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Abstract

Successful approaches to the robot localization prob-
lem include Monte Carlo particle filters, which esti-
mate non-parametric localization belief distributions.
However, particle filters fare poorly at determining the
robot’s position without a good initial hypothesis. This
problem has been addressed for robots that sense visual
landmarks with sensor resetting, by performing sensor-
based resampling when the robot is lost. For robots that
make sparse, ambiguous and noisy observations, stan-
dard sensor resetting places new location hypotheses
across a wide region, in positions that may be incon-
sistent with previous observations. We propose Multi-
Observation Sensor Resetting, where observations from
multiple frames are merged to generate new hypotheses
more effectively. We demonstrate experimentally in the
robot soccer domain on the NAO humanoid robots that
Multi-Observation Sensor Resetting converges more ef-
ficiently to the robot’s true position than standard sensor
resetting, and is more robust to systematic vision errors.

Introduction

Whether a robot is driving through city streets, navigating
the corridors of buildings, laboring on the floor of a fac-
tory or playing a game of soccer, the ability of the robot to
interact intelligently with the physical world fundamentally
depends on its ability to self-localize, or determine its own
pose relative to the environment. The robot must localize
quickly in response to any real-time constraints tied to the
successful completion of its task, and also robustly, in the
presence of noisy, ambiguous, and even incorrect sensing.
The localization problem has been extensively studied,
and a prevalent solution is the use of Monte Carlo particle
filters, where a set of “particles” model multiple hypothe-
ses. These particles are updated based on both a model of
the robot’s motion and a sensor model. The sensor model
computes the likelihood of possible robot poses given sen-
sory data. Particle filters have been implemented for robots
with various types of sensory inputs, including 2D planar LI-
DAR scans, 3D point clouds, visual information, and even
the signal strength of WiFi access points. Different sensor
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modalities offer different challenges and advantages. We are
interested specifically in localizing with visual landmarks.

Localizing based on visual landmarks is in some ways a
more challenging problem than localizing with point cloud
sensors. The first challenge is simply the quantity of data
available. LIDAR sensors return hundreds of distances in ev-
ery scan, but cameras have limited fields of view and land-
marks are more sparse, so the robot may only be able to
detect one or two landmarks in a single frame. Additionally,
with cameras where the pan and tilt angles are controllable,
the sensory input is active rather than passive, and the pri-
mary task of the robot is not to localize but to perform some
task; hence, camera usage must be shared between localiz-
ing and other tasks.

The second challenge is that systems which detect visual
landmarks are imprecise and prone to errors. In recogniz-
ing visual landmarks, false positives, false negatives and er-
rors in location are highly probable. Localization algorithms
must be robust to these errors.

Despite these challenges, the difficulty of the localization
problem with visual landmarks is mitigated by the fact that
individual observations are much more informative than a
single laser reading. By sensing two unambiguous visual
landmarks, an estimate of the robot’s position can be trian-
gulated. Sensor resetting localization inserts additional hy-
potheses generated from sensing when the robot is uncer-
tain of its position (Lenser and Veloso 2000). Sensor reset-
ting implementations must perform a delicate balancing act
between exploration and exploitation: with too much sen-
sor resetting, the particles and the robot’s position will jump
quickly and abruptly in response to noise and vision errors,
but with too little, the particle filter will not converge to the
robot’s true position in a timely fashion. However, sensor re-
setting is less effective when landmarks are ambiguous and
observations are less informative.

We postulate that standard sensor resetting errs too
strongly on the side of exploration due to the way that new
hypotheses are generated based on every set of observations,
including observations of only a single landmark. Standard
sensor resetting only considers the observations from a sin-
gle camera frame; however, more informed pose hypothe-
ses can be generated by considering multiple observations
across multiple frames. We propose Multi-Observation Sen-
sor Resetting (MOSR) localization as an extension to stan-



dard sensor resetting. MOSR localization converges more
quickly and accurately by relaxing the assumption that ob-
servations from separate frames of the camera are indepen-
dent, and by using multiple observations to generate fewer
but more informed new hypotheses for sensor resetting. In
addition to speedy convergence times, MOSR localization is
more robust to certain types of systematic errors in vision,
including false positives.

