
User-Controllable Learning of Location Privacy Policies
with Gaussian Mixture Models

Justin Cranshaw and Jonathan Mugan and Norman Sadeh
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{jcransh,jmugan,sadeh}@cs.cmu.edu

Abstract

With smart-phones becoming increasingly commonplace,
there has been a subsequent surge in applications that con-
tinuously track the location of users. However, serious pri-
vacy concerns arise as people start to widely adopt these ap-
plications. Users will need to maintain policies to determine
under which circumstances to share their location. Specify-
ing these policies however, is a cumbersome task, suggest-
ing that machine learning might be helpful. In this paper,
we present a user-controllable method for learning location
sharing policies. We use a classifier based on multivariate
Gaussian mixtures that is suitably modified so as to restrict
the evolution of the underlying policy to favor incremental
and therefore human-understandable changes as new data ar-
rives. We evaluate the model on real location-sharing policies
collected from a live location-sharing social network, and we
show that our method can learn policies in a user-controllable
setting that are just as accurate as policies that do not evolve
incrementally. Additionally, we highlight the strength of the
generative modeling approach we take, by showing how our
model easily extends to the semi-supervised setting.

Introduction

Hundreds of millions of people around the world now carry
smart-phones. The rich array of sensors on these devices
has allowed web-enabled applications to enter the lives and
routines of users in increasingly intimate and unprecedented
ways. For example, applications such as Foursquare and
Facebook Places allow users to “check-in” to places they
visit, broadcasting their location to their social connections
on these sites. Although check-in applications require users
to initiate the location sharing on a case by case basis, as
users grow more comfortable with the technology, more ap-
plications will continuously track the location of users. The
wide adoption of continuous tracking technology will create
both opportunities and challenges for users and application
designers alike.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Continuous tracking opens up a whole new range of uses
and benefits to users over check-in services. For instance, in
social location sharing applications, continuously tracking is
better suited for coordination and for encouraging serendip-
itous encounters than check-in systems, which only ever of-
fer a discrete approximation of users’ routines. Examples
of continuous social location sharing applications include
Latitude, Glympse, and Locaccino1. Beyond social loca-
tion sharing, numerous mobile applications are collecting
users’ locations for a variety of purposes. For instance, there
are now several applications that continuously track users
for health purposes, for example by estimating their caloric
output based on their movements. Additionally, tracking
the locations of users can be used to collaboratively learn
recommendations for new places the users might want to
visit (Zheng and Xie 2011). However, continuous tracking
also raises significant privacy concerns that have to be ad-
dressed before such applications gain wider appeal (Beres-
ford and Stajano 2005; Gedik and Liu 2007; Tsai et al. 2010;
Benisch et al. 2011). Smart phone OS manufactures, such as
Apple and Google, typically attempt to mitigate these con-
cerns by requiring users to manually give permission to ev-
ery application that requests their location. However, with
such sensitive data being collected in such large quantities,
these coarse controls are bound to lead to scenarios where
unintended, potentially damaging information is leaked to
the wrong entities. The potential for abuse of this data is
great. Because of these concerns, privacy-conscious appli-
cations will need to maintain an access control policy that
decides when to disclose the user’s location. Although, re-
quiring users to stipulate this policy in advance would give
them maximum control, specifying complex sharing prefer-
ences can quickly become too difficult for the user, possibly
preventing them from adopting the technology (Sadeh et al.
2009; Maxion and Reeder 2005).

If users were to label their access control preferences on
a small sample of sharing scenarios, then machine learning
could be used given this data to find accurate policy func-
tions. However, this solution also poses significant chal-
lenges. In straight-forward applications of machine learn-
ing it would be difficult for users to be able to control the
underlying sharing policy. In order for machine learning to

1http://www.locaccino.org

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1146

Figure 1: A screenshot of Locaccino.

be useful for learning security and privacy policies, the user
must always be in control of the underlying policy. This
means that the policy suggestions made by the algorithm
must be intelligible by the user, and the user must be able
to approve or refute any changes the algorithm makes. Ad-
ditionally, as the user’s preferences evolve, she may want
to manually change the underlying policy. The algorithm
should therefore be able to adapt to this, incorporating new
manual policy changes into the underlying model. This sug-
gests an incremental approach to policy learning.

