Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

CCRank: Parallel Learning to Rank with Cooperative Coevolution

Shuaigiang Wang!?* and Byron J. Gao®> and Ke Wang® and Hady W. Lauw*
1 Shandong University of Finance, 40 Shungeng Road, Jinan, China 250014
2 Texas State University-San Marcos, 601 University Drive, San Marcos, TX USA 78666
3 Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
4 Institute for Infocomm Research, 1 Fusionopolis Way, Singapore 138632

Abstract

We propose CCRank, the first parallel algorithm for
learning to rank, targeting simultaneous improvement
in learning accuracy and efficiency. CCRank is based
on cooperative coevolution (CC), a divide-and-conquer
framework that has demonstrated high promise in func-
tion optimization for problems with large search space
and complex structures. Moreover, CC naturally allows
parallelization of sub-solutions to the decomposed sub-
problems, which can substantially boost learning effi-
ciency. With CCRank, we investigate parallel CC in the
context of learning to rank. Extensive experiments on
benchmarks in comparison with the state-of-the-art al-
gorithms show that CCRank gains in both accuracy and
efficiency.

1 Introduction

Ranking schemes are critical for information retrieval (IR)
systems and web search engines. Traditional ranking meth-
ods include the Boolean model, vector space model, prob-
abilistic model and language model. Recently, learning
to rank has received increasing attention (Joachims 2002;
Freund et al. 2003; Cao et al. 2007; Xu and Li 2007,
Hoi and Jin 2008; Cao et al. 2010). Given training data, a
set of queries each associated with a list of search results la-
beled by relevance degree, learning to rank returns a ranking
function that can be used to order search results for future
queries.

With learning accuracy being the primary concern, learn-
ing efficiency can be a crucial issue (Cao et al. 2007). Due to
diversity of queries and documents, learning to rank involves
larger and larger training data with many features. For ex-
ample, the CSearch dataset used in ListNet (Cao et al. 2007)
contains ~25 million query-document pairs with 600 fea-
tures. Recently, utilization of click-through data (Joachims
2002) bypasses manual labeling and enables collection of
unlimited training data. In addition, due to the rapid growth
of the Web, ranking functions need to be re-learned repeat-
edly. Therefore, it emerged to be an important research prob-

*This work was done while the first author was a postdoctoral
fellow at Texas State University.
Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1249

lem to achieve high efficiency through parallelization while
maintaining accuracy.

In light of this, we propose CCRank, a parallel evolution-
ary algorithm based on cooperative coevolution (CC), tar-
geting simultaneous improvement in learning accuracy and
efficiency. Moreover, CCRank can directly optimize non-
derivable evaluation measures and yield non-linear ranking
functions, leading to further improvement in accuracy (Liu
2009).

Evolutionary algorithms (EAs) are derived from Dar-
winian evolutionary principles and widely applied in com-
putationally difficult optimization and classification prob-
lems. An EA algorithm maintains a population of individ-
uals (solutions) that evolve from generation to generation.
Each individual is associated with a fitness score. In stan-
dard EAs, fitness scores are static (do not vary over time)
and absolute (independent of other individuals).

Cooperative coevolution (CC) is a special type of EAs,
where the fitness of an individual is based on how well
it cooperates with other interacting individuals. CC algo-
rithms are advantageous in solving problems with excep-
tionally large search space and complex structures (Wiegand
2004). They have been successfully applied to a variety of
domains including function optimization (Potter and Jong
1994), manufacturing scheduling (Phil Husbands 1991), etc.
CC algorithms follow a divide-and-conquer strategy, decom-
posing a complex problem into sub-problems and combining
sub-solutions (individuals) in the end to form the final com-
plete solution.

In CC algorithms, EAs evolve separately. Thus, the evolv-

ing process can be naturally parallelized, allowing signifi-
cant improvement in learning efficiency. Unfortunately, this
privilege has not been explored previously for learning to
rank. In this paper, we investigate parallel CC in the context
of learning to rank, targeting simultaneous improvement in
accuracy and efficiency.
Contributions. Our main contributions are as follows. (1)
We investigate parallel cooperative coevolutionary algo-
rithms in the context of learning to rank. (2) We propose
CCRank, the first parallel algorithm for learning to rank, tar-
geting simultaneous improvement in learning accuracy and
efficiency. (3) We present extensive experiments on bench-
marks, demonstrating the promise of CCRank in comparison
with the state-of-the-art algorithms.



