
Improving Cost-Optimal Domain-Independent Symbolic Planning

Peter Kissmann and Stefan Edelkamp
TZI Universität Bremen, Germany
{kissmann, edelkamp}@tzi.de

Abstract

Symbolic search with BDDs has shown remarkable perfor-
mance for cost-optimal deterministic planning by exploiting
a succinct representation and exploration of state sets. In this
paper we enhance BDD-based planning by applying a com-
bination of domain-independent search techniques: the op-
timization of the variable ordering in the BDD by approxi-
mating the linear arrangement problem, pattern selection for
improved construction of search heuristics in form of sym-
bolic partial pattern databases, and a decision procedure for
the amount of bidirection in the symbolic search process.

Introduction

Symbolic search with Binary Decision Diagrams (Bryant
1986), BDDs for short, has shown considerable success
for cost-optimal planning, so that our planner GAMER
(Edelkamp and Kissmann 2009) won the corresponding
track in the international planning competition IPC 2008.

While explicit-state search is concerned with the expan-
sion of single states and the calculation of successors of a
single state, in symbolic search (McMillan 1993) with BDDs
sets of states are handled. E. g., the assignments satisfying
a Boolean formula can be seen as sets of states. Similarly,
we can represent any state vector (in binary representation)
as a Boolean formula with one satisfying assignment. To
achieve this, we represent any state as a conjunction of (bi-
nary) variables. Thus, a set of states is the disjunction of
such a conjunction of variables, so that we can easily repre-
sent it in form of a BDD.

This paper contains three contributions to improve our ex-
isting symbolic search technology to come up with a new
version of GAMER that clearly outperforms the 2008 ver-
sion.

1. The variable ordering has a significant effect on the size
of the BDD representation for many Boolean functions
(Bryant 1986), but the automated inference of a good or-
dering has not been studied for symbolic planning. As the
problem of optimizing the ordering in a BDD is hard in
general and existing reordering techniques show perfor-
mance drawbacks in practice, this paper follows an alter-
native approach based on exploiting causal dependencies
of state variables.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2. The BDD exploration on state sets can be improved by in-
cluding heuristics into the search process. Based on pro-
jecting away all but a selected pattern of state variables, in
backward search symbolic versions of pattern databases
(Culberson and Schaeffer 1998) can be constructed. In
this paper, we provide an alternative realization for greedy
pattern selection based on constructing symbolic pattern
databases.

3. While symbolic backward search is conceptually simple
and often effective in some domains, due to a large num-
ber of invalid states the sizes of the BDDs increase too
quickly to be effective for a bidirectional exploration of
the original state space. For this case we integrate a sim-
ple decision procedure to allow backward search in ab-
stract state space search only.

This paper is structured as follows. First, we introduce
deterministic planning with finite domain variables and the
causal dependencies among them. Next, we turn to the lin-
ear arrangement problem that we greedily optimize to find
a good BDD variable ordering. Then, we present symbolic
search strategies including symbolic BFS, symbolic single-
source shortest-path and symbolic A* as needed for step-
and cost-optimal planning. We continue with a new auto-
mated construction of search heuristics in form of symbolic
pattern databases. Then, we consider a decision procedure
of whether or not to start backward search. Finally, we eval-
uate the new version of GAMER on the full set of problems
from IPC 2008.

Planning and Causal Graphs

In (deterministic) planning we are confronted with a descrip-
tion of a planning problem and are interested in finding a
good solution (a good plan) for this problem. Such a plan is
a set of actions whose application transforms the initial state
to one of the goal states. In propositional planning, states are
sets of Boolean variables. However, propositional encod-
ings are not necessarily the best state space representations
for solving propositional planning problems. A multi-valued
variable encoding is often better. It transforms a proposi-
tional planning task into an SAS+ planning task (Bäckström
and Nebel 1995).