We call such learning algorithms user controllable policy
learning algorithms, which were first introduced by Kelly
et al. (2008). In their work, they proposed a local search
method for accurately learning security and privacy policies.
The policies learned by their algorithm evolved in an incre-
mental way, keeping the user in control of the learning pro-
cess. However their work relied on simulations to evaluate
their methodology. We take on a similar task, however our
work is informed by data collected over the course of several
real user studies of a policy-based location sharing system.

Although this work focuses on location sharing policies,
the problem of learning policies for user preferences ex-
tends beyond location sharing. Fang and LeFevre used ac-
tive learning (2010) to discover content sharing policies for
Facebook. There has been work on learning user preferences
for recommender systems (Adomavicius and Tuzhilin 2005;
Rashid et al. 2002), and for helping users identify a desired
item among a large set of items (Viappiani, Faltings, and Pu
2006).

In this paper we introduce a user-controllable Gaussian
mixture classifier that incrementally learns location sharing
policies by making local changes to the underlying compo-
nents of the Gaussian mixture. We evaluate our model on
real data collected from a location sharing social network,
and we show our model performs well even on complex poli-
cies. Our user-controllable methods quickly converge to be
just as accurate as standard non-incremental learning, but
the user-controllable models make far fewer changes to the
policy.

Data Collection and Methods

Our results are based on data collected from Locaccino, an
application that allows users to share their current location
with their friends subject to user-controllable privacy rule
specifications. The users’ locations are continuously tracked
using software running in the background on their smart

phones. Locations are typically accurate to within 50 me-
ters, and are reported back to the Locaccino server in regular
intervals. Users of Locaccino create privacy rules to control
access to their location. Each rule specifies a set of situa-
tions in which the user’s location will be viewable by a set
of friends. Users can specify locations where they want to
allow sharing by creating rectangles on a map, and by spec-
ifying which of their friends can see them in each rectangle.
They can also specify time rules, for example by specifying
which friends are allowed to see them between the hours of
10 AM and 5 PM on Wednesdays. Combinations of loca-
tion rules and time rules are also allowed. For example, a
user can specify the her mother can see her location when
she is on campus between the hours of 10 AM and 5 PM on
Wednesdays.

In this paper we analyze 88 location sharing policies spec-
ified by 11 users of Locaccino. The users had their locations
continuously tracked by Locaccino for at least least 3 weeks.
During this time, they specified policies for sharing their lo-
cation with their social connections.

Problem Statement and Model

In this section we formally describe the location sharing set-
ting, and we present our user-controllable Guassian mixture
model that we use to learn location sharing policies.

Formal description of location sharing

An observation x = (lat, lon, t) of user u is a 3-tuple
consisting of a latitude lat, longitude lon, and a times-
tamp t such that u was observed by the system at location
(lat, lon) at time t. We suppose that u’s location is tracked
over some period of time, and n discrete observations of
u are collected. We denote this set of all observations by
Ou = {x1, . . . , xn}. We further suppose u has m friends
Vu = {v1, . . . , vm} with which she wants to share her lo-
cation. For each friend v ∈ V , u specifies a location shar-
ing policy, which is a function fu,v : Ou → {0, 1}. For
x = (lat, lon, t), fu,v(x) = 1 indicates that u wishes to
grant v permission to see her location at (lat, lon) at time t,
and fu,v(x) = 0 indicates that u wishes to deny v permis-
sion. We treat fu,v as the ground truth sharing preference
of u. Based on this ground truth, u specifies a sharing pol-
icy in the system, f̂u,v . In practice f̂u,v will be different
from fu,v , as f̂u,v is constrained by the expressiveness of
the system policy language and the burden on u to specify
her true preference. The location sharing is instantiated by
the system through a request that v makes of u’s location. If
x is the system observation of u at the time of the request,
then the system will share u’s location with v if and only if
f̂u,v(x) = 1.