2 Related Work

Learning to rank. Learning to rank has received increasing
attention recently from both machine learning and IR com-
munities. Now we review several representative algorithms.
RankSVM (Joachims 2002; 2006) is based on support vec-
tor machines using click-through data for training. It min-
imizes the number of discordant pairs (by the final rank-
ing function) for margin maximization. RankBoost (Fre-
und et al. 2003) adopts a Boosting approach for learning to
rank. It minimizes the weighted number of disordered pairs.
AdaRank (Xu and Li 2007) is also a Boosting approach,
but it minimizes a loss function directly defined on the per-
formance measures. ListNet (Cao et al. 2007) introduces a
probabilistic list-wise loss function, and uses neural network
and gradient descent to train a list prediction model.

Other algorithms are surveyed in (Liu 2009). Differing

from all of these algorithms, CCRank is a parallel algorithm,
targeting improvement in accuracy and efficiency.
Parallel machine learning. Many sophisticated machine
learning algorithms cannot process large data sets. Paral-
lelization is an effective way of achieving speed-up. IBM
Parallel Machine Learning Toolbox (PML)' contains the
parallel version of many commonly-used machine learning
algorithms (e.g., SVM), and includes an API for incorporat-
ing additional algorithms. The toolbox can work on various
types of architecture, e.g., multicore machines. By distribut-
ing the required computation to computing nodes in a par-
allel fashion, training can be expedited by several orders of
magnitude.

While not extensively studied, with the advances of mul-

ticore technology, parallel machine learning is emerging as
an active research discipline. For example, Proximal SVM
(Collobert, Bengio, and Bengio 2004) and Cascade SVM
(Graf et al. 2004) are parallel SVMs. (Chu et al. 2006) at-
tempts to provide a simple and unified framework for par-
allel machine learning. However, to our best knowledge, no
parallel machine learning algorithms have been applied to
the learning to rank problem.
Cooperative coevolution. Cooperative coevolution (Potter
and Jong 1994) is a divide-and-conquer coevolutionary ar-
chitecture for solving problems with exceptionally large
search space and complex structures. The principles of CC
will be introduced shortly in Section 3.

Early CC-based algorithms, e.g., JACC-G (Yang et al.
2009), CCEA (Potter and Jong 1994), CCPSO (Li and Yao
2009), aim at function optimization. CCRank is the first al-
gorithm adapting CC to learning to rank.

3 The Learning to Rank Problem

Let D be a collection of documents, each represented by a
vector of feature values. In an information retrieval system,
for a query ¢, a list of documents from D are returned as
search results, where the documents are ranked according to
their relevance to q.

For a given query ¢, the ground truth relevance of docu-
ments with respect to ¢ (judged by human experts) is defined

"hitp://www.alphaworks.ibm.com/tech/pml

1250

as a function rel : D — IN, where IN is the natural number
set indicating different relevance levels. In some cases, rel
is a binary function, mapping a document to either O (irrel-
evant) or 1 (relevant). In our experiments, we considered 3
relevance levels of O (irrelevant), 1 (partially relevant), and
2 (relevant).

Let f : D — R be a ranking function assigning real num-
ber relevance scores to documents, where IR denotes the real
number set. The goodness of ranking functions can be eval-
uated by a given measure s, such as precision at n (P@n),
mean average precision (M AP), and normalized discount
cumulative gain (N DCG@n).

Definition 1 Given a training data set T, given an evalua-
tion measure s, the problem of learning to rank is to learn a
ranking function f from T such that s(f) is maximized.

4 The CCRank Algorithm
4.1 Overview of CCRank

CCRank adapts parallel cooperative coevolution (CC) to the
learning to rank problem. It learns a ranking function from
training data in two phases.

CCRank starts with the problem decomposition phase
(detailed in Section 4.3). Firstly L initial solutions, repre-
sented by trees, are generated randomly from the full fea-
ture space. Then, each tree is decomposed into IV sub-trees,
resulting in /N populations each with L individuals.

