
Tracking User-Preference Varying Speed in Collaborative Filtering

Ruijiang Li
School of Computer Science, Fudan University

Shanghai 200433, China
rjli@fudan.edu.cn

Bin Li
QCIS Centre, FEIT, University of Technology, Sydney

NSW 2007, Australia
bin.li-1@uts.edu.au

Cheng Jin and Xiangyang Xue
School of Computer Science, Fudan University

Shanghai 200433, China
{jc,xyxue}@fudan.edu.cn

Xingquan Zhu
QCIS Centre, FEIT, University of Technology, Sydney

NSW 2007, Australia
xqzhu@it.uts.edu.au

Abstract

In real-world recommender systems, some users are easily
influenced by new products and whereas others are unwill-
ing to change their minds. So the preference varying speeds
for users are different. Based on this observation, we pro-
pose a dynamic nonlinear matrix factorization model for col-
laborative filtering, aimed to improve the rating prediction
performance as well as track the preference varying speeds
for different users. We assume that user-preference changes
smoothly over time, and the preference varying speeds for
users are different. These two assumptions are incorporated
into the proposed model as prior knowledge on user fea-
ture vectors, which can be learned efficiently by MAP esti-
mation. The experimental results show that our method not
only achieves state-of-the-art performance in the rating pre-
diction task, but also provides an effective way to track user-
preference varying speed.

1 Introduction

Recent years have witnessed an increasing number of re-
search studies on collaborative filtering due to the rapid
growth of recommendation sites on the Internet. A typ-
ical task of collaborative filtering is to fill in an incom-
plete sparse matrix with the elements of which contain-
ing the ratings made by a collection of users on a col-
lection of items. Roughly speaking, existing methods for
collaborative filtering can be divided into two categories:
memory based (Resnick et al. 1994; Sarwar et al. 2001)
and model based (Salakhutdinov and Mnih 2008a; Porte-
ous, Bart, and Welling 2008; Lawrence and Urtasun 2009;
Li, Yang, and Xue 2009).

Most existing methods model a static rating process, in
which all the variables, such as the user-preferences, do not
change over time. However, in practice, the rating process
may last for a long time, during which a user’s properties,
such as interest, may change due to various reasons. For ex-
ample, a boy who used to love classical music might become
interested in pop music after he got a fashion girlfriend, and
an IT nerd may get rid of his favors for traditional laptop
after trying the new easy-to-use iPad. These observations
suggest that the context for the rating process keeps chang-
ing over time, for which the static modeling is not enough.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

There are some recent works considering the collabora-
tive filtering problem in a dynamic context. Like the static
methods, these approaches can also be classified as memory
based (Ding and Li 2005) and model based (Koren 2009;
Lu, Agarwal, and Dhillon 2009; Hayashi, Hirayama, and
Ishii 2009; Xiong et al. 2010; Khoshneshin and Street 2010).
One of the most well-known works is the Netflix price win-
ner TimeSVD++ (Koren 2009), in which user/item feature
vectors are allowed to change over time. Since online learn-
ing provides an elegant way to adapt the model to the chang-
ing context, some online algorithms were recently proposed
to tackle the collaborative filtering problem (Das et al. 2007;
Liu et al. 2010).

Although existing dynamic collaborative filtering meth-
ods can model users’ dynamics, they have not taken into
account the fact that users’ preferences may change at dif-
ferent speeds. In reality, some users, such as young people,
are easily influenced by new products or ideas, for which the
preference varying speed should be high; while some other
users, such as aged people or conservatives, are unwilling to
change their minds, for which the preference varying speed
should be low, or even unobservable. The users in a recom-
mender system differs in preference varying speeds, which
should be incorporated into the model for personalized rec-
ommendation.

In this paper, we propose a new dynamic collaborative fil-
tering model called dynamic nonlinear matrix factorization
(DNMF) based on the following two assumptions: 1) the
user preference changes smoothly over time, 2) the prefer-
ence varying speeds for different users are different. The
first assumption is widely adopted, and proven to be valid in
many dynamic models (Blei and Lafferty 2006; Wang, Fleet,
and Hertzmann 2008; Hayashi, Hirayama, and Ishii 2009;
Xiong et al. 2010). The second assumption motivates the
proposed work. We take into account these two assump-
tions as temporal prior knowledge, and train the model by
maximum a posteriori (MAP) estimation of the user feature
vectors. We choose non-linear matrix factorization (NMF)
(Lawrence and Urtasun 2009) as our base framework, in
which the item feature vectors are marginalized out, which
makes it possible to estimate the user-preference varying
speed by considering the user feature vectors only. Ex-
perimental results show that our method not only achieves
state-of-the-art performance in the rating prediction task, but

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

133



also offers an effective way to track the preference varying
speeds for different users.