Given this formal setting, our goal in this work is to use
machine learning to help the user minimize disagreement
between f̂u,v and fu,v . Furthermore, we aim to accomplish
this in a manner that keeps the user in control of specifying
the policy at all times.

1147

The policy space F
We assume the users’ ground truth sharing preferences can
be arbitrary functions fu,v and we assume that the system
policies that they specify are chosen from a fixed family
of functions f̂u,v ∈ F , which we call the policy space.
In this work we assume each f̂u,v ∈ F is of the form
f̂u,v = φ1∨φ2∨· · ·∨φk, where each φi is a rule specifying
a condition for sharing with v. In this way, if any of the rules
are satisfied by a request, then the system will permit shar-
ing, and the default condition (i.e. if no rules are satisfied) is
to deny the request. Each rule φi is either a location rule, a
time rule or it is a conjunction of a location rule and a time
rule, which we call a location-time rule. A location rule is a
union of rectangular geographic regions. We say a location
rule φi is satisfied by request x = (lat, lon, t) if the location
coordinate (lat, lon) falls within any of the specified regions
of φi. A user constructs a time rule by specifying the hours
of the day and days of the week where she wants to allow v
to have access to her location (i.e. from 9AM-5PM on Mon-
days and Tuesdays). Let h(t) and d(t) respectively indicate
the time of day and day of the week at timestamp t. Then
the time rule φi is satisfied by x = (lat, lon, t) if h(t) and
d(t) fall within any of time regions specified by φi.

There is a convenient geometric interpretation of F . A
single rule φi can be mapped to an axis-aligned cuboid in the
three dimensional space [−90, 90]× (−180, 180]× (0, 168],
where the first two coordinates correspond to degrees lat-
itude and longitude, and the third coordinate corresponds
to the time variable with one unit per every hour of ev-
ery weekday. We may then view each f̂u,v ∈ F as a set
of axis-aligned cuboids this space. The rule space F is
then the collection of all such sets of cuboids. A request
x = (lat, lon, t) can then be transformed into a point in this
space, and a policy function f̂u,v accepts the request if the
corresponding point lies inside one of the policy’s cuboids.

Learning policies with Gaussian mixtures

Throughout we use the convention that capital letters refer to
random variable, lowercase letters refer to particular values
of random variables, and script letters refer to collections of
random variables. We assume that for some subset X ⊂
Ou, the user has provided a corresponding labeled set Yv =
{fu,v(x) : x ∈ X} indicating her sharing preference for v at
each observation. Our central learning objective is to find
the most likely f̂u,v ∈ F given the training data. In the
geometric setting, this corresponds to finding the most likely
set of axis-aligned cuboids in R

3 that include data-points
where Yv = 1 but exclude data-points where Yv = 0.

A secondary goal of this work is to empirically explore
the generative modeling2 of location sharing rules. Although
discriminative models such as decision trees, tend to be more
accurate than generative models, there are advantages to
generative modeling that are particular appealing to learning

2Generative models maximize the joint likelihood p(X ,Yv) the
data, whereas discriminative models directly maximize the condi-
tional likelihood p(Yv|X).

location sharing policies. One main advantage of the gen-
erative approach relates to the ease of handling unlabeled
data. Typically the set of labeled observations X is a small
subset of the entire set of observations Ou. Furthermore,
since there is a heavy burden on the user in collecting the
labels Yv , it is essential that any real system attempt to min-
imize the required user effort. We envision using techniques
from semi-supervised learning to minimize this burden, and
generative approaches are often much easier to extend to
the semi-supervised setting (Ulusoy and Bishop 2005). Al-
though we don’t empirically explore semi-supervised tech-
niques in this work, in later sections we describe how our
model might be extended to the semi-supervised setting.

In order to learn a generative model for this problem, we
relax the target concept slightly and instead assume that data
from each label class was generated by a mixture of axis-
aligned (diagonal co-variance matrices) Gaussian distribu-
tions in R

3. That is for sharing preference Yv = i, we as-
sume p(X|Yv = i) =

∑Ki

k=1 π
k
i N (X|μk

i ,Σ
k
i) for class pa-

rameters μi, Σi, and πi, which are respectively the means,
co-variances, and mixing proportions of the Ki Gaussians.
If we know the parameters for each class, then for an unla-
beled observation x, we can compute

p(Yv = i|x, μi,Σi, πi) =

p(Yv = i|μi,Σi, πi)
∑Ki

k=1 π
k
i N (x|μk

i ,Σ
k
i)

p(x, Yv|μi,Σi, πi)
.