The evolution phase (detailed in Section 4.4) starts after
problem decomposition. It is an iterative process, where [N
populations co-evolve in parallel from generation to gener-
ation. Each population maintains a collection of individuals
and a winner, which is the best individual in the population
with the biggest fitness value.

At the end of each generation, the parallel execution is
suspended and a complete solution f is produced by a com-
bination operation, which assembles N winners evolved in
N populations. Then f is collected into a solution pool as a
candidate ranking function.

After the evolution process ends, validation data are used
to select the best solution among all candidates as the final
ranking function to return.

4.2 Solution Representation

CC-based algorithms for optimization problems use vec-
tors to represent solutions. For the learning to rank prob-
lem, the ranking function to be learned, f, can be non-
linear. In CCRank, we use tree structures to represent so-
lutions. Accordingly, individuals are represented as sub-
trees. Trees not only have sufficient expressive power to
represent non-linear functions (de Almeida et al. 2007;
Fan, Gordon, and Pathak 2004), they also have the advantage
of allowing easy parsing, implementation and interpretation.

In particular, for each tree, the internal nodes contain ba-
sic function operators of +, — and *. The leaf nodes con-
tain features and constants. Constants serve as coefficients
of features in f. In CCRank, 19 constants are used, which
are 0.1,0.2,...,009,1, 2, ..., 10.



@
. . “— (i-f) 05 f)
ONGICIO

Figure 1: Tree representation

Assembler
Decomposition

" ()

\Gotpmaton () (2
 Combination

i Individual iy Individual i

Individual i3 Individual iy

Figure 2: Decomposition and combination

A tree can be parsed into a function. Figure 1 shows the
tree representation for an example ranking function (f; —
f2) + (0.5 fs).

The depth d of a tree representing a complete solution is
determined by the total number of features n; and the total
number of constants nc. An empirical design (Fan, Gordon,
and Pathak 2004; Wang, Ma, and Liu 2009) has been that the
tree should be deep enough so that the number of leaf nodes
is bigger than np + nc, i.e., d = [logy(np +n¢)] + 1. For
example, let np = 46 and ne = 19, then d = [log, (46 +
19)] +1 =7+ 1= 8. A tree of depth 8 has 2571 = 128 >
(46 + 19) leaf nodes.

4.3 Decomposition Phase

CC-based optimization algorithms divide the feature space
into subspaces of features, each corresponding to a sub-
problem. This decomposition is appropriate because their
search space is a Cartesian product of features. In CCRank,
the search space is non-linear. A similar decomposition
would lead to significant loss of information and compro-
mised search space.

In CCRank, initially L solutions, represented by trees of
depth d, are generated randomly from the full feature space.
Then, each tree is decomposed into N sub-trees, resulting
in N populations, each with L individuals. Each population
will be assigned an EA to evolve. Figure 2 shows the de-
composition of a single tree (left-hand side) into N = 4
individuals (right-hand side).

The depth of sub-trees (individuals) d; upper-bounds
the feature space of individuals. This parameter is used in
CCRank whenever individuals are generated. The depth of
assembler (to be explained in Section 4.4) is determined by
da = |logy np| where np is the number of processors used
in the parallel evolution process. Thus, d; = d — d 4, which
implies that the size of the feature space of individuals is
upper-bounded by 2%/ ~!. For example, suppose the depth of
trees (solutions) d = 8. The calculation of d was introduced
in Section 4.2. Let the number of processors np = 8. Then,
the depth of assembler d4 = |log, 8| = 3, and the depth of
individuals d; = 8 — 3 = 5.

1251

EA2 %

Population
Generation

EA1 EA3 EA 4

Population
Generation

Population
Generation

Population
Generation

Fitness
Calculation

Fitness
Calculation

Fitness
Calculation

| /

Select Select

Fitness
Calculation

Generation
Cooperation {

Select

Winners a a ° a

M Next Generation

Figure 3: Evolution

Select

4.4

Due to the differences in search spaces, linear vs. non-linear,
the evolution process differs between optimization algo-
rithms and CCRank. In the former, individuals evolve within
the same predetermined subspace. In the latter, an open ap-
proach is adopted in the sense that any feature from the full
feature space can be selected into the subspace.