The remainder of the paper is organized as follows. In
Section 2, we introduce our model, and describe the pro-
cedures for training and prediction. In Section 3, we dis-
cuss the relationships between our model and related exist-
ing methods. In Section 4, we evaluate our method on both
synthetic and Netflix dataset. In Section 5, we conclude the
paper and discuss the future work.

2 Dynamic Nonlinear Matrix Factorization

Problem Formulation and Notations

The task of dynamic collaborative filtering is to fill in an
incomplete rating matrix whose ratings are associated with
time-stamps. Specifically, we are given N ratings made by
U users on M items during T time slices, and our task is to
predict the rating made by a certain user u∗ on a certain item
m∗ at a certain time slice t∗. We denote the user set by U
and item set by M, and let r(t)um be the rating made by user u
on item m at time slice t (u ∈ U ,m ∈ M, t = 1, 2, · · · , T ).

Our model is based on the matrix factorization method.
For item m, we let a d dimensional vector xm be its feature
vector, which does not change over time. And for user u, we
let a d dimensional vector w(t)

u be his/her feature vector at
time slice t. Totally we have U × T user feature vectors and
M item feature vectors.

For convenience, we let W�
u = [w

(1)
u ,w

(2)
u , · · · ,w(T )

u ],
X� = [xm]m∈M, W� = [W�

u ]u∈U . All the U ×M × T
ratings is denoted by R, and N observed ratings is denoted
by Robs. robsm denotes the observed ratings on item m, and
Nm denotes the number of ratings on item m.

Nonlinear Matrix Factorization

In the matrix factorization framework, rating r
(t)
um is approx-

imated with the inner product of two corresponding feature
vectors,

p(r(t)um|xm,w(t)
u ) = N (r(t)um|x�mw(t)

u , α−1
r I)

where αr is the parameter for noise. In recent probabilis-
tic matrix factorization models (Salakhutdinov and Mnih
2008b; 2008a; Lawrence and Urtasun 2009; Hayashi, Hi-
rayama, and Ishii 2009), a Gaussian prior is also given to
the item feature vectors to control the capacity of the model:

p(xm) = N (xm|0, α−1
x I)

where αx is the parameter for prior of item feature. Like
NMF (Lawrence and Urtasun 2009), we marginalize out the
item feature vectors X and obtain

p(R|W) =
∏

m∈M

∫ U∏
u=1

T∏
t=1

p(r(t)um|xm,w(t)
u )p(xm)dxm

=
∏

m∈M
N (rm|0, α−1

x WW� + α−1
r I) (1)

The WW�in (1) could be treated as a kernel matrix com-
puted over all the U × T user feature vectors. Using the

marginalization property of multivariate normal distribution,
we can easily marginalize out the unobserved ratings and get

p(Robs|W) =
∏

m∈M
N (robsm |0, α−1

x Wobs
m Wobs�

m + α−1
r I)

(2)
where Wobs

m is a submatrix of W corresponding to robsm .
If we view C = α−1

x WWT + α−1
r I as a covariance ma-

trix, the model becomes a special case of Gaussian Process
Latent Variable Models (GPLVM) (Lawrence and Hyväri-
nen 2005) with a linear covariance function. We can replace
WW� in C with other Mercer kernels to get a nonlinear
factorization model. The kernelization also provides a natu-
ral way to utilize the user side information such as age, sex,
etc. For example, we can use a combined kernel function
k(w

(t)
um,w

(t′)
u′m′) = k0(w

(t)
um,w

(t′)
u′m′)+sim(u, u′), where k0

is a kernel function like RBF, and sim(u, u′)1indicates the
similarity computed from the side information of user u and
u′. Furthermore, if the user feature vectors W are known,
we can treat R in (1) as the multiple outputs in a Gaussian
Process Regression model with inputs W, in which way the
prediction can be made as the Gaussian Process Regression
Model (Rasmussen and Williams 2004).

