
In Defense of Large Qualitative Calculi

Jason Jingshi Li and Jochen Renz
Artificial Intelligence Group, School of Computer Science

The Australian National University, Canberra, ACT 0200, Australia
& Canberra Research Laboratory, National ICT Australia

Abstract

The next challenge in qualitative spatial and temporal
reasoning is to develop calculi that deal with different
aspects of space and time. One approach to achieve this
is to combine existing calculi that cover the different
aspects. This, however, can lead to calculi that have a
very large number of relations and it is a matter of ongo-
ing discussions within the research community whether
such large calculi are too large to be useful. In this pa-
per we develop a procedure for reasoning about some of
the largest known calculi, the Rectangle Algebra and the
Block Algebra with about 10661 relations. We demon-
strate that reasoning over these calculi is possible and
can be done efficiently in many cases. This is a clear
indication that one of the main goals of the field can be
achieved: highly expressive spatial and temporal repre-
sentations that support efficient reasoning.

1. Introduction
Knowledge about space and time is an important part of ev-
ery intelligent system. While space and time can be rep-
resented using a coordinate system, the most common ap-
proach within the AI community is a qualitative represen-
tation. A qualitative representation aims at representing
spatial or temporal information in a symbolic way that is
well suited for human users to recognize, to memorize, and
to communicate. This is done by representing information
about spatial or temporal entities using a finite and usually
small number of possible relationships that adequately rep-
resent a given spatial or temporal scenario. Well known ex-
amples are the Region Connection Calculus RCC-8 (Ran-
dell, Cui, and Cohn 1992) for representing topological re-
lationships between spatially extended entities, and the In-
terval Algebra (IA) (Allen 1983) for representing relation-
ships between convex intervals on a directed line. RCC-8
distinguishes eight pairwise disjoint and mutually exhaus-
tive relations (also called base relations) between extended
regions, i.e., between any two regions exactly one base rela-
tion holds. IA distinguishes thirteen base relations.

In both cases, the number of base relations is small and
can be easily remembered. Cognitive studies have shown
that both systems of relations are naturally used by humans
(Renz, Rauh, and Knauff 2000). One of the major advan-
tages of a qualitative representation is that it allows to easily
represent uncertainty and indefinite information by specify-
ing a union of possible base relations. This gives us a total

number of 2|B| relations that can be distinguished for a given
set of base relations B. For RCC-8 we get 28 = 256 rela-
tions and for IA 213 = 8192 relations. While such numbers
of different relations are clearly too large for humans to re-
member and to use effectively, the underlying set of base
relations is small. Therefore, each of the 256 and 8192 rela-
tions can be easily derived, explained and understood. What
is more, reasoning over information expressed with these re-
lations can be done efficiently in most cases (Nebel 1997),
despite it being an NP-complete problem.

An obvious question now is how large can a qualitative
spatial or temporal calculus get without losing the advan-
tages of a qualitative representation, i.e, how many relations
can we deal with? We argue that this depends on two factors:

1. Cognitive adequacy of the base relations, in particular,
can humans easily remember and intuitively use all of the
base relations?

2. Effective and efficient reasoning over the full calculus,
i.e., can we (efficiently) solve reasoning problems over a
given calculus up to a reasonable size?
The first point, cognitive adequacy, does not only depend

on the number of base relations, but also on how they are
structured. For example, the Rectangle Algebra (RA) (Bal-
biani, Condotta, and del Cerro 1998), represents relations
between rectangles on a plane by using IA relations for pro-
jections of the rectangles on the x-axis and the y-axis. RA
has 169 base relations, 13 for each axis. Clearly 169 “differ-
ent” relations would be way too many to remember and to
effectively distinguish. But since they are based on a combi-
nation of only 13 IA base relations, all 169 RA base relations
can be distinguished and enumerated relatively easily.