In this paper, we first provide a brief overview of related
work in self-localization with a focus on the use of visual
landmarks, followed by a description of a complete algo-
rithm for self-localization. We then present in detail the al-
gorithm for Multi-Observation Sensor Resetting Localiza-
tion. Finally, we extensively demonstrate the effectiveness
of the algorithm experimentally in the domain of RoboCup
Standard Platform Soccer on the NAO humanoid robots.

Background

Particle filters for mobile robot localization maintain a prob-
ability distribution of the robot’s pose [ given sensory inputs
s and control actions u, that include the motion of the robot
and camera. The probability distribution is represented as a
set of particles, or location hypotheses p; with weights w;.
The weights represent the likelihood that the robot is in the
associated pose (Dellaert et al. 1999).

With every observation s and control action u, the parti-
cles are updated in a three step process:

1. Predict Step. The particles move based on the motion
model of the robot. The motion of the particles is sam-
pled from a distribution representing the uncertainty of
the motion model.

2. Update Step. The weights w; of the particles are multi-
plied by p(s|l;), or the likelihood of making the observed
sensor readings given that the robot is in pose p;. The
computation of p(s|l) is referred to as the sensor model.

3. Resample Step. New particles are chosen probabilisti-
cally by sampling according to the weights of the old par-
ticles, so that more hypotheses may be modelled in the
areas of greatest likelihood.

Particle filters are able to model multi-modal distributions
in a computationally inexpensive manner. However, with a
limited number of particles the entire configuration space of
the robot cannot be covered.

When the observations s are visual landmarks, as in the
RoboCup domain, p(I|s) can be computed directly from ob-
servations in addition to p(s|l). Sensor resetting localiza-
tion (SRL) extends standard particle filters by using p(l|s)
to place new hypotheses directly at likely locations of the
robot. Each particle is replaced with a particle generated di-
rectly from sensing with a probability p,..s¢; inversely pro-
portional to the total weight of the particles after the resam-
pling step (see Algorithm 1). So if the total weight is high,
the particles are already in a likely configuration and little
sensor resetting is performed. If the total weight is low, the
particles’ locations are unlikely and they are chosen anew
from p(l|s) (Lenser and Veloso 2000).

Resampling from p(I|s) depends on the distance and rel-
ative angle to the landmarks from the robot. If only a single

1463

Algorithm 1 localize(p,w,s,u): Sensor Resetting Lo-
calization and Adaptive-MCL. k, v, oy and o are constants.
N 1is the number of particles, p; are the particle poses, and
w; are the particle weights.

for:=1to N do
p; + motion_predict(p;,u)
w; < vision_update(p;, w;,s)
end for
pold —pw
if Standard Sensor Resetting then
Preset < (1 - ﬁ
else if Adaptive-MCL then
Wy — Wy + oy (W — wy)
W +— W + g (W — Wy)
Preset ¢ max{0,1 —vg=}
end if
fori=1to N do
if random() < preser then
p; < sensor_reset(s)
else
(pi,w;) + sample p¢'? from p
end if
end for

old<_w

old old

i

w/ prob. o< w

landmark is visible, the most likely locations are spread in
a circle around that landmark at the observed distance and
angle to the landmark. If two or more landmarks are visi-
ble simultaneously, sensor resetting is performed at the in-
tersection of the two circles. Sampling from p(l|s) accounts
for noise in the vision process, so the resampled particles are
not all at the same location (Lenser and Veloso 2000).

One shortcoming of sensor resetting is the way preget 18
chosen. By choosing p,eset based only on the likelihood of
the current observations given the current particles, preset
is extremely sensitive to noisy observations and false posi-
tives. If the particles have converged to the robot’s true po-
sition and vision detects a false positive, p,¢se: Will become
high and large numbers of particles will be replaced based on
the false observation. Adaptive-MCL instead chooses preset
based on smoothed estimates of the observation likelihood,
w; and w,, and mitigates this effect (see Algorithm 1) (Gut-
mann and Fox 2002).

Another extension to MCL specific to visual landmarks is
the use of negative information. For point cloud sensor mod-
els, if the laser hits no obstacle this information is used to
compute p(s|l), but for visual landmarks only positive ob-
servations are generally used. Negative information gained
from a lack of expected observations may be included in the
sensor model (Hoffman et al. 2005).