Evolution in CCRank executes iteratively, and the number
of iterations is predetermined by a given parameter. Each
iteration contains a generation of evolving populations. [N
populations evolve in parallel, each maintaining a collection
of individuals and a winner, which is the best individual in
the population with the biggest fitness value.

Figure 3 illustrates the iterative evolution process for
4 populations in EA1, EA2, EA3 and EA4 respectively.
Within each iteration, there is a generation as shown at the
top. Within each generation, in the beginning, individuals
of each population for the current generation are generated
based on individuals from the previous generation. Then,
fitness values of individuals are calculated in a cooperative
manner, as to be detailed shortly.

After the generation, parallel execution is suspended tem-
porarily and the candidate solution for the current generation
will be generated. First, the winner for each population is up-
dated based on the calculated fitness. Then, all the winners
are combined, with the help of the assembler, into a candi-
date solution. If the preset maximum number of iterations is
not met, a new iteration will start and the 4 populations will
continue to evolve in a new generation in parallel.
Combination Operation. The combination process assem-
blies individuals into a complete solution. For optimization
algorithms, combination is straightforward since individuals
are vectors. Besides, combination is done in the very end of
all generations. In CCRank, individuals are sub-trees and we
need to assemble them properly to form a complete solution.
In addition, since learning to rank is a classification problem
that requires validation of candidate classifiers, each being
a solution, we need to collect a pool of diverse candidates
produced by different generations. Thus, in CCRank com-
bination is done after each generation during the evolution

Evolution Phase



Wi Vi /i Assembler

| inner wy Winner w3 Winner w; ssen |

Individual i in EA 2

Figure 4: Fitness calculation

process. Precisely, combination occurs in two cases: fitness
calculation (right before the end of the generation, as shown
in Figure 4) and candidate generation (right after the end of
the generation as shown in Figure 3).

Combination is the inverse process of decomposition. In
Figure 2, 4 individuals ¢; ~ ¢4 (right-hand side) are com-
bined into a complete solution (left-hand side) with the help
of the assembler. Assemblers are used to assemble individ-
uals into complete solutions, where they form “crowns” of
solution trees. Thus, all of their nodes are internal nodes of
solution trees and contain function operators only. In partic-
ular, we use + so as to generate simple ranking functions.
Fitness calculation. Under the CC framework, fitness of in-
dividuals is based on how well they cooperate with other
populations. Figure 4 illustrates the fitness calculation for
individual ¢ in EA2, one of the 4 EAs in Figure 3. First, in-
dividual ¢ and winners w1, w3 and w4 selected in EA1, EA3
and EA4 from the previous generation, with the help of the
assembler, are combined into a solution (right-hand side).
Then, the evaluation measure, e.g., M AP, for the combined
solution is calculated using training data, and the resulting
score is assigned to individual ¢ as its fitness.

The fitness values of other individuals are calculated in the

same manner. It seems that fitness calculation requires co-
operation involving mutual dependency, which would make
parallel execution of EAs infeasible. However, note that the
cooperation is between two different generations. As shown
in Figure 4, individual ¢ is from the current generation, win-
ners w1, ws and wy are the best individuals from the previ-
ous generation. Thus, there is no mutual dependency and all
EAs can perform fitness calculation in parallel.
Choice of EA. In CCRank we choose Immune Program-
ming (IP) (Musilek et al. 2006) as our evolutionary algo-
rithm. This is because comparing to Genetic Programming
(GP), IP can evolve a good solution in fewer generations,
especially when the population size is small (Musilek et al.
2006). Moreover, IP has been successfully applied to the
learning to rank problem (Wang, Ma, and Liu 2009).

4.5 The Algorithm

We have explained the main procedures of CCRank, now we
summarize them and present the pseudocode of CCRank in
Algorithm 1.

In the pseudocode, ’Pl-(g ) denotes population 7 in the g*"
generation. w; denotes the winner of population i. A de-

1252

Algorithm 1: CCRank

Input : Training set 7, validation set }, maximum
number of generations G, number of
populations N

Output: Ranking function f

Initialize() // decomposition

for g « 1to G do
fori <+ 1to N do // parallel evolution
L Pi(g) +— Evolve (Pi(g_l)) // cc

Update (w;, PY)
f@ + combine ({w;}}¥,,A)// combination
C+CuU{f}

s7(C) + Evaluate (C,T)
sy(C) + Evaluate (C,V)
+ Select (s7(C), sp(C))

S e X TSN A W=

notes an assembler. C denotes the candidate set. s denotes
the fitness function of individuals.