Definition 1 (Cost-Based SAS+ Planning Task). A cost-
based SAS+ planning task P = 〈S,V,A, I, T , c〉 consists
of a set V = {v1, . . . , vn} of state variables for states in S ,

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

992

where each v ∈ V has finite domain Dv . Some sets of states
are partial assignments, i. e., functions s over V , such that
s(v) ∈ Dv , if s(v) is defined. The initial state I is a full
assignment, i. e., a total function over V . The goal states T
are specified in form of a partial assignment. An action a ∈
A is given by a pair 〈pre, eff 〉 of preconditions and effects,
where pre and eff are partial assignments. The application
of action a in a state S ∈ S results in the successor state S′,
i. e., a (S) = S′. The cost function c : A �→ N

+
0 specifies

the cost of each action.
Definition 2 (Plan and Cost of a Plan). A plan P
is a sequence of actions (a1, a2, . . . , an) ∈ An with
an (an−1 (. . . a1 (I) . . .)) ∈ T . The total cost C (P) of a
plan P is the sum of the costs of all actions within P , i. e.,
C (P) := c (a1) + c (a2) + . . .+ c (an).
Definition 3 (Optimal Plan). A plan P is called optimal, if
there is no plan P ′ with C (P ′) < C (P).

The following definition specifies the dependencies
among the variables, resulting in a causal graph
Definition 4 (Causal Graph). The causal graph of an SAS+

planning task P with variable set V is a directed graph
(V,E) with V = V and (u, v) ∈ E if and only if u �= v
and there is an action 〈pre, eff 〉 ∈ A, such that eff (v) is
defined and pre(u) or eff (u) is defined. This implies that an
edge is drawn from one variable to another if the change of
the second variable is dependent on the current assignment
of the first variable.

We use what we call a symmetric causal graph, i. e., a
causal graph with the dependencies applied in both direc-
tions, so that we arrive at a symmetrical relation.

Optimal Linear Variable Arrangement

In short, BDDs are memory-efficient data structures used to
represent Boolean functions as well as to perform set-based
search. A BDD is a directed acyclic graph with one root
and two terminal nodes, the 0- and the 1-sink. Each inter-
nal node corresponds to a binary variable and has two suc-
cessors, one representing that the current variable is false
and the other representing that it is true. The assignment of
the variables derived from any path from the root to the 1-
sink corresponds to an assignment for which the represented
function evaluates to true.

The variable ordering problem in a BDD is co-NP-
complete (Bryant 1986), so that optimal algorithms are prac-
tically infeasible even for small-sized planning problems.
Dynamic reordering algorithms as provided in current BDD
packages require sifting operations on existing BDDs and
are often too slow to be effective in planning. One reason is
that they do not exploit any knowledge on variable depen-
dencies.

Thus, we decided to approximate another optimization
problem to find a good variable ordering without BDDs.
Definition 5 (Optimal Linear Arrangement). Given a
weighted graph G = (V,E, c) on n vertices, in the optimal
linear arrangement problem the goal is to find a permuta-
tion π : V → {1, . . . , n} that minimizes

∑
e=(u,v)∈E c(e) ·

|π(v)− π(u)|.

We set the weights c(e) to 1, so that we actually solve
the version called simple optimal linear arrangement. This
problem is (still) NP-hard (via a reduction to Max-Cut and
Max-2-Sat (Garey, Johnson, and Stockmeyer 1976)). It is
also hard to provide approximations within any constant fac-
tor (Devanur et al. 2006).

There are different known generalizations to the opti-
mal linear arrangement problem. The quadratic assignment
problem

∑
e=(u,v)∈E c(e)·c′(π(u), π(v)) for some weight c′

is a generalization, which includes TSP as one case (Lawler
1963). Here, we consider the optimization function

Φ(π) =
∑

(u,v)∈E
d(π(u), π(v)),

subject to the metric d(x, y) = ||x−y||22 =
∑n

i=1(xi−yi)
2.

In our case G is the symmetric causal graph, i. e., the
nodes in V are the multi-valued variables in the SAS+ en-
coding and the edges in E reflect the causal dependencies.

As the problem is complex we apply a greedy search pro-
cedure for optimization with two loops. The outer loop cal-
culates a fixed number ρ of random permutations, while the
inner loop performs a fixed number η of transpositions. To
increase the values of ρ and η we decided to incrementally
compute Φ(π) =

∑
(u,v)∈E d(π(u), π(v)) as follows. Let

τ(i, j) be the transposition applied to the permutation π to
obtain the new permutation π′, and let x and y be the vari-
ables associated to the indices i and j in π. We have

Φ(π′) =
∑

(u,v)∈E

d(π′(u), π′(v))

= Φ(π)−
∑

(w,x)∈E

d(π(w), i)−
∑

(w,y)∈E

d(π(w), j)

+
∑

(w,x)∈E

d(π(w), j) +
∑

(w,y)∈E

d(π(w), i).