The second point, effective and efficient reasoning, de-
pends on many factors. Reasoning is NP-complete for al-
most all calculi that have been studied in the literature.
Therefore, “efficient reasoning” in this context means the
possibility of solving most problem instances up to a rea-
sonably large size very fast, “effective reasoning” means to
be able to do formal reasoning at all. The reason we can get
efficient solutions for these NP-hard reasoning problems is
the use of tractable subsets of a calculus. These are subsets
of the set of all relations for which reasoning is tractable and
which can be utilized for finding efficient solutions of oth-
erwise hard problem instances (Nebel 1997). So one factor
is the ability to identify large tractable subsets of a calculus.
Recent advances in the field led to the possibility of automat-
ically identifying tractable subsets of a calculus (Renz 2007;

315

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



Renz and Li 2008). This requires computationally expen-
sive procedures whose runtime depends on the size of the
calculus. Rough estimates led to an upper bound of approx-
imately 13-15 base relations, which seems too low for the
large calculi we discuss in this paper. This leaves the possi-
bility of manually identifying large tractable subsets. Other
factors are, e.g., the ability to compute and to store the com-
position table of a calculus (which is required for reasoning)
and the ability to store and to retrieve tractable subsets of a
calculus. These become serious issues when we have 169
base relations and 2169 (approx. 1050) relations in total, as
we have for the RA, and could make formal reasoning on
todays computers impossible.

The question of how large can a qualitative calculus rea-
sonably be becomes more and more important with the cur-
rent direction the field is heading. It is one of the main chal-
lenges in the field of qualitative spatial and temporal reason-
ing to combine different calculi in order to represent more
expressive spatial and temporal information. Different cal-
culi are used to represent different aspects of space or time or
information in different dimensions. The above mentioned
calculi, for example, only deal with topology (RCC-8) or
topology plus direction (IA). If we want to represent infor-
mation about different aspects, we have to develop calculi
that deal with all the required aspects simultaneously.

One approach of combining calculi is to keep the differ-
ent calculi separately and to propagate information between
them in order to deal with dependencies between the differ-
ent aspects. A well-known method that combines calculi in
that way is Bipath-consistency (Gerevini and Renz 2002).
An alternative approach is to develop a new calculus whose
base relations are formed as the cross-product of the original
base relations. This is analogous to how the RA is derived
as a cross-product of the IA with itself. As for the Rectangle
Algebra, this approach, leads to a massive explosion in the
number of relations, e.g., combining two calculi each with
10 base relations and 210 relations in total, leads to a new
calculus with 100 base relations and 2100 relations in total.
It is commonly believed that reasoning over such gigantic
calculi is not feasible in practice and that, therefore, meth-
ods such as Bipath-consistency are the preferred approach
for combining calculi.

In this paper we analyze if reasoning with very large cal-
culi is possible and if it can be done efficiently. Inspired by
recent results on how spatial and temporal constraint net-
works can be solved very efficiently by applying divide-
and-conquer methods, we present a procedure that is able to
effectively reason about huge combined calculi—provided
that the individual calculi satisfy a previously introduced
property, the atomic network amalgamation property (Li,
Huang, and Renz 2009). Our procedure first divides con-
straint networks into an equivalent set of smaller networks,
then splits the relations of the combined calculus into rela-
tions of the original calculi by using a technique similar to
bipath-consistency, and finally transforms the outcome into
a propositional formula which can then be solved using an
off-the-shelf SAT solver.

As an example, we use RA and its extension, the Block
Algebra (BA) (Balbiani, Condotta, and del Cerro 2002)
which is a combination of IA over three dimensions and
consists of a massive 213×13×13 (about 10661) relations! In
an empirical analysis we show that we can efficiently solve

relatively large instances. Our procedure is superior to any
existing technique and successfully demonstrates that huge
calculi, that inevitably occur when combining other calculi,
can be used for practical spatial and temporal reasoning.

The paper is structured as follows. In Section 2 we in-
troduce the necessary background on qualitative calculi and
different methods and techniques we use in this paper. Fur-
ther details and references can be found in (Renz and Nebel
2007). In Section 3 we present a novel procedure for reason-
ing over large calculi such as the RA or the Block Algebra
and prove its correctness. In Section 4 we present empirical
evidence that our procedure is successful in efficiently solv-
ing large RA and BA instances and compare its performance
to existing methods. Section 5 discusses our results.

2. Background
A qualitative spatial or temporal calculus is based on a given
and usually infinite domain D of spatial or temporal entities
and a set of pairwise disjoint and jointly exhaustive base re-
lations B which is a partition of D × D. The base relations
usually distinguish a certain spatial or temporal aspect such
as direction or topology on a certain level of granularity. In
order to express indefinite information, we allow all rela-
tions 2B from the powerset of the set of base relations.