We then label x with argmaxi {p(Yv = i|x, μi,Σi, πi)} .
Converting between policy functions and GMMs

In order for GMMs to be a viable option for user-
controllable learning, there must be a way to translate be-
tween user specified location rules, and the machine gen-
erated GMM policy suggestions. Here we provide a map-
ping between the axis-aligned rectangular rules of Locac-
cino and the learned GMMs. Given the parameters of a
GMM μi,Σi, πi, we can construct a rectangular time and
space rule by taking taking intervals around the mean in
each dimension. For example, given μ1,Σ1, π1, we can
form a rectangular allow rule for each Gaussian component
k = 1, . . . ,K1 by forming intervals

Ij = (μk
1 [j]− cΣk

1 [j, j], μ
k
1 [j] + cΣk

1 [j, j])

where j ∈ {1, 2, 3} indicates the dimension in the policy
space (i.e. latitude, longitude, or time), and c is a parameter
determining the width. A corresponding axis-aligned allow
rule is then given by I1×I2×I3. We can similarly form rect-
angular deny rules from the parameters μ0,Σ0, π0. Since
Locaccino policies are default deny, the suggested rectangu-
lar rules that we would present to the users are the set differ-
ence between the allow regions minus the deny regions.

User-controllable learning with GMMs

We now present our method for user-controllable policy
learning based on Gaussian mixtures. Our approach itera-
tively learns the user’s location privacy rules in an incremen-
tal manner by making local changes to the mixture compo-
nents in each round. This ensures that the underlying policy

1148

recommended by the model evolves in a gentle manner, as
we believe this is essential to thus maximizing the under-
standability of the suggestions the algorithm makes.

We assume that the learning proceeds for N rounds. With
each round j, the algorithm receives a new set of observa-
tions Xj and corresponding set of labels Yj . Our goal is to
learn for each round j, a Gaussian mixture classifier Mj =
(θ0,j , θ1,j) from the data (X1,Y1), . . . , (Xj ,Yj) where
θ0,j = (μ0,j ,Σ0,j , π0,j), and θ1,j = (μ1,j ,Σ1,j , π1,j) are
the mixture models for deny and allow, respectively. To
maximize understandability, we restrict Mj so that it is
formed through incremental and atomic changes to Mj−1.

Let M∗
j = (θ∗0,j , θ

∗
1,j) be the unrestricted maxi-

mum likelihood estimate of the model given the data
(X1,Y1), . . . , (Xj ,Yj). Note that M∗

j could differ drasti-
cally from Mj−1. This is because as new data arrives, di-
rectly fitting a new model to the data could cause large, and
from the users perspective, unintelligible shifts in the under-
lying GMM, even if we initialize the learning of the new
model from the current model (for instance via EM). In or-
der to maximize the intelligibility of the updates, we instead
form the new model Mj by performing local operations on
the components of Mj−1 that move it incrementally closer
to M∗

j . This will ensure that we still increase the likeli-
hood with each step, yet we do so only through small atomic
changes to Mj−1, ensuring maximum usability.

We allow for three three local operations on the parameter
space of the GMMs:
• θi,j = delete(θi,j−1, k) then θi,j is formed by removing

the kth Gaussian from the mixture in θi,j−1

• θi,j = add(θi,j−1, θ
∗
i,j , k

∗) the θi,j is formed by adding
the k∗th Gaussian in θ∗i,j to the mixture in θi,j−1

• θi,j = swap(θi,j−1, θ
∗
i,j , k, k

∗) then θi,j is formed by
swapping the kth Gaussian from θi,j−1 with the k∗th
Gaussian from θ∗i,j

In all cases after performing the operation we renormalize
the mixture parameters πi,j accordingly. We allow only one
such local operation per algorithm round. Roughly, add is
equivalent to adding a location rule, delete is equivalent to
deleting a location rule, and swap is equivalent to modify-
ing a location rule (for instance by extending the boundary
of the rule).