A final challenge of localizing with visual landmarks is
that perception is active rather than passive— the robot de-
cides what to look at. In robot soccer, the robot must simul-
taneously localize and track the ball. Heuristics based on the
time since the ball or landmarks were seen and the uncer-
tainty of localization are often used to determine whether to
look at the ball or at landmarks (Coltin et al. 2010). When



observing landmarks, RoboCup teams commonly use fixed
scanning head motions or stare at each in a sequence of land-
marks. Another approach is to make the observations that
are expected to reduce the entropy the most in the underly-
ing particle distribution for localization (Seekircher, Laue,
and Rofer 2010).

The leading teams in the RoboCup Standard Platform
League currently use variants of Sensor Resetting Localiza-
tion (Burchardt, Laue, and Rofer 2010) (Hester and Stone
2008) or a combination of a Kalman filter and particle fil-
ter (Ratter et al. 2010). These implementations all include
ambiguous observations in the sensor model p(s|l), but typ-
ically only make limited use of ambiguous landmarks for
sensor resetting (i.e., only resetting from goal posts).

Localization in RoboCup SPL Soccer

Before presenting the Multi-Observation Sensor Resetting
algorithm, we discuss the problem domain of RoboCup
Standard Platform League robot soccer.

The SPL plays using the NAO humanoid robots. The
NAO senses with two cameras: one on its forehead and one
in its chin, although only one camera may be used at a time.
The field of view of the camera is very limited (see Figure 1).
The NAO can freely move its head to look at landmarks.

(c)

Figure 1: (a) The NAO humanoid robot stands on the field
near the yellow goal. (b, ¢) Two images are shown from the
robot’s camera with the head at different angles. The field
of view is limited, and the robot cannot see the top bar to
determine whether it sees a left or a right post.

The NAOs play soccer on a 6m x 4m playing field. The
visual landmarks on the field include goal posts, corners, the
center circle and lines. Our vision system can distinguish
between yellow and blue goal posts for each team, as well as
distinguish between the left and right goal posts if the robot
sees the top bar of the goal. However, if the robot does not
see the top bar of the goal, the post cannot be identified as
on the left or right side, and it is classified as an “unknown”
goal post.

The remaining landmarks observed on the field include
the white lines marking the borders of the field, the center
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Figure 2: The circles surrounding the two goal posts indicate
the possible robot positions given observations of the left
and right goal posts (or one observation of an “unknown”
goal post). Possible robot poses from sensor resetting are
drawn on the circles. The larger pose at the circles’ intersec-
tion represents the hypothesis generated by sensor resetting
from both goal posts.

line and circle, and the goal boxes. Our vision system de-
tects line segments, as well as the intersection of line seg-
ments at corners and the center circle. There are three types
of corners: 'L’ corners, T’ corners, and *X’ corners. A to-
tal of eight "L’ corners mark the corners of the field and goal
boxes, six *T’ corners mark the intersections of the field bor-
der with the goal boxes and center line, and two X’ corners
denote the penalty kickoff points on both halves of the field.

It should be noted that the majority of the field markers
are ambiguous, and if observed, could actually correspond
to multiple locations. A detected unknown goal post could
be one of two landmarks, a detected corner refers to be-
tween two and eight landmarks, and an observed line could
be paired with nearly any line segment on the field.

Our team’s localization algorithm uses the Adaptive-MCL
variant of Sensor Resetting Localization shown in Algo-
rithm 1. It uses several other extensions to MCL, includ-
ing low variance resampling, the use of negative information
and a variable number of particles depending on uncertainty
(Liemhetcharat, Coltin, and Veloso 2010).

In single frame sensor resetting localization, the
sensor_reset function only places hypotheses near
some of the least ambiguous landmarks, goal posts. If one
unambiguous goal post is seen, the possible locations for the
robot form a circle around that goal post, and locations are
selected uniformly at random for the new hypotheses. For
an unknown goal post, a random post is selected to place the
new hypothesis around (see Figure 2). In every case, noise is
added to the observations before generating a new sensor re-
setting hypothesis. The noise is proportional to the expected
observation noise in the sensor model. The addition of noise
encourages diversity of particles by not placing them all in
the same location or the exact same distance and angle from
a goal post.