The well-known IA, for example, distinguishes thirteen
base relations between two intervals x and y: x before(b) y,
x after(bi) y, x meets(m) y, x met-by(mi) y, x overlaps(o)
y, x overlapped-by(oi) y, x starts(s) y, x started-by(si) y,
x finishes(f) y, x finished-by(fi) y, x during(d) y, x con-
tains(di) y, and x equal(eq) y. The relations marked with
an “i” in their abbreviation are the converse relations of the
corresponding relations. Intervals can also be represented
by using their start and end point and the relations between
these points which can be one of <,>,=. This is called the
Point Algebra (PA), which can only express a small subset of
all possible IA relations that includes all IA base relations.
Other than converse of relations, we can also use union (∪),
intersection (∩), and composition (◦) of relations. Compo-
sition is particularly important for reasoning as it allows us
to derive previously unknown relations, for example, if xRy
and ySz are known, the relation between x and z is deter-
mined by xR ◦ Sz. If previous information xTz is given,
then composition leads to xT ∩ (R ◦ S)z. This is known as
the path-consistency operation. Composition has to be com-
puted for every new domain and every new set of base re-
lations and is often very difficult if not impossible to obtain
when the domain is infinite. The most common reasoning
problem is the consistency problem: Given a set Θ of con-
straints xRy with relations R ∈ 2B and variables x, y ∈ V
over a domainD, is Θ consistent, i.e., is there an assignment
of all variables of V with values from D such that all con-
straints in Θ are satisfied? Throughout the paper we some-
times call a set of constraints a CSP, a CSP network, or just
a network. If a network contains only base relations, it is
called an atomic network or a scenario.

Consistency can be approximated by using the path-
consistency algorithm which applies the path-consistency
operation to all triples of variables of V until a fixed point
is reached, in which case the resulting set is called path-
consistent or an inconsistency is derived, in which case Θ is
inconsistent. Path-consistency is also called 3-consistency.

316



In general, a set of constraints is k-consistent (for k ≤ |V|)
if for any consistent assignment of k − 1 variables of Θ,
there is a consistent assignment of any k-th variable such
that all k variables together are assigned consistently. A set
of constraints is strong n-consistent, if it is k-consistent for
any k ≤ n = |V|. For most cases, the consistency problem
of a calculus is NP-hard if all 2B relations of a calculus are
permitted. If the consistency problem is tractable for a sub-
set S of 2B (called a tractable subset) and B ⊆ S, then the
consistency problem can be solved by splitting relations out-
side S into subrelations in S and by backtracking over these
tractable subrelations. If the tractable subsets are large, then
this method often leads to very efficient solutions.

Combinations of Calculi
In recent years there has been an increased interest in com-
bining different qualitative calculi in order to obtain calculi
that can deal with more than one aspect of space or time or
with entities in multiple dimensions. Different approaches
to combining calculi have been proposed in the literature.
They can be divided into orthogonal combinations and non-
orthogonal combinations and also in what we call parallel
combination and cross-product combination. In an orthogo-
nal combination, there are no interdependencies between the
two calculi, i.e., for every base relation bi of the first calcu-
lus, we can pick any base relation bj of the second calculus
and find an instantiation for x and y such that both xbiy and
xbjy are satisfied. For a non-orthogonal combination this
property is not satisfied and there are interdependencies. An
example for an orthogonal combination is the RA which is a
combination of the IA over two dimensions. It is clear that
between two rectangles, the interval relation on the x-axis is
independent of the interval relation on the y-axis and that all
combinations are possible.

A parallel combination is where we keep different sets of
constraints for the different calculi in parallel and propagate
information between the different sets of constraints in or-
der to preserve interdependencies. An example for this is
the bipath-consistency method introduced by Gerevini and
Renz (2002) which uses an interdependency table between
the different sets of relations and propagates new restrictions
to the other set whenever a constraint of one set is revised. A
cross-product combination is one that introduces a new cal-
culus by forming the cross product of the relations of each of
the calculi. For example, for every relation bi of the first cal-
culus and every relation bj of the second calculus, we gen-
erate a new relation bibj ⊆ D ×D which is the intersection
of bi and bj . The RA is an example for a cross-product com-
bination as there are 13x13 new base relations, all possible
combinations are covered.