The complexity for computing Φ(π′) reduces from
quadratic to linear time for the incremental computation.
This has a considerable impact on the performance of the
optimization process as it performs millions of updates in
a matter of seconds instead of minutes (depending on the
symmetric causal graph and the domain chosen).

Now that the variable ordering has been fixed we consider
how to optimally solve deterministic planning problems.

Step-Optimal Symbolic Planning

To calculate the set of successors of a given set of states, the
image operator is used. Though we are able to find efficient
variable orderings for many problems, we cannot expect to
be able to calculate exponential search spaces in polynomial
time. This comes from the fact that the calculation of the
image is NP-complete (McMillan 1993). It is, however, not
essential to compute one image for all actions in common.
Instead, we apply the image operator to one action after the
other and calculate the union of these afterwards.

Using the image operator the implementation for a sym-
bolic breadth-first search (BFS) is straight-forward. All we
need to do is to apply image first to the initial state and af-
terwards to the last generated successor states. The search

993

ends when a fix-point is reached, i. e., when the application
of image does not yield any new states.

For the search in backward direction we use the
pre-image operator, which is similar to image but calcu-
lates all predecessors of a given set of states.

Given the image and pre-image operators we also de-
vise a symbolic bidirectional breadth-first search. For this
we start one search in forward direction (using image) at
the initial state and another in backward direction (using
pre-image) at the terminal states. Once the two searches
overlap we stop and generate an optimal solution.

Cost-Optimal Symbolic Sequential Planning

Handling action costs is somewhat more complicated. Now,
an optimal plan is no longer one of minimal length but rather
one with minimal total cost, i. e., the sum of the costs of all
actions within the plan needs to be minimal.

Dijkstra’s single-source shortest-paths search (1959) is a
classical algorithm used for state spaces with edge weights.
In its normal form it consists of a list of nodes denoted with
their distance to the start node. Initially, the distance for the
start node is 0 and that for the other nodes ∞.

It chooses the node u with minimal distance, removes it
from the list and updates the distances of the neighboring
nodes. For each neighbor v it recalculates its distance to
the start node to min (d (v) , d (u) + c (u, v)), with c (u, v)
being the cost of edge (u, v) and d (w) the distance of node
w to the start node calculated so far.

For the symbolic version of this algorithm we need a way
to access the states having a certain distance from I. For
this typically a priority queue is used. As we are concerned
only with discrete action costs we can partition the priority
queue into buckets, resulting in an open list (Dial 1969). In
this list we store all the states that have been reached so far
in the bucket representing the distance from I that they have
been found in.

In case of zero-cost actions we calculate a fix-point for the
current bucket, and perform a BFS using only the zero-cost
actions. The resulting states correspond to the application
of one non-zero-cost action followed by a number of zero-
cost actions. For duplicate elimination, we might also keep
a BDD storing all the states we have already expanded.

A* (Hart, Nilsson, and Raphael 1968) corresponds to Di-
jkstra’s algorithm with the new costs ĉ (u, v) = c (u, v) −
h (u) + h (v). Both algorithms, Dijkstra’s algorithm with
reweighted costs and A*, perform the same, if the heuristic
function is consistent, i. e., if for all a = (u, v) ∈ A we have
h (u) ≤ h (v) + c (u, v).

Efficient symbolic adaptations of A* with consistent
heuristics are SetA* by Jensen, Bryant, and Veloso (2002)
and BDDA* by Edelkamp and Reffel (1998). While for Di-
jkstra’s algorithm a bucket list was sufficient (in the case of
no zero-cost actions), here we need a two-dimensional ma-
trix (cf. Figure 1). One dimension represents the distance
from I (the g value), the other one the heuristic estimate on
the distance to a goal (the h value).