This form of sensor resetting raises a few concerns:

1. Spread of Particles. Standard sensor resetting based on a
single landmark spreads the distribution of particles over



a wide region surrounding the landmark, which may be
inconsistent with previous observations.

. Ambiguous Landmarks. Standard sensor resetting does
not generate hypotheses based on corner observations.

. False Positives. Standard sensor resetting is sensitive to
false positives from vision. It deletes old hypotheses and
places particles around incorrectly observed landmarks.

Multi-Observation Sensor Resetting addresses each issue.

Multi-Observation Sensor Resetting

We introduce Multi-Observation Sensor Resetting, which is
based on Algorithm 1 and uses the notion of a scan. A scan
is a sequence of visual landmarks detected over a period of
time, the duration of which is determined by some arbitrary
function. During a scan, the robot may move its camera to
observe a sequence of landmarks. In MOSR, no sensor re-
setting is performed while a scan is in progress, but the robot
records observations made in a list, obs. The list obs includes
everything except lines: goal posts (left, right, or ambigu-
ous), corners, and circles. As the robot moves, these obser-
vations are updated based on odometry. Then, when the scan
completes, an extra phase of the localization algorithm is
performed that includes both a vision update and resample
step. Sensor resetting is performed in this phase using all of
the observations from the scan (see Algorithm 2). MOSR re-
laxes the assumption in standard sensor resetting that obser-
vations are independent to generate better hypotheses. The
computation of p,..sc¢ is identical to Adaptive-MCL.

Algorithm 2 mosr(p, w, obs): The sensor resetting phase
of Multi-Observation Sensor Resetting Localization, per-
formed after a scan completes.

for: =1to N do
w; < vision_update(p;, w;, 0bs)
end for
for: =1to N do
if random() < preser then
p; + sensor_reset(obs)
else
(pi,w;) < sample p¢'d
end if
end for

old old
from p®*“ w/ prob. oc w

Since there are typically more than two landmarks in obs
observed over the course of a scan, a new algorithm for
sensor_reset is needed to reflect p(|s) given multiple
observations (see Algorithm 3). When a new particle is gen-
erated with sensor resetting at the end of a scan, we select
two observations uniformly at random from obs. A more in-
formed selection method may be employed, such as favoring
two observations of different landmarks. Noise is added to
the selected observations based on the sensor model. For am-
biguous observations such as corners or unknown goal posts,
we associate the observation with a random global position
of a landmark from the same class (e.g., L corner, yellow
goal post, center circle).
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We then attempt to triangulate the robot’s position based
on the selected observations and their associated landmarks
by finding the intersection of the circles that are the observed
distances from the landmarks. If non-matching landmarks
were chosen, the triangulation fails. We also may check that
the predicted position is consistent with other observations
before accepting it. In our experiments we used the identity
function for verification and still achieved good results, but
this can be improved by choosing other verification func-
tions. If the hypothesis is invalid, we select two new ob-
servations and associated global landmark positions and try
again. If after a fixed number of attempts we do not succeed,
we give up and revert to resampling from the particles. Ad-
ditionally, if only a single landmark is seen in the scan, we
fall back to placing the observations at random around that
landmark as in the original sensor resetting algorithm.

Algorithm 3 sensor_reset(obs): Generating new hy-
potheses based on sensing for MOSR Localization.

fori=1to K do
for j =1to2do
0; < random observation from obs
distance(o;) + N(distance(o;),02)
angle(o;) + N(angle(o;),03)
l; <= random global landmark of same class as o;
end for
p <+ triangulate(os,li,09,12)
if verify(p, obs) then
return p
end if
end for
return failure

In our system for robot soccer, the robots alternate be-
tween looking at the ball and looking at landmarks on the
field to localize, depending on the state of the game and the
robot’s uncertainty. The robot observes landmarks with three
different types of scans:

1. A horizontal scan, where the robots moves its head from
side to side to observe the goal posts.

A landmark scan, where the robot forms a list of every
landmark that should be visible from its estimated current
location and looks at each in turn.

An entropy-based scan, similar to the landmark scan, but
the robot only looks at the three landmarks that would
most reduce entropy (Seekircher, Laue, and Rofer 2010).