Line 1 performs initialization, including random gener-
ation of IV populations, evaluation of each individual, and
selection of initial winners.

Lines 2-7 show the whole evolution process from gener-
ation to generation. Specifically, lines 3-5 show one genera-
tion of the evolution process for all populations that execute
in parallel. In particular, line 4 evolves individuals based on
the previous generation, and line 5 updates the winner for
each EA. Lines 6-7 generate candidate solutions.

Lines 8-9 calculate the performance measures s (c) and
sy(c) for the candidates using the training set 7 and valida-
tion set V, based on which line 10 selects the ranking func-
tion f. The following formula (Wang, Ma, and Liu 2009) is
used in the selection:

argmax ((a x s7(f;) + B8 x sv(fi)) —v X 03) ,

where v is a constant, o; is the standard deviation of
s7(f;) and sy(f;), and the values of « and [ are based

on the sizes of the training set and validation set, i.e., @« =
T B = __kx[V|
| T1+Ex|V|? [T|+Ex|V]"

S Experiments

We conducted two series of experiments using benchmark
datasets to evaluate the accuracy and efficiency performance
of CCRank.

5.1 Methodology

Datasets. We used LETOR 4.0, a collection of bench-
marks released in 2009 by Microsoft Research Asia
(research.microsoft.com/en-us/um/beijing/projects/letor/)
because the accuracy of several baseline algorithms were
also available online.

LETOR 4.0 uses the Gov2 Web page collection and two
query sets from Million Query track of TREC 2007 and
TREC 2008, called MQ2007 and MQ2008. There are about



Table 1: Accuracy in M AP

[ Data [CCRank | AdaRank | RankBoost | RankSVM [ ListNet |
MQ2007 | 0.466 0.458 0.466 0.465 0.465
MQ2008 | 0.482 0.476 0.478 0.470 0.478
’ I CCRank-IP I I CCRank-IP
o) I caran 044 | I AdRank

(g | ICRS | e
I ListNet I ListNet

NDCG@1 ~ NDCG@2  NDCG@3  NDCG@4  NDCG@5

Figure 5: PQn and N DC'G@n on MQ2007

1,700 queries with 69,623 instances in MQ2007 and about
800 queries with 15,211 instances in MQ2008. Each data
set has been partitioned into five parts in order to conduct 5-
fold cross validation. For each fold, three parts are used for
training, one part for validation, and the remaining part for
testing.

Features. We used the features provided by LETOR 4.0.
For each document, there are 6 hyperlink features (PageR-
ank value, inlink number, outlink number, number of slashes
in URL, length of URL, and number of child pages) and
40 content features consisting of 20 classical features such
as document length and term frequency, and 20 high level
features such as results of BM25 (Robertson 1997) and
LMIR (Zhai and Lafferty 2001) algorithms.

Evaluation measures. Commonly three standard rank-
aware accuracy measures are used to evaluate the rank func-
tions generated by learning to rank algorithms: precision at
n (P@n), mean average precision (M AP), and normalized
discount cumulative gain (N DCG@n). P@n measures the
accuracy within the top n results of the returned ranked list
for a query:

# of relevant docs in top n results
P@n P

n

M AP takes the mean of the average precision values over
all queries, where the average precision for each query is
defined as the average of the P@n values for all relevant
documents:

Zle (P@n x rel(n))
relevant docs for this query’
query

average precision =

where rel(n) is a binary function mapping a document to
either 1 (relevant) or O (irrelevant).