A* expands according to f = g + h, which corresponds
to a diagonal in the matrix. If the heuristic is consistent we

h

g

I
1

2 3

4

5

6

7

8

9

10
t

Figure 1: The working of BDDA*. The buckets that are
expanded in the course of the search are shaded in gray, the
numbers in them denote the order of their expansion and
the arrows point to the buckets containing successors of the
current one.

will never have to reopen an f diagonal that we already ex-
panded. Furthermore, as we do not allow negative action
costs, the g value will never decrease. So, for each f diago-
nal we start at the bucket with smallest g value, expand this,
go to the next one on the same f diagonal, until either the
diagonal has been completely expanded or we find a goal
state t ∈ T . In the first case we go on to the next f diagonal,
in the second case we are done.

For the case of zero-cost actions, things again get a bit
more difficult, as we – similar to the symbolic version of
Dijkstra’s algorithm – need to store a list of BDDs in each
bucket of the matrix to keep track of the different layers of
the zero-cost BFS.

A question that still remains is how we can come up with
a consistent symbolic heuristic. For this, in the following we
will present how to compute symbolic pattern databases.

Symbolic Planning Pattern Databases

Pattern databases have originally been proposed by Culber-
son and Schaeffer (1998). They were designed to operate in
the abstract space of a problem.

Definition 6 (Restriction Function). Let V ′ ⊆ V . For a set
of variables v ∈ V , a restriction function φV′ : 2V �→ 2V

′

is defined as the projection of S to V ′ containing only those
variables that are also present in V ′, while those in V \ V ′
are removed. φV′ (S) is also denoted as S|V′ .

Definition 7 (Abstract Planning Problem). Let P =
〈S,V,A, I, T , c〉 be a planning problem and V ′ ⊆
V a set of variables. An abstract planning problem
P|V′ = 〈S|V′ ,V ′,A|V′ , I|V′ , T |V′ , c〉 is P restricted
to V ′, where S|V′ = {s|V′ | s ∈ S}, and A|V′ =
{〈pre|V′ , eff |V′〉 | 〈pre, eff 〉 ∈ A ∧ eff |V′ �= ∅}

In other words, the abstraction of a planning problem re-
sults in a (typically smaller) planning problem where certain
variables (those in V \ V ′) are ignored.

994

Definition 8 (Pattern Database). A pattern database
(PDB) Φ for an abstract planning problem PV′ =
〈S|V′ ,V ′,A|V′ , I|V′ , T |V′ , c〉 is a set of pairs (d, s) where
d ∈ N

+
0 denotes the minimal distance of the state s ∈ S|V′

to one of the abstract goal states.

The construction of symbolic PDBs (Edelkamp 2002)
performs symbolic Dijkstra search. Starting at the goal state
T |V′ it operates in backward direction until all states are in-
serted into the database, which consists of a vector of BDDs,
the BDD within each bucket of this vector representing the
abstract states that have a corresponding distance to an ab-
stract goal state.

If the abstract spaces are too large, the complete database
calculation might take too long. Thus, we probably do not
want the full information we could get. Therefore, we con-
sider combining PDBs with perimeter search (Dillenburg
and Nelson 1994).

Felner and Ofek (2007) propose two algorithms combin-
ing perimeter search and PDBs. The first one, called sim-
plified perimeter PDB (SP PDB) uses a classical PDB and
a perimeter for a distance of d. This perimeter is used to
correct too low heuristic estimates from the PDB up to the
depth bound of d+ 1.

The second approach, which they called perimeter PDB
(P PDB), performs a perimeter search up to a depth of d as
a first step, followed by a PDB calculation starting at the
states on the perimeter. The heuristic estimates result from
the PDB and give estimates on the distance to the perimeter.
The forward search is then performed using these heuristic
estimates until a state on the perimeter is reached and chosen
for expansion.

The idea of partial PDBs is due to Anderson, Holte, and
Schaeffer (2007). A partial PDB is a PDB that is not calcu-
lated completely. Similar to perimeter search, it is created
up to a maximal distance d to an abstract goal state. For all
states that have been reached during the PDB construction
process the heuristic estimate is calculated according to the
PDB, while for states not within the PDB the estimate can
be set to d+ 1 d+ 1, if all states up to distance d are stored
in the PDB.