If all the ratings are made in the same time slice (T = 1
and there are only U user feature vectors), our model re-
duces to the NMF, in which W is found by maximizing
p(Robs|W) in (2) with stochastic gradient descent method.
For T > 1, it is still possible to find W with the same
method, but in this way we have to make the assumption that
the user feature vectors at different time slices are indepen-
dent, which is not reasonable. Another issue of this approach
is that optimization w.r.t. U × d × T unconstrained vari-
ables will easily overfit the model due to the limited training
samples (the rating matrix is usually sparse in collaborative
filtering).

Temporal Model

In a probabilistic framework, a straightforward way to con-
strain a variable is to introduce a prior to it. By assuming that
for each user, the user feature vector is changing smoothly,
we can give the following priors to the user feature vectors
for each user u at time slice t = 2, 3, · · · , T ,

p(w(t)
u |w(t−1)

u , σ2
u) = N (w(t)

u |w(t−1)
u , σ2

uI) (3)

where σ2
u is a parameter for user u. Further we can easily

write down the prior for Wu by multiplying (3) over t,

p(Wu|w(1)
u , σ2

u) =
T∏

t=2

p(w(t)
u |w(t−1)

u , σ2
u)

=
T∏

t=2

N (w(t)
u |w(t−1)

u , σ2
uI) (4)

The temporal modeling in (3), i.e., the user feature vec-
tor at certain time slice only depends on its predecessor, is
widely used in many applications such as topic extraction

1The similarity should be preprocessed to ensure that k(·, ·) is
positive definite.

134



(Blei and Lafferty 2006), motion analysis (Wang, Fleet, and
Hertzmann 2008) and collaborative filtering (Xiong et al.
2010). The σ2

u in (3) reflects the preference varying speed
for user u. More specifically, larger σ2

u allows w
(t)
u (t =

1, 2, · · ·T ) to be spread widely, indicating that the user pref-
erence is changing fast, and smaller σ2

u discourages the mov-
ing of user feature vector, indicating that the user preference
is changing slowly.

When σ2
u → 0, the user preference vectors at different

time slices are restricted to be same. When σ2
u → +∞, the

temporal dependence of user preference vectors vanishes.
Thus, the value of σ2

u controls the capacity of DNMF. In-
stead of computing individual σ2

u’s for U users, which is
difficult and inaccurate, we take a Bayesian treatment by in-
troducing an inverse gamma distribution as a conjugate prior
to each σ2

u,

p(σ2
u|α, β) = invgam(σ2

u|α, β)
=

βα

Γ(α)
(σ2

u)
(−α−1) exp(

−β

σ2
u

) (5)

where Γ(·) is the gamma function. Multiplying (2), (4) and
(5) we write down the full probability of our model,

p(Robs,W,Σ|α, β, αx, αr)

=
∏

m∈M
N (robsm |0,Cobs

m )

×
∏
u∈U

invgam(σ2
u|α, β)

T∏
t=2

N (w(t)
u |w(t−1)

u , σ2
uI) (6)

where Σ denotes all the σ2
us, and Cobs

m is a submatrix of C
corresponding to robsm .

Learning

Note that inverse gamma distribution is conjugate to the nor-
mal distribution, we first marginalize Σ out in (6), then find
the maximum a posteriori (MAP) estimation of W. The
negative log likelihood we are going to minimize is written
as follows:

NL(W) = − log p(Robs,W|α, β, αx, αr)

=
∑

m∈M
E(Wobs

m ) +
∑
u∈U

F (Wu) (7)

where

E(Wobs
m ) =

1

2
logCobs

m +
1

2
robs�m Cobs−1

m robsm

F (Wu) =
2α+ d(T − 1)

2
log(β +

1

2

T∑

t=2

||w(t)
u −w(t−1)

u ||22)

It is clear that E(Wobs
m ) comes from the likelihood for

item m in (2), which is similar to the likelihood in NMF,
and F (Wu) comes from the prior of W in (4), which is in-
troduced by temporal modeling. We don’t use Newton based
optimization method to minimize NL(W) in (7), because it
is not affordable to store or compute the Hessian matrix of
W consisting of U × T × d variables. Stochastic gradient

descent method for NMF could not be used directly either,
because F (Wu) can not be easily converted into the sum
over m. We use a gradient based batch update algorithm
for DNMF: In each epoch, we first randomly divide the m
items into batches, each of which contains q items (the last
batch may contain less than q items), then perform gradient
descent on each batch. The gradient for each batch B is com-
puted as

∑
m∈B

∂E(Wobs
m )

∂W +
∑

u∈U
∂F (Wu)

∂W . Practically we
find that the algorithm converges to a local minimum.

