processor with a crowd inside. In UIST.
Dai, P.; Mausam; and Weld, D. S. 2010. Decision-theoretic control
of crowd-sourced workflows. In AAAI.
Dai, P.; Mausam; and Weld, D. S. 2011. Artificial intelligence for
artificial intelligence. In AAAI.
Grier, D. A. 2011. Error identification and correction in human
computation: Lessons from the WPA. In HCOMP.
Kamar, E.; Hacker, S.; and Horvitz, E. 2012. Combining human
and machine intelligence in large-scale crowdsourcing. In AAMAS.
Karger, D. R.; Oh, S.; ; and Shah, D. 2011. Budget-optimal crowd-
sourcing using low-rank matrix approximations. In Allerton.

Kulkarni, A.; Can, M.; and Hartmann, B. 2012. Collabora-
tively crowdsourcing workflows with turkomatic. In Proceedings
of CSCW.
Lasecki, W. S.; Murray, K. I.; White, S.; Miller, R. C.; and Bigham,
J. P. 2011. Real-time crowd control of existing interfaces. In
Proceedings of UIST.
Liem, B.; Zhang, H.; and Chen, Y. 2011. An iterative dual pathway
structure for speech-to-text transcription. In HCOMP.
Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C. 2009.
Turkit: tools for iterative tasks on mechanical turk. In KDD-
HCOMP, 29–30.
Milne, D., and Witten, I. H. 2008. Learning to link with wikipedia.
In Proceedings of the ACM Conference on Information and Knowl-
edge Management.
Noronha, J.; Hysen, E.; Zhang, H.; and Gajos, K. Z. 2011. Plate-
mate: Crowdsourcing nutrition analysis from food photographs. In
UIST.
Parameswaran, A.; Garcia-Molina, H.; Park, H.; Polyzotis, N.;
Ramesh, A.; and Widom, J. 2010. Crowdscreen: Algorithms for
filtering data with humans. In VLDB.
Ratinov, L.; Roth, D.; Downey, D.; and Anderson, M. 2011. Local
and global algorithms for disambiguation to wikipedia. In Proceed-
ings of the Annual Meeting of the Association of Computational
Linguistics.
Raykar, V. C.; Yu, S.; Zhao, L. H.; and Valadez, G. 2010. Learning
from crowds. Journal of Machine Learning Research 11:1297–
1322.
Romney, A. K.; Weller, S. C.; and Batchelder, W. H. 1986. Culture
as consensus: A theory of culture and informant accuracy. Ameri-
can Anthropologist 88(2):313 – 338.
Ross, S.; Chalb-draa, B.; and Pineau, J. 2008. Bayes-adaptive
POMDPs. In NIPS.
Russell, S., and Norvig, P. 2002. Artificial Intelligence: A Modern
Approach. Prentice Hall.
Sang, E. T. K., and Meulder, F. D. 2003. Introduction to the
CoNNL-2003 shared task: Language-independent named entity
recognition. In Proceedings of CoNLL.
Shahaf, D., and Horvitz, E. 2010. Generlized markets for human
and machine computation. In AAAI.
Sheng, V. S.; Provost, F.; and Ipeirotis, P. G. 2008. Get another la-
bel? improving data quality and data mining using multiple, noisy
labelers. In Proceedings of the Fourteenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining.
Smith, T., and Simmons, R. G. 2006. Focused real-time dynamic
programming for MDPs: Squeezing more out of a heuristic. In
AAAI.
Snow, R.; O’Connor, B.; Jurafsky, D.; and Ng, A. Y. 2008. Cheap
and fast - but is it good? evaluating non-expert annotations for nat-
ural language tasks. In EMNLP, 254–263.
Sondik, E. J. 1971. The Optimal Control of Partially Observable
markov Processes. Ph.D. Dissertation, Stanford.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning. The
MIT Press.
Weld, D. S.; Mausam; and Dai, P. 2011. Human intelligence needs
artificial intelligence. In HCOMP.
Welinder, P.; Branson, S.; Belongie, S.; and Perona, P. 2010. The
multidimensional wisdom of crowds. In NIPS.
Whitehill, J.; Ruvolo, P.; Bergsma, J.; Wu, T.; and Movellan, J.
2009. Whose vote should count more: Optimal integration of labels
from labelers of unknown expertise. In NIPS.

93