An adaptation to symbolic search is again straight-
forward (Edelkamp and Kissmann 2008). All we need to
do is perform symbolic Dijkstra search starting at the goal
states T |V′ up to a maximal distance d and then stop the
PDB creation process. In our implementation we do not set
the value of d explicitly but generate the PDB until a cer-
tain timeout is reached. The maximal distance of expanded
states. As we are concerned with symbolic search and have
one BDD for all states sharing the same distance to the goal
states, all unexpanded states have a distance that is higher
than d, so that we assign all such states a distance of d+ 1.

Automated Pattern Selection

The automated selection of patterns for PDBs has been con-
sidered by Haslum et al. (2007). For one PDB the ap-
proach greedily constructs a pattern V ′ by adding one vari-
able v ∈ V of the unchosen ones at a time. For the greedy
selection process the quality of the unconstructed PDBs

V ′ ∪ {v} is evaluated by drawing and abstracting n ran-
dom samples in the original state space. These subproblems
are solved using heuristic search wrt. the already constructed
PDB V ′. If v is fixed then the PDB for V ′∪{v} is constructed
and the process iterates. The decision criterion for select-
ing the next candidate variable is the search tree prediction
formula for iterative-deepening A* proposed by Korf, Reid,
and Edelkamp (2001).

Similarly, our incremental symbolic PDB is constructed
by greedily extending the variable set that is mentioned in
the goal using backward search. However, we neither use
sampling nor heuristics but construct the symbolic PDBs for
all candidate variables. Moreover, the result is a single PDB,
not a selection as in Haslum et al. (2007). If the pattern V ′ ⊂
V is chosen, we construct the symbolic PDBs for V ′∪{v} for
all variables v ∈ V \ V ′ if the causal graph contains an edge
from v to any of the variables in V ′. To select among the
candidate patterns we then compute the mean heuristic value
in the PDBs of the respective candidate variable by using
model counting (sat-count as proposed by Bryant (1986)),
which is an operation linear in the size of the constructed
symbolic PDB. After we are done with testing the insertion
of all variables we actually add all those that achieved the
best mean heuristic value (if that is greater than the mean
heuristic value of V ′) and start the process over.

In contrast to explicit search, backward symbolic search
in the according abstract state spaces is often possible even
if the set of goal states is large. If the time reserved for
construction is exhausted we use the PDB constructed so far
as a partial PDB.

Bidirection

We observed that in some (but rare) domains unabstracted
symbolic backward search is rather complex and limited to
very few backward images that dominate the search process
and require lots of resources in time and space. The reason
is that the goal specification is partial, and in these domains
backward search generates lots of states unreachable in for-
ward direction, which results in tremendous work.

Fortunately, for most example problems we investigated
this effect can be detected in the first backward iteration, re-
sulting in a manifold increase of the time to compute the first
pre-image. Hence, we perform one image from I and one
pre-image from T and impose a threshold α on the time ratio
of the two. If the ratio exceeds α we turn off bidirectional
search (for perimeter database construction in the original
space) and insist on partial PDB construction in the abstract
space (as in the previous section), where due to the smaller
size of the state vector the effect of backward search for the
exploration is less prominent.

Experiments

We performed all the experiments on one core of a desktop
computer (Intel i7 CPU with 2.67GHz and 24GB RAM).

To evaluate the benefit of each of the approaches proposed
in this paper we compare all possibilities of them. The un-
derlying system in all cases is our planner GAMER, which
participated in IPC 2008. The only difference is that we

995

use a map instead of a matrix for BDDA* (as proposed be-
fore (Edelkamp and Kissmann 2009)) to handle large action
costs as present in the PARC-PRINTER domain and slightly
adapted the start script, so that it stops the backward search
after half the available time (real-time, while in the compe-
tition we used CPU time).

The different versions are denoted by sub- and super-
script. The versions using the perimeter database without
abstraction are denoted by subscript p, those using abstrac-
tion by subscript a and those using the bidirectional choice
by subscript b. The versions using variable reordering are
denoted by superscript r, those without it use the default
ordering from the 2008 version, i. e., a lexicographical or-
dering, which we used hoping that correlated predicates of-
ten have the same name. Thus, the version of IPC 2008 is
GAMERp, while the version we submitted for IPC 2011 is
GAMERr

b , which includes all proposed improvements.
For further comparison we took the baseline planner

BASE developed by the organizers of IPC 2008, which per-
forms Dijkstra search (A* with h = 0) and actually was able
to solve one more problem than GAMER in the course of
the competition1. Another competitor is our planner GPU-
PLAN, which utilizes the calculation power of modern GPUs
to increase the speed for successor generations (Sulewski,
Edelkamp, and Kissmann 2011).