The time complexity for the gradient computation de-
pends on the kernel type. For linear kernel, i.e. Cobs

m =
α−1
x Wobs

m Wobs�
m + α−1

r I, the time complexity for comput-
ing ∂E(Wobs

m )
∂W is O(d3 + dN2

m) (see (Lawrence and Urtasun
2009) for a detailed form of the gradient). and the time cost
for computing ∂F (Wu)

∂W is O(dT ). Thus the average time
cost for each epoch is O(Md3 + Md

〈
N2

m

〉
+ d

qUTM).
Compared with NMF, DNMF has to compute the extra gra-
dient of prior for M

q times.

Prediction

When we get W after training, the prediction procedure for
DNMF is as same as that in Gaussian Process Regression
(Rasmussen and Williams 2004). Specifically, we have the
predicted distribution of the rating made by user u∗on item
m∗ at time slice t∗ as follows,

p(r
(t∗)
u∗m∗ |Robs,W) = N (r

(t∗)
u∗m∗ |u∗, v∗)

u∗ = k∗�(Cobs
m∗)−1robsm∗

v∗ = k∗∗ − k∗�(Cobs
m∗)−1k∗ (8)

where k∗ is the column vector in the kernel matrix C corre-
sponding to the similarities between Wm∗ and w

(t∗)
u∗m∗ , and

k∗∗ is the element in the kernel matrix C corresponding to
the similarities between w

(t∗)
u∗m∗ and w

(t∗)
u∗m∗ .

Tracking User-Preference Varying Speed

Tracking user-preference varying speed becomes straight-
forward after we get the optimal W. For user u, we compute
the preference varying speed lu as follows:

lu =

∑T
t=2 ||w(t)

u −w
(t−1)
u ||22

T − 1
(9)

The lu obtained from (9) is a relative value, which only
makes sense when compared with lu′ (for another user u′)
trained with the same kernel parameter settings. We can see
the reason from (2): If we deem that there is a ground truth
for the kernel matrix C, αX will influence the scale of W,
which will further influence the scale of lu.

From (7), we can also see the necessity for choosing NMF
as our base method. In NMF, the item feature vectors X are
marginalized out, making the computation of W indepen-
dent of X. Without marginalization, the scale of W is also
influenced by the scale of X, in this case tracking the user
preference varying speed becomes difficult.

135



3 Related Works

Our model has close relationships with the matrix factoriza-
tion models, the core idea of which is that the rating ma-
trix is a product of two low rank matrices. Earlier works
such as SVD (Srebro and Jaakkola 2003) is not based on
the probabilistic framework, for which the parameters pe-
nalizing the two matrices is tuned through validation. Re-
cent works on matrix factorization (Salakhutdinov and Mnih
2008b; 2008a) take the probabilistic (Salakhutdinov and
Mnih 2008b) and Bayesian treatments (Salakhutdinov and
Mnih 2008a), which have the advantage in controlling the
model capacity. NMF (Lawrence and Urtasun 2009) re-
veals the relationship between matrix factorization and the
GPLVM (Lawrence and Hyvärinen 2005), which directly in-
spires our research.

There are also a number of works on dynamic matrix fac-
torization. TimeSVD++ (Koren 2009) is a non-probabilistic
approach to collaborative filtering, in which the total vari-
ance of user feature vectors at different time slices are used
for regularization. (Hayashi, Hirayama, and Ishii 2009) con-
sidered the case in which the feature vectors for two dimen-
sions (user and item) in matrix factorization are both varying
over time, but their model might not get a good interpreta-
tion in our problem since the item preference is not changing
over time in collaborative filtering. (Xiong et al. 2010) incor-
porated the temporal information with extra feature vectors
in a third temporal dimension, and extend the matrix factor-
ization to tensor factorization. Although their model enjoys
good mathematical form and performance, the third dimen-
sion still lacks exact physical meaning. The temporal mod-
eling in STKF (Lu, Agarwal, and Dhillon 2009) is similar to
our model, but we differs in two aspects: Firstly, STKF fo-
cuses on incorporating spatial (side)-temporal information,
while our model focuses on the preference varying speeds
of different users. Secondly, different users share the same
random walk speed in STKF, while in our model, each user
has his/her own varying speed.