We now introduce some notation. Let Ki and K∗
i be the

number of components of θi,j−1 and θ∗i,j respectively. Let
ki and k∗i refer to an arbitrary component of each mixture.
Let D[ki, k

∗
i] denote the symmetrized KL divergences be-

tween the kith Gaussian in θi,j−1 and the k∗i th Gaussian in
θ∗i,j . We view the (Ki)2(K

∗
i) entries of D as weights to

a bipartite graph, with the components of each Gaussian as
nodes. We let m be the solution to the minimum cost bi-
partite matching on this graph, which we solve using the
Hungarian Method. Then m[ki] gives the Gaussian in θ∗i,j
that is assigned to the kith Gaussian in θi,j−1, and the cost
of this assignment is D[ki,m[ki]].

The central idea here is that in each round, indepen-
dently of θ∗i,j−1 and θi,j−1, we learn a new GMM θ∗i,j given
(X1,Y1), . . . , (Xj ,Yj). To make sure that the model we ac-
tually suggest to the user θi,j , does not differ drastically from

the model in the previous round θi,j−1, we form θi,j by in-
crementally moving θi,j−1 towards θ∗i,j given the above op-
erations. In general, there will be components of θ∗i,j that
are similar to θi,j−1, since there is a great deal of overlap in
the data that each model was trained on. We use the match-
ing m in the KL-divergence matrix to guide the local opera-
tions we make to θi,j−1. The matching m provides us with
a correspondence between components of θi,j−1 and com-
ponents of θ∗i,j . Whenever we perform swap operations, we
will swap only along edges in the matching. This ensures
that the swap operations are roughly equivalent to modify-
ing a single rule in θi,j−1.

Now we introduce four algorithms for applying local op-
erations to construct Mj and we compare them to a baseline
algorithm that is not restricted to make such local operations.

MaxMatchedKL If K∗
i > Ki, then θtemp

i,j is formed by
adding a Gaussian to θi,j−1. For each unmatched Gaus-
sian k∗i in θ∗i,j we compute maxki D[ki, k

∗
i], and we add

the k∗i with largest maximum. If K∗
i < Ki then θtemp

i,j

is formed by deleting a Gaussian from θ∗i,j . We choose
the ki to delete in an identical way, except now we max-
imize over unmatched ki in θi,j−1. If K∗

i = Ki, then
we set θtemp

i,j ← swap(θi,j−1, θ
∗
i,j , k,m[k]) where k =

argmaxk′ D[k,m[k]]. For each i, we set each θi,j ← θtemp
i,j

only if the likelihood of θtemp
i,j is greater than that of θi,j−1

given the data. Otherwise we set θi,j ← θi,j−1. We then
return Mj = (θ0,j , θ1,j).

RandomMatchedKL RandomMatchedKL is a random-
ized version of MaxMatchedKL. We sample the Gaussian
to add, delete or swap proportional to the given objective in
each case. In the case of a swap, we would sample a ki with
probability proportional to D[ki,m[ki]].

MaxMatchedWeightedKL In this approach we choose to
add, delete, or swap randomly. We first flip a coin with
probability max{K∗

i −Ki

K∗
i

, 0} to decide whether or not to
add. If we do not add, we then flip a coin with proba-
bility max{Ki−K∗

i

Ki
, 0} to decide to delete. If we do not

delete, then we swap. If we choose to add, then we se-
lect k∗i = argmax {π∗i [k∗i]×minki

D[ki, k
∗
i]}, that is we

weight the objective function by how important the k∗i th
component is in the mixture. Similarly, if we choose to
delete, we select ki = argmax

{
πi[ki]×mink∗

i
D[ki, k

∗
i]
}

.
If we choose to swap, then we select k = argmaxπi[ki]×
π∗i [m[ki]] × D[ki,m[ki]], and k∗i = m[ki]. After this pro-
cedure we get new Gaussians θtemp

0,j and θtemp
1,j . As above,

we only update θi,j to θtemp
i,j if it results in an increase in the

likelihood.