The setting is similar to the competition in that we use a
timeout of 30 minutes, but without a memory limit (i. e., they
can use up to 24GB), as we believe the old limit of 2GB to
be outdated. We evaluated the planners on all domains of
the sequential optimal track of IPC 2008, which consist of
30 instances each and contain non-uniform action costs. For
domains having more than one description we use the one
for each planner that it works best on.

The results in numbers of solved instances are depicted
in Table 1. From that we see that GAMERr

b beats all other
planners. The biggest advantage comes with the reorder-
ing. This helps especially in the OPENSTACKS and WOOD-
WORKING domains. The abstraction helps in the SOKOBAN
and WOODWORKING domains, increasing the number of
solved instances by up to four, though in the ELEVATORS
domain it is counter-productive and decreases the number
of solved instances by up to four. Finally, the bidirectional
choice often works good (in ELEVATORS and TRANSPORT)
but not yet optimal (in SOKOBAN and WOODWORKING it
did not always make the right choice).

In comparison to the two explicit-state planners we see
that GAMERr

b clearly outperforms them in the total number
of solved instances. In four domains it can find fewer so-
lutions, but in all cases the number is smaller by at most
three. On the other hand, in ELEVATORS and WOODWORK-
ING it is a lot better than GPUPLAN and BASE, with 13
additional solutions in the latter, and in OPENSTACKS it also
finds seven solutions that BASE did not find. As GAMER is
able to find all 30 solutions it seems plausible that the ad-
vantage would have been even greater if there were more
problems to solve in that domain.

1For detailed competition results see http://ipc.
informatik.uni-freiburg.de/Results.

Comparing the runtimes of all the planners (Table 2) is
somewhat critical, as GPUPLAN and BASE perform no
backward search, while GAMER performs it for up to half
the available time (i. e., up to 900 seconds). Thus, for all the
instances where the backward search is not trivial and does
not finish within the time limit, the runtime is dominated
by it. Comparing the different versions of GAMER shows
that in the SCANALYZER domain the reordering is counter-
productive, while in all other domains it helps decrease the
average runtime. Using abstraction decreases the time espe-
cially in SOKOBAN, but increases it in PARC-PRINTER and
WOODWORKING. The latter is rather unexpected as the ab-
straction helped solve the most instances.

Katz and Domshlak (2010) propose the use of A* with a
fork-decomposition heuristic. Though they performed their
experiments on a different machine with a memory limit of
only 2GB, we still believe that GAMERr

b will solve more
instances of the IPC 2008 domains, as their approach beats
GAMERp by only four instances.

We also experimented with the net-benefit version of
GAMER. Of the proposed improvements only the variable
reordering can be applied. On the five domains of IPC 2008
we found 100 plans (using the same settings as before) com-
pared to 95 by the version without reordering. An approach
proposed by Keyder and Geffner (2009) is to compile away
the soft goals to arrive at a propositionsl cost-optimal plan-
ning problem. In their article they compared their approach
with GAMER, and beat it by seven instances; as that was the
competition version and we only recently found some bug
whose removal immediately led to six additional solutions,
the new version will likely beat their planner again.

Conclusion

In this paper we pushed the envelope for symbolic planning
with action costs and with soft constraints. Even though
each applied technique is rather fundamental or aligns with
ideas that have been applied to explicit-state planning, the
combined impact with respect to the number of solved
benchmarks is remarkable. The improvement wrt. GAMER
across the domains for minimizing action costs is statisti-
cally significant.

In the future we will refine the variable ordering heuris-
tic for the numerical fluents. Also, experimenting with more
general abstraction schemes and selection algorithms is on
our research agenda. Furthermore, we are searching for a
method for finding and using multiple PDBs effective in
most benchmark domains.

Acknowledgments

Thanks to Deutsche Forschungsgesellschaft (DFG) for sup-
port in the project ED 74/11-1.