Note that P@n and M AP can only handle cases with bi-
nary judgment, relevant or irrelevant. Recently, a new eval-
uation measure N DC'G @n (Jarvelin and Kekildinen 2002)
has been proposed to handle multiple levels of relevance:

no (20¢0) — 1 ifj=1
NDCGOn =2, {290 —1 ..,
=t Tlog()

1253

I AdaRank
[ RankBoost
)

I CCRank-IP I CCRank-IP
aRan

4 | NI istNot

NDCG@1  NDCG@2  NDCG@3  NDCG@4  NDCG@5

g 3 8 &8 & 8 3

(a) Execution time

(b) Relative speed-up curves

Figure 7: Efficiency of CCRank

where 7el(j) is the integer rating of the j* document, and
the normalization constant Z,, is chosen such that the perfect
list gets a N DCG score of 1.
Comparison partners. We compared CCRank with the
state-of-the-art learning to rank algorithms AdaRank (Xu
and Li 2007), RankBoost (Freund et al. 2003), RankSVM
(Joachims 2002) and ListNet (Cao et al. 2007). Their
experiment results on datasets MQ2007 and MQ2008
are publicly available (http://research.microsoft.com/en-
us/um/beijing/projects/letor/letor4baseline.aspx).
Parameter setting. Our implementation of CCRank used
Immune Programming (IP) as the EA algorithm, which has
demonstrated advantages in learning to rank (Wang, Ma, and
Liu2009). N = 8 EAs are maintained, each containing L. =
70 individuals that co-evolve up to G = 30 generations. The
depth of complete solutions is d = 8.

5.2 Accuracy

In the first series of experiments, we evaluated the accu-
racy performance of CCRank, in comparison with AdaRank,
RankBoost, RankSVM-struct and ListNet on benchmarks
MQ2007 and MQ2008.

Table 1 shows the accuracy comparison under the M AP
measure. For MQ2007, CCRank and RankBoost shared
the best performance. For MQ2008, CCRank outperformed
all other algorithms, gaining 1.13%, 0.901%, 2.60% and
0.901% respectively. Note that the best and worst perfor-
mances from those comparison partners differ by merely
1.67%.

Figures 5 and 6 show the accuracy comparison under
the P@1~5 and NDCG@1~5 measures. The results are
consistent with the ones under M AP, showing CCRank is
among the best for both measures, comparable to RankBoost
on MQ2007 and AdaRank on MQ2008.

5.3 Efficiency

To demonstrate the gain in efficiency by parallel evolution,
we extracted 25%, 50%, and 100% portions of MQ2008



and generated 3 datasets, which have 3,803, 7,606, and
15,211 instances respectively. Then we ran CCRank on these
datasets varying the number of processors (1, 2, 4, 8, and
16).

Figure 7 shows the execution time and corresponding rel-
ative speed-up curves of CCRank. From the results we can
see that parallel evolution leads to significant speed-up in
CCRank. Comparing to the case of 1 processor, the averaged
relative speed-up ratios are 173%, 299%, 486%, and 736%
respectively, for the cases of 2, 4, 8, and 16 processors.

Note that ideally with the increase of dataset size, the
speed-up curve should approximate the linear line as shown
in 7(b). However, CCRank has difficulties in achieving this
ideal scale-up for the following reasons. Firstly, as shown in
Figure 3, CCRank does not always execute in parallel. Af-
ter each generation, it must suspend the parallel execution to
perform combination in order to produce the candidate so-
lution. Secondly, EAs may spend different amounts of time
to evolve for a certain generation, but the combination can
start only after all EAs finish. Thus, the time CCRank spends
on a generation is equal to the longest time that any EA can
possibly spend for the generation.

6 Conclusion

In this paper we proposed CCRank, a parallel learning to
rank algorithm based on cooperative coevolution, target-
ing simultaneous improvement in accuracy and efficiency.
While early CC-based algorithms have been successfully
applied to complex function optimization problems, we
adapted CC to the learning to rank problem. In addition,
we also designed mechanisms that allow the cooperatively
evolving EAs to execute in a parallel manner. We experi-
mentally compared CCRank with the state-of-the-art algo-
rithms on benchmark datasets, demonstrating the accuracy
and efficiency gain of CCRank.