4 Experiments

Dataset

We prepare two datasets for evaluation. The synthetic
dataset is used to show that DNMF is effective when our
assumptions are true, i.e., the user feature vectors over time
is generated according to (3), and the Netflix dataset2 is used
for comparison with the other four state-of-the-art methods.

Synthetic Dataset The synthetic dataset consists of the
ratings made by 100 users on 100 items for 40 time slices.
We generated the dataset according to the following steps:

1. Generate 100 item preference vectors with dimensionality
2 from the normal distribution: N (·|0, I

10 ).
2. For the first time slice, generated 100 initial user feature

vectors with dimensionality 2 from the normal distribu-
tion N (·|0, I

10 ).

3. Generate a speed σ2 for each user from the inverse gamma
distribution invgam(·|1, 1).
2http://www.netflix.com

4. For each user, generate the feature vectors for the suc-
ceeding 39 time slices according to the following rule:
p(wt|wt−1) = N (wt|wt−1, σ

2I) for t = 2, · · · , 40,
where wt is the feature vector for time slice t, and σ2

is the speed generated form Step 3. Note that the scale of
the user feature vector increases as t increases.

5. Compute the ratings using the inner products of the gen-
erated user feature vectors and item feature vectors.

The generated ratings for the first time slice range from −0.8
to 0.8, and for the last time slice range from −25 to 25. 5%
of the ratings are used as training set, and the rest 95% are
used as testing set.

Pruned Netflix Dataset The original Netflix dataset con-
tains 100 million ratings made by ∼ 480, 000 users on
∼ 17, 000 movies from 1999 to 2005. Each rating comes
with its own time stamp, and each movie comes with the
year it came to Netflix. We perform pruning according to
the following steps:

1. Keep the ratings made between Jan 2003 and Dec 2005
(36 months). The time stamp for each rating is then
rounded to the corresponding month number indexed
from 1 to 36.

2. Keep the users who has rated more than 100 movies.
Also, keep the users who have more than 15 ratings for
at least 4 months. After this step, we have 6784 users left.

3. Keep the movies which came to Netflix before 2003, and
remove the movies which were rated less than 50 times.
After this step, we have 3287 movies left.

After pruning, we have 1, 005, 019 ratings left. We split
these ratings into training set and test set for 10 times, at
each time, the density of the training set is controlled around
0.9%. The first 5 splits are used for validation, and the rest
5 splits are used for evaluation.

Evaluation Protocol

Our evaluation metric is RMSE (Root Mean Square
Error):

√∑
i∈S(ri − r̂i)2/|S|, where S is the set for testing

ratings, r̂i is the prediction, ri is the ground truth. Smaller
RMSE indicates better performance.

Results

For DNMF, we always use the linear kernel in (1). We use
μ∗ in (8) as the predicted rating. And the following param-
eters is set empirically: αR = 1, αx = 10, initial scale for
gradient descent s0 = 10−1, number of epochs 10, α = 1
and β = 1.

Synthetic Dataset For DNMF, we set the step size for the
gradient descent algorithm to 0.01, and batch size q to 10
(empirically set). The experiment (from generation to pre-
diction) is repeated 5 times, and the overall RMSE on the
test sets is 0.2558± 0.0039. In the following we only show
the detailed result of one time (randomly chosen).

The RMSEs of the training set and test set over time are
show in Figure 1 panel (d), an interesting point of the result
is that RMSE does not increase along with the rating scale.

136



0 10 20 30 40

0.2

0.25

0.3

0.35

time

R
M

S
E

(d)

Train
Test

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

speed

(a)

0 0.1 0.2 0.3 0.4
0

5

10

15

20

speed

(b)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

user

sp
e

e
d

(c)

predicted
ground truth

Figure 1: Results on the synthetic dataset (better viewed in
color). (a) and (b) show the histograms of the predicted and
ground truth vectors, respectively. (c) shows the two vectors
directly. (d) shows the RMSEs on the training set and test
set over time.

We also compute the varying speeds for all users according
to (9), denoted as two 100 dimensional vectors, computed
from the learnt W the ground truth, respectively. In Figure
1, panel (a) and (b) show the histogram of these two normal-
ized vectors, and panel (c) plots these two normalized vec-
tors directly. We can see from panel (c) that the normalized
predicted preference varying speed is close to the ground
truth. The inner product of these two normalized vectors are
0.9663± 0.0052 (computed over the 5 repeats).