References

Anderson, K.; Holte, R.; and Schaeffer, J. 2007. Partial
pattern databases. In SARA, 20–34.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.

996

Table 1: Number of solved instances for each domain and each planner.

Domain GPUPLAN BASE GAMERp GAMERa GAMERb GAMERr
p GAMERr

a GAMERr
b

ELEVATORS (30) 19 17 24 21 24 24 20 24
OPENSTACKS (30) 29 23 22 22 22 30 30 30

PARC-PRINTER (30) 9 11 11 12 12 11 11 11
PEG SOLITAIRE (30) 29 28 25 25 25 27 27 27

SCANALYZER (30) 12 12 9 10 10 9 9 9
SOKOBAN (30) 23 24 19 23 20 21 24 22

TRANSPORT (30) 12 11 11 10 11 11 10 11
WOODWORKING (30) 9 9 14 17 14 22 24 22

Total (240) 142 135 135 140 138 155 155 156

Table 2: Average runtimes (in seconds) for problems solved by all planners with the fastest version of GAMER highlighted in
each domain.

Domain GPUPLAN BASE GAMERp GAMERa GAMERb GAMERr
p GAMERr

a GAMERr
b

ELEVATORS 73 190 816 865 816 733 814 734
OPENSTACKS 26 51 554 560 554 215 292 215

PARC-PRINTER 161 13 17 97 65 20 119 77
PEG SOLITAIRE 6 5 978 910 978 912 844 912

SCANALYZER 28 58 36 36 36 93 93 94
SOKOBAN 48 14 883 149 776 843 118 842

TRANSPORT 30 6 269 302 267 260 292 260
WOODWORKING 97 185 9 141 10 6 45 6

Total 48 60 583 490 571 491 412 496

Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Computers 35(8):677–
691.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Devanur, N. R.; Khot, S.; Saket, R.; and Vishnoi, N. K.
2006. Integrality gaps for sparsest cut and minimum linear
arrangement problems. In STOC, 537–546.
Dial, R. B. 1969. Shortest-path forest with topological or-
dering. Commun. ACM 12(11):632–633.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Dillenburg, J. F., and Nelson, P. C. 1994. Perimeter search.
Artif. Intell. 65(1):165–178.
Edelkamp, S., and Kissmann, P. 2008. Partial symbolic
pattern databases for optimal sequential planning. In KI,
volume 5243 of LNCS, 193–200. Springer.
Edelkamp, S., and Kissmann, P. 2009. Optimal symbolic
planning with action costs and preferences. In IJCAI, 1690–
1695.
Edelkamp, S., and Reffel, F. 1998. OBDDs in heuristic
search. In KI, volume 1504 of LNCS, 81–92. Springer.
Edelkamp, S. 2002. Symbolic pattern databases in heuristic
search planning. In AIPS, 274–283. AAAI Press.
Felner, A., and Ofek, N. 2007. Combining perimeter search
and pattern database abstractions. In SARA, 155–168.
Garey, M. R.; Johnson, D. S.; and Stockmeyer, L. 1976.
Some simplified NP-complete graph problems. Theoret.
Comput. Sci. 1(3):237–267.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE Trans. Syst. and Cybernetics SSC-4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI,
1007–1012. AAAI Press.
Jensen, R. M.; Bryant, R. E.; and Veloso, M. M. 2002.
SetA*: An efficient BDD-based heuristic search algorithm.
In AAAI, 668–673. AAAI Press.
Katz, M., and Domshlak, C. 2010. Implicit abstraction
heuristics. JAIR 39:51–126.
Keyder, E., and Geffner, H. 2009. Soft goals can be com-
piled away. JAIR 36:547–556.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A∗. Artif. Intell. 129(1–
2):199–218.
Lawler, E. L. 1963. The quadratic assignment problem.
Management Science 9(4):586–599.
McMillan, K. L. 1993. Symbolic Model Checking. Kluwer
Academic Publishers.
Sulewski, D.; Edelkamp, S.; and Kissmann, P. 2011. Ex-
ploiting the computational power of the graphics card: Op-
timal state space planning on the GPU. In ICAPS, 242–249.
AAAI Press.

997