For future work, we plan to extend CCRank in several
directions. On direction is to further explore our parallel
CC framework by incorporating some recently proposed EA
algorithms. Another direction is to investigate cooperative
learning to rank. In CC, the cooperating components are
EAs. It is possible and interesting to organize other ma-
chine learning algorithms, e.g., SVM and Neural Network,
to work in a collaborative manner for the learning to rank
problem. Last but not least, our current parallel CC frame-
work has demonstrated significant speed-up, but not scale-
up. We plan to investigate how to further boost efficiency
by taking full advantage of parallelization. For this purpose,
more economic and sophisticated cooperation schemes need
to be considered.

References
Cao, Z.; Qin, T.; Liu, T.-Y.; Tsai, M.-F.; and Li, H. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proc. of
ICML’07.
Cao, B.; Shen, D.; Wang, K.; and Yang, Q. 2010. Clickthrough log
analysis by collaborative ranking. In Proc. of AAAI'10.
Chu, C. T.; Kim, S. K.; Lin, Y. A.; Yu, Y.; Bradski, G. R.; Ng,
A.Y.; and Olukotun, K. 2006. Map-reduce for machine learning
on multicore. In Proc. of NIPS’ 06.

1254

Collobert, R.; Bengio, Y.; and Bengio, S. 2004. A parallel mixture
of svms for very large scale problems. In Proc. of NIPS’04.

de Almeida, H. M.; Gongalves, M. A.; Cristo, M.; and Calado, P.
2007. A combined component approach for finding collection-
adapted ranking functions based on genetic programming. In Proc.
of SIGIR07.

Fan, W.; Gordon, M. D.; and Pathak, P. 2004. Discovery of context-
specific ranking functions for effective information retrieval using
genetic programming. [EEE Trans. Knowl. Data Eng. 16(4):523—
527.

Freund, Y.; Iyer, R.; Schapire, R. E.; and Singer, Y. 2003. An
efficient boosting algorithm for combining preferences. J. Mach.
Learning Res. 4(1):933-969.

Graf, H. P.; Cosatto, E.; Bottou, L.; Durdanovic, 1.; and Vapnik,
V. 2004. Parallel support vector machines: The cascade SVM. In
Proc. of NIPS’04.

Hoi, S. C. H., and Jin, R. 2008. Semi-supervised ensemble ranking.
In Proc. of AAAI'0S.

Jéarvelin, K., and Kekéldinen, J. 2002. Cumulated gain-based eval-
uation of IR techniques. ACM Trans. Inf. Sys. 20(4):422-446.
Joachims, T. 2002. Optimizing search engines using clickthrough
data. In Proc. of KDD’02.

Joachims, T. 2006. Training linear SVMs in linear time. In Proc.
of KDD’06.

Li, X., and Yao, X. 2009. Tackling high dimensional nonsepa-
rable optimization problems by cooperatively coevolving particle
swarms. In Proc. of CEC’09.

Liu, T.-Y. 2009. Learning to rank for information retrieval. Found.
Trends Inf. Retr. 3(3):225-331.

Musilek, P.; Lau, A.; Reformat, M.; and Wyard-Scott, L. 2006.
Immune programming. Inf. Sci. 176(8):972-1002.

Phil Husbands, F. M. 1991. Simulated co-evolution as the mecha-
nism for emergent planning and scheduling. In Proc. of GA’91.
Potter, M. A., and Jong, K. A. D. 1994. A cooperative coevolu-
tionary approach to function optimization. In Proc. of PPSN’94.
Robertson, S. E. 1997. Overview of the okapi projects. J. Doc.
53(1):3-7.

Wang, S.; Ma, J.; and Liu, J. 2009. Learning to rank using evo-
lutionary computation: Immune programming or genetic program-
ming? In Proc. of CIKM’09.

Wiegand, R. P. 2004. An Analysis of Cooperative Coevolutionary
Algorithms. Ph.D. Dissertation, George Mason University, Fairfax,
VA, USA.

Xu, J., and Li, H. 2007. AdaRank: a boosting algorithm for infor-
mation retrieval. In Proc. of SIGIR’07.

Yang, Z.; Zhang, J.; Tang, K.; Yao, X.; and Sanderson, A. C.
2009. An adaptive coevolutionary differential evolution algorithm
for large-scale optimization. In Proc. of CEC’09.

Zhai, C., and Lafferty, J. 2001. A study of smoothing methods for
language models applied to Ad Hoc information retrieval. In Proc.
of SIGIR01.