Pruned Netflix Dataset We compare our method
(DNMF) with four well-known methods: Nonlinear Ma-
trix Factorization (NMF)3(Lawrence and Urtasun 2009),
Weight Low-Rank Approximation (SVD) (Srebro and
Jaakkola 2003), Bayesian Probabilistic Tensor Factorization
(BPTF)4(Xiong et al. 2010) and TimeSVD++ (Koren 2009).
Among the five methods, TimeSVD++, DNMF, BPTF are
dynamic models, and SVD, NMF are static models. For
the static models, the ratings from all the time slices in the
training set are used for training.

Following the default settings in the BPTF program, we
set the dimensionality of the feature factors (d) in all the five
methods to 10. For SVD and TimeSVD++, the parameters
are tuned on the 5 validation sets, i.e. choose the parame-
ters minimizing the average test RMSE on validation sets.
For NMF, we use the same parameter settings as suggested
in their paper. For BPTF, we use the default parameters for
Netflix dataset in their code. For DNMF, we only choose the
step size from {10−3, 10−2, 10−1}, which makes the aver-
age test RMSE on the validation set look acceptable. Finally
we set the step size to be 0.01, and batch size q to be 200.

The overall RMSEs of the five methods are reported in Ta-
ble 1. We can see that DNMF outperforms its base method

3http://www.cs.man.ac.uk/˜neill/collab/
4http://www.cs.cmu.edu/˜lxiong/bptf/bptf.html

Method Name RMSE(mean±std)
SVD 0.9426± 0.0013

TimeSVD++ 0.9282± 0.0018
NMF 0.8958± 0.0009

DNMF 0.8912± 0.0034
BPTF 0.8885± 0.0015

Table 1: Overall performance of five methods

0 5 10 15 20 25 30 35 40
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

time

R
M

S
E

NMF

SVD

DNMF

TIMESVD

BPTF

Figure 2: RMSE of the five methods at different time slices
on Netflix dataset (better viewed in color). The horizontal
axis represents the time slice indices, and the vertical axis
represents the RMSE.

NMF, and is comparable with BPTF, which has the best
overall performance in our experiment. We also plot the
RMSEs at each time slice for each method, illustrated in
Figure 2, from which we can see that BPTF performs bet-
ter than DNMF in time slices 1 − 26, and DNMF performs
better than BPTF in time slice 27− 36.

TimeSVD++ performs better than its base method SVD,
however is far worse than the result report in (Koren 2009).
The major reason besides the dataset difference may be that
our implementation of TimeSVD++ only constrains the total
variance of the user feature vectors over time, which is only
a subset of constraints used in the full TimeSVD++ methods.

It is difficult to evaluate our estimated user-preference
varying speed since there is no ground truth. However,
by visualizing the speed, we can still get some interesting
points. We find that the distributions of the estimated user-
preference varying speeds are consistent over the 5 splits.
Figure 3 shows the histograms of user-preference varying
speeds for all the users (computed according to (9) , not
normalized), from which we can see that even if there are
difference in the training sets as well as in the optimal W,
the estimated speed distributions for the population agree
to some degree. Another interesting finding is that the his-
togram of varying speed is not heavily influenced by the in-
verse gamma prior in (5). The histogram in Figure 3 exhibits
multiple modes, which may correspond to the conservatives
and open-minded people in the population.

137



0 0.5
0

200

400

600

800

1000

1200

1400

0 0.5
0

200

400

600

800

1000

1200

1400

0 0.5
0

200

400

600

800

1000

1200

1400

0 0.5
0

200

400

600

800

1000

1200

1400

0 0.5
0

200

400

600

800

1000

1200

1400

Figure 3: Histograms of varying speeds for different users.
The 5 histograms correspond to 5 splits of the dataset. The
horizontal axis represents the speed.

5 Conclusion

In this paper, we propose a dynamic non-linear matrix
factorization model under the assumptions that the user-
preference is varying smoothly over time, and the varying
speeds for different users are different. We incorporate these
two assumptions as prior knowledge into the NMF frame-
work, and train the model by finding the MAP estimation
of the user feature vectors, which are also used to estimate
user-preference varying speed. Although more flexible than
NMF, DNMF does not exhibit overfitting due to the effective
temporal prior. The experimental results have shown that
our model not only achieves state-of-the-art performance on
Netflix dataset, but also provides a way to track the user-
preference varying speed for population.