The landmark scan and entropy-based scan are faster and
more informative since the robot looks directly at land-
marks, but they assume that the robot already has some idea
of its position so it knows where the landmarks are. Thus,
we initially use the horizontal scan to roughly determine the
robot’s position and then switch to one of the other scans.
The robot may move while scanning.

MOSR localization has several advantages over standard
localization. First, MOSR generates fewer new hypotheses,
but the hypotheses are more informed. This helps MOSR to
maintain good estimates by spreading the particles less and
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Figure 3: Localization error from (a) repeatedly horizontally scanning in place on a standard field, and (b) with an extra, “fake”
blue goal post. In the second graph, the spikes in standard sensor resetting error correspond to the sighting of the blue goal post.

enables faster convergence. In addition, MOSR improves ro-
bustness to false positives in vision, gained both from per-
forming less resampling and requiring a pair of consistent
observations to reset based on. Next, we demonstrate all of
these advantages experimentally.

Experimental Results

To test Multi-Observation Sensor Resetting, we compared it
directly with standard sensor resetting using Adaptive-MCL.
The MOSR localization implementation was identical to the
standard sensor resetting implementation in every respect
except for when sensor resetting is used. The standard sen-
sor resetting algorithm also used the new sensor_reset
function created for MOSR, which is identical to the old
function for one or two observed landmarks.

For each experiment, a NAO robot ran on half of the soc-
cer field. A pattern was attached to the robot’s head and
monitored by an overhead camera using SSL-Vision (Zick-
ler et al. 2009). The robot’s state and the position informa-
tion from SSL-Vision were recorded in a log file. Then, both
localization algorithms were run on the log file a thousand
times, and for each frame the average error of the final local-
ization pose and the standard deviation of the particles from
the final pose were computed. The experiment was run with
several robot configurations and behaviors.

For the first experiment, the robot was placed on the X’
corner facing the yellow goal and continuously performed
a horizontal scan. The particle filter was initialized with the
particles spread throughout the field uniformly at random.
In this experiment, the error from standard sensor reset-
ting drops earlier when sensor resetting occurs around single
posts, but after the scan completes, MOSR localization’s er-
ror drops even lower and remains there until standard sensor
resetting eventually begins to catch up (see Figure 3a).

Next, we chose to simulate the “blue jeans problem” in
the SPL. Blue jeans worn by spectators may be consistently
misidentified as goal posts if no heuristics are used to dis-
card them. We use the same experimental setup as before,
scanning in place with a horizontal scan, but place an actual
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blue goal post on the side of the field to introduce “false”
positives into vision. Standard sensor resetting jumps parti-
cles to the other end of the field whenever it sees the blue
goal post. MOSR initially transfers some weight to the other
side of the field after seeing a blue goal post, but after the
initial hypotheses die out, the blue goal post does not cause
localization to jump (see Figure 3b). MOSR does not gen-
erate new hypotheses using the goal post because it requires
two observations to reset from, and the location of the fake
goal post is inconsistent with the two yellow posts.

We also test Multi-Observation sensor resetting while
the robot is in motion, both while constantly performing
the landmark scan and while performing the entropy-based
scan, with the horizontal scan as a fallback when the robot
is lost. The robot repeatedly chose a random location on one
half of the field and moved to it. The results are shown in
Figure 4 for both the landmark scan and the entropy-based
scan. MOSR converges to the neighborhood of the robot’s
true position faster and tends to remain closer to the true po-
sition than standard sensor resetting. Furthermore, the parti-
cles representing the distribution of locations have a smaller
variance with MOSR, since fewer hypotheses invalidated by
other nearby observations are generated.

Conclusion

Mobile robots localize using visual information in a vari-
ety of applications. With limited fields of view, robots may
have only partial or limited perception of visual landmarks
in a single frame. We introduced MOSR localization, which
generates new hypotheses directly from sensing only at the
end of a scan, based on multiple visual frames, to resolve the
ambiguity of a single landmark. MOSR converges faster to
the robot’s true position than standard sensor resetting and
is less prone to jumping away from the robot’s true position
based on erroneous observations. We demonstrated MOSR’s
effectiveness experimentally in the robot soccer domain, but
it is applicable to any system where a robot localizes based
on visual landmarks.
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