RandomMatchedWeightedKL RandomMatched-
WeightedKL mirrors MaxMatchedWeightedKL but selects
ki and k∗i randomly proportional to the objective, instead of
deterministically selecting the maximum.

Basline: NewEachRound This baseline is to test the ac-
curacy of the incremental models against a model that picks

1149

Model Mean KL-Div Std Dev

GMM: NewEachRound 2.15 2.29
UC-GMM: RandomMatchedWeightedKL 0.97 1.68
UC-GMM: MaxMatchedWeightedKL 0.92 1.56
UC-GMM: RandomMatchedKL 0.66 0.99
UC-GMM: MaxMatchedKL 1.49 1.56

Table 1: Mean change in model per round as measured by
the symmetrized KL-divergence. Means are taken over non-
zero KL-divergence values between each model in round i
and the updated model in round i+1 for all rounds i. Differ-
ences in mean are statistically significant between the group
of models in the upper section of the table and the lower
section of the table (t-tests with p-values < 0.001).

the best Gaussian at each round. We simply set Mj ← M∗
j .

The accuracy of this model should be an upper bound on
the accuracy of the experimental models we test, since it
does not have the added restriction requiring incremental
changes. The goal of this work is to show that the ac-
curacy of the experimental models converges to that of
NewEachRound.

Parameter Estimation

We use the Expectation Maximization (EM) algorithm to ap-
proximate the unrestricted maximum likelihood estimate for
M∗

j = (θ∗0,j , θ
∗
1,j). We use EM once per each i, fitting the

model θ∗i,j to the data from class i. We use the mclust im-
plementation in R (Fraley and Raftery 2010), which uses a
round of hierarchical clustering to initialize the EM algo-
rithm, and it uses BIC to determine the number of clusters.

Training, Evaluation and Results

To test our models, we designed an experiment that mirrors
a real-world policy suggestion scenario. We selected 43 Lo-
caccino users from whom we had collected at least 2000
location observations (roughly at least two weeks worth of
data per person) and who had created at least 1 location shar-
ing rule. These users specified sharing policies for a total of
674 friends, roughly 6 friends on average per person. We
then sampled 2000 points (uniformly, without replacement)
from the set of observations of the user to form the set Ou,
and we evaluated the users sharing policy for each friend v at
every o ∈ Ou. We use the results of these policy evaluations
as the label for training and testing of our methods.

First, we separate the data into a training set and a testing
set. We choose this partition to respect the temporal order-
ing of the observations, that is we’re always testing on future
observations with respect to the training data. This is an im-
portant distinction, since any classifier will necessarily pay
a price associated with the randomness of a user’s sched-
ule. We use the first 60% of observations of each user as
training, and the last 40% as testing. To emulate the loca-
tion policy suggestion scenario, we evaluate the models in
rounds. With each round i, the models see some new la-
beled data Xi chosen from the training set. Our choice of
Xi is sequential, that is in each round, we see the next set

Round Number

A
cc

ur
ac

y

0.6

0.8

1

10 20 30 40

Figure 2: User controllable learning of 88 location sharing
policies. The curves are non-parametric regressions of the
experimental accuracy per each round of evaluation. Tests
were performed on 11 users of Locaccino, who cumulatively
specified sharing policies for a total of 88 of their social con-
nections.

of observations from the user. In round i each model will
build a classifier Ci given the training data X1, . . . , Xi. In
the case of the user-controllable classifiers, Ci will also de-
pend on Ci−1. The accuracy of the classifiers is estimated
by testing them at each round on the test data (note that only
the training data changes with each round, the test data is
a fixed set for every u and v). In our experiments each Xi

was chosen to be the next 75 observations from the training
set, and we iterated this procedure for 30 rounds. We also
measure KL-divergence for each model between the under-
lying distributions in Ci−1 and Ci. If a model has a small
KL-divergence in the update from Ci−1 to Ci, this indicates
the changes made to the classifier at that round are more in-
cremental.