Acknowledgments

This work was supported by the National 973 Program
of China (No. 2010CB327906), the NSF of China
(No. 60873178), Australian Research Council’s Discov-
ery Project (No. DP1093762) and Future Fellowship (No.
FT100100971).

References

Blei, D. M., and Lafferty, J. D. 2006. Dynamic topic models.
In Proc. of the 23rd Int’l Conf. on Machine Learning, 113–
120.
Das, A. S.; Datar, M.; Garg, A.; and Rajaram, S. 2007.
Google news personalization: scalable online collaborative
filtering. In Proc. of the 16th Int’l Conf. on World Wide Web,
271–280.
Ding, Y., and Li, X. 2005. Time weight collaborative fil-
tering. In Proc. of the 14th ACM Int’l Conf. on Information
and Knowledge Management, 485–492.
Hayashi, K.; Hirayama, J.; and Ishii, S. 2009. Dynamic
Exponential Family Matrix Factorization. In Proc. of the
13th Pacific-Asia Conf. on Knowledge Discovery and Data
Mining, 452–462.
Khoshneshin, M., and Street, W. N. 2010. Incremental col-
laborative filtering via evolutionary co-clustering. In Proc.

of the Fourth ACM Conf. on Recommender Systems, 325–
328.
Koren, Y. 2009. Collaborative filtering with temporal dy-
namics. In Proc. of the 15th ACM SIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining, 447–456.
Lawrence, N., and Hyvärinen, A. 2005. Probabilistic non-
linear principal component analysis with Gaussian process
latent variable models. Journal of Machine Learning Re-
search 6:1783–1816.
Lawrence, N. D., and Urtasun, R. 2009. Non-linear matrix
factorization with Gaussian processes. In Proc. of the 26th
Annual Int’l Conf. on Machine Learning, 601–608.
Li, B.; Yang, Q.; and Xue, X. 2009. Can movies and books
collaborate? cross-domain collaborative filtering for spar-
sity reduction. In Proc of the 21st Int’l Joint Conf. on Artifi-
cial Intelligence, 2052–2057.
Liu, N. N.; Zhao, M.; Xiang, E.; and Yang, Q. 2010. Online
evolutionary collaborative filtering. In Proc. of the Fourth
ACM Conf. on Recommender Systems, 95–102.
Lu, Z.; Agarwal, D.; and Dhillon, I. S. 2009. A spatio-
temporal approach to collaborative filtering. In Proc. of the
third ACM conf. on Recommender systems, 13–20.
Porteous, I.; Bart, E.; and Welling, M. 2008. Multi-HDP: A
non parametric bayesian model for tensor factorization. In
Proc. of the 23rd National Conf. on Artificial Intelligence,
1487–1490.
Rasmussen, C. E., and Williams, C. K. I. 2004. Gaus-
sian processes for machine learning. Cambridge,MA: MIT
Press.
Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; and
Riedl, J. 1994. Grouplens: An open architecture for collab-
orative filtering of netnews. In Proc. of the ACM Conf. on
Computer Supported Cooperative Work, 175–186.
Salakhutdinov, R., and Mnih, A. 2008a. Bayesian prob-
abilistic matrix factorization using Markov Chain Monte
Carlo. In Proc. of the 25th Int’l Conf. on Machine Learn-
ing, 880–887.
Salakhutdinov, R., and Mnih, A. 2008b. Probabilistic matrix
factorization. In Advances in Neural Information Processing
Systems, volume 20, 605–614.
Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001.
Item-based collaborative filtering recommendation algo-
rithms. In Proc. of the 10th Int’l World Wide Web Conf.,
285–295.
Srebro, N., and Jaakkola, T. 2003. Weighted low-rank ap-
proximations. In Proc. of the 20th Int’l Conf. on Machine
Learning, 720–727.
Wang, J. M.; Fleet, D. J.; and Hertzmann, A. 2008. Gaus-
sian Process Dynamical Models for Human Motion. IEEE
Transactions on Pattern Analysis and Machine Intelligence
30(2):283–298.
Xiong, L.; Chen, X.; Huang, T.-K.; Schneider, J.; and Car-
bonell, J. G. 2010. Temporal collaborative filtering with
Bayesian probabilistic tensor factorization. In Proc. of the
SIAM Int’l Conf. on Data Mining, 211–222.

138