We evaluate the effectiveness of our user-controllable
models on the 88 location sharing of 11 users. Accura-
cies for each round are shown in Figure 2, and the av-
erage KL-divergences for each round are shown in Table
1. Observe that all of the user controllable models ex-
cept for MaxMatchedKL are converging to the accuracy
rate of the non user-controllable model NewEachRound.
At the end of 30 rounds, the average accuracy of the

1150

non-user controllable baseline NewEachRound was 0.87.
The most accurate user-controllable model after 30 rounds
was RandomMatchedWeightedKL, which had average ac-
curacy 0.85. The least accurate user-controllable model
was MaxMatchedKL, which had average accuracy 0.76.
Additionally, observe that the updates made by the user-
controllable models are less significant that those made by
NewEachRound, suggesting that the changes are indeed
more incremental than those made by simply learning a new
model in each round.

Extensions to Semi-supervised Learning

In deploying machine learning systems that require user
feedback, it is essential for the usability of the system to
minimize the amount of feedback required, otherwise the
user might get frustrated and stop using the system. This
concern motivated our choice of Gaussian Mixture Models
for learning location privacy policies, as there are natural
extensions of GMM that can help with this burden.

In semi-supervised learning, we try to leverage the struc-
ture of unlabeled data to improve the model performance,
thereby decreasing the number of labels required to learn an
accurate model. Formally, we assume there is a labeled set
of obervations XL ⊂ Ou with corresponding labels YL

v ={
fu,v(x) : x ∈ XL

}
. In semi-supervised learning, we also

make use of unlabeled observations XU = Ou\XL. We call
(XL,YL

v) the labeled data and XU the unlabeled data. In
practice, the number of unlabeled data points |XU | is often
much greater than the number of labeled data points |XL|.
The underlying principal behind semi-supervised learning is
that there is often informative structure to the unlabeled data.
In the case of user mobility traces, observations are typically
clustered around important locations (i.e. home and work),
and often exhibit strong temporal regularities. Within these
clusters, the sharing preferences are often very predictable.

The advantage of a generative approach to modeling lo-
cation privacy rules is that it only requires slight modifi-
cations to our learning methods to take this unlabeled data
into account. We can learn a model that takes this unla-
beled data into account by finding parameters that maximize
the joint likelihood over both labelled and unlabeled data,
p(XU ,XL,YL

v |θ), which is typically done through a sec-
ond round of the EM algorithm to infer hidden labels over
the unlabeled data.

Discussion

In this work we have shown that Gaussian Mixture Mod-
els are a viable option for learning location sharing policies.
Using real sharing policies and real location trail data from
users, we show that GMMs are quickly able to learn accu-
rate policies that are able to predict future sharing prefer-
ences of the users. We also show that it is possible to mod-
ify the learning of the GMMs so that updates to the model
are done in an incremental and atomic manner. This is im-
portant component of user-controllable learning that helps
ensure that the policy suggestions that the algorithm makes
to the user are understandable. We restrict the rate of the
evolution of the models to favor gentle and atomic changes

as new data arrives, and we show that despite this restric-
tion, we are still able to converge to be able to learn accurate
policies. from the data.

Our motivation for using GMMs stems both from the
structure of the user observation data in the policy space,
and from the great amount of flexibility the model provides
for reasoning about the user’s sharing policy, and for ex-
tending to other learning settings. For instance, if the model
discovers an “allow” Gaussian component that has a much
larger (relative) variance along the time dimension than the
latitude and longitude dimensions, this would most likely
correspond to a location rule, since it would grant access
to a specific location over a wide variety of times. Addi-
tionally, since Gaussian mixture models are generative, they
allow us the flexibility to probabilistically reason about un-
labeled data in a theoretically sound manner. This flexibility
is particularly appealing in our setting, since it allows us to
easily extend the model to the semi-supervised setting.

Our method opens up many possibilities for future work.
Although we show that our incremental learning models
make smaller changes to the underlying policy, a user study
is required to show whether the suggestions made are actu-
ally more usable than other approaches. Additionally, our
method of getting feedback from users was non-adaptive.
One can imagine adaptive, active-learning approaches, such
as that used by (Fang and LeFevre 2010), that could select
the points of feedback from the users that are most useful to
the learning algorithm. We would also like to pursue semi-
supervised techniques to utilize the unlabeled user observa-
tions in the learning process.

Conclusion

We present a method for incrementally learning policies for
location sharing that uses a Gaussian Mixture Model to rep-
resent the user’s sharing preferences. As our model pro-
cesses new data, we restrict the evolution of the model so
that only incremental changes are made, thus reducing the
amount of change per round needed to converge to an accu-
rate policy. Using real user data, we show that our method
was able to incrementally learn policies for location-sharing
that were not significantly less accurate than those learned
without the incremental restriction. Our next step in this
work is to explicitly evaluate the usability of the polices that
are created by our methods.

Acknowledgments

This work has been supported by NSF grants CNS-
0627513, CNS-0905562, and CNS-1012763, and by CyLab
at Carnegie Mellon under grants DAAD19-02-1-0389 and
W911NF-09-1-0273 from the Army Research Office. Addi-
tional support has been provided by Google, Nokia, France
Telecom, and the CMU/Portugal ICTI. The authors would
also like to thank the many members of the Locaccino team
for their support.

References

Adomavicius, G., and Tuzhilin, A. 2005. Toward the next
generation of recommender systems: A survey of the state-

1151

of-the-art and possible extensions. IEEE transactions on
knowledge and data engineering 734–749.
Benisch, M.; Kelley, P.; Sadeh, N.; and Cranor, L. 2011.
Capturing Location-Privacy Preferences: Quantifying Ac-
curacy and User-Burden Tradeoffs. Journal of Personal and
Ubiquitous Computing.
Beresford, A., and Stajano, F. 2005. Location privacy in
pervasive computing. Pervasive Computing, IEEE 2(1):46–
55.
Fang, L., and LeFevre, K. 2010. Privacy wizards for social
networking sites. In Proceedings of the 19th international
conference on world wide web, 351–360. ACM.
Fraley, C., and Raftery, A. E. 2010. MCLUST Version 3 for
R: Normal Mixture Modeling and Model-Based Clustering.
Technical Report 504, Department of Statistics, University
of Washington.
Gedik, B., and Liu, L. 2007. Protecting location pri-
vacy with personalized k-anonymity: Architecture and al-
gorithms. IEEE Transactions on Mobile Computing 1–18.
Kelley, P.; Hankes Drielsma, P.; Sadeh, N.; and Cranor, L.
2008. User-controllable learning of security and privacy
policies. In Proceedings of the 1st ACM workshop on Work-
shop on AISec, 11–18. ACM.
Maxion, R., and Reeder, R. 2005. Improving user-interface
dependability through mitigation of human error. Interna-
tional Journal of Human-Computer Studies 63(1-2):25–50.

Rashid, A.; Albert, I.; Cosley, D.; Lam, S.; McNee, S.; Kon-
stan, J.; and Riedl, J. 2002. Getting to know you: learning
new user preferences in recommender systems. In Proceed-
ings of the 7th international conference on Intelligent user
interfaces, 127–134. ACM.
Sadeh, N.; Hong, J.; Cranor, L.; Fette, I.; Kelley, P.;
Prabaker, M.; and Rao, J. 2009. Understanding and
capturing peoples privacy policies in a mobile social net-
working application. Personal and Ubiquitous Computing
13(6):401–412.
Tsai, J.; Kelley, P.; Cranor, L.; and Sadeh, N. 2010.
Location-sharing technologies: Privacy risks and controls.
ISJLP 6(2):119–151.
Ulusoy, I., and Bishop, C. M. 2005. Generative versus dis-
criminative methods for object recognition. In Proceedings
of the 2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’05) - Volume 2
- Volume 02, CVPR ’05, 258–265. Washington, DC, USA:
IEEE Computer Society.
Viappiani, P.; Faltings, B.; and Pu, P. 2006. Preference-
based search using example-critiquing with suggestions.
Journal of Artificial Intelligence Research 27(1):465–503.
Zheng, Y., and Xie, X. 2011. Learning travel recommen-
dations from user-generated GPS traces. ACM Transactions
on Intelligent Systems and Technology (TIST) 2(1):2.

1152