(Wölfl and Westphal 2009) analysed the different ap-
proaches to combining qualitative calculi and found that a
cross-product combination often provides a tighter and more
expressive combination that can sometimes even lead to
more efficient reasoning. The main problem with the cross-
product combination is that it leads to a very large number of
base relations, which may be too large to handle effectively.

Propositional SAT Encoding
Previously, the fastest reasoning methods for qualitative cal-
culi have been based on constraint satisfaction with back-

tracking over large tractable subsets. Recently it was found
that transforming a set of constraints into a formula in propo-
sitional logic and solving this formula using off-the-shelf
SAT solvers can also lead to very efficient solutions. One
advantage of the SAT-based method is that it doesn’t require
tractable subsets and therefore may be very useful for large
qualitative calculi where tractable subsets are hard to come
by but also hard to store and retrieve.

We describe here the point-based propositional encoding
of the IA as developed by (Pham, Thornton, and Sattar 2008)
that transforms a set of constraints Θ over the IA into a set of
clauses, i.e., into a propositional satisfiability problem (SAT)
in conjunctive normal form. The point-based encoding de-
scribes the relationsM between any two intervals l andm in
terms of the PA relations between the four endpoints of the
interval l−, l+,m−,m+. Let Mlm denote the interval rela-
tion between interval l and m, Dij denote the PA relation
between points i and j, xw

ij denote the propositional variable
which is true iff the PA relation w is true between points i
and j. We also say µ(r) is the PA representation of the IA
relation r. Given the above definitions, four sets of clauses
are introduced to describe the problem:

1. ALO:
∨

v∈Dij

xv
ij

2. AMO:
∧

u,v∈Dij

¬xu
ij ∨ ¬xv

ij for u 6= v

3. SUP:
∧

u∈Dik,v∈Dkj

¬xu
ik ∨ ¬xv

kj ∨ x
w1
ij ∨ . . . ∨ x

wm
ij

where {w1, . . . , wm} = Dij ∩ u ◦ v
4. FOR:

∧
r 6∈Mlm

¬xu
l−m− ∨ ¬xv

l−m+ ∨ ¬x
y
l+m− ∨ ¬xz

l+m+

where µ(r) = (u, v, y, z)
The first set of clauses (at-least-one) ensure there are at

least one PA relation between any two endpoints, the sec-
ond (at-most-one) ensures that there are at most one PA re-
lation between any two endpoints. The two set of clauses
made sure that the final solution is an atomic network. The
third set of clauses (support) encode the composition con-
straint that enforces path-consistency. The forth (forbidden)
guarantee that the PA network does not permit any spuri-
ous relations, i.e., relations between intervals l and m in the
point-based encoding that are not part of the original CSP.

The Divide and Conquer Approach
While the SAT encoding of the IA provides a reasonable
performance, it is not outstanding compared to the best
constraint-based approaches such as the GQR solver (West-
phal and Wölfl 2009). However, by utilising a new divide-
and-conquer approach (Li, Huang, and Renz 2009), that di-
vides a large constraint network into a number of smaller
networks, and combine this with the SAT-based encoding,
leads to a significant speed-up. It has been shown that this
partitioning approach significantly reduces the size of the
SAT encoding and the solving time for IA networks. We
give more details on this method in the next section.

3. A Hybrid Procedure for RA and BA
We now propose a novel procedure for deciding consistency
of RA and BA networks. The procedure utilizes the ad-
vantages of a cross-product combination as well as those

317



of a parallel combination of the IA with itself. Since RA
and BA are formed by a cross-product combination, we
can use a previously introduced divide-and-conquer method
provided that RA and BA satisfy some required properties.
This method partitions a network into an equivalent set of
smaller networks. We will then split up the cross-product
relations into different independent sets of relations for each
dimension plus additional interdependency conditions as if
we were doing a parallel combination. The resulting con-
straints are then encoded into a propositional SAT formula,
while solution-finding can be delegated to state-of-the-art
SAT solver Minisat (Eén and Sörensson 2003).

Divide and Conquer
We first partition the given CSP network by applying the
divide-and-conquer approach as described in (Li, Huang,
and Renz 2009). The technique partitions the CSP network
into a number of smaller networks sharing overlapping parts.
Li, Huang, and Renz proved that the large network is con-
sistent if and only if all the smaller networks are consistent,
provided that certain conditions are satisfied by the underly-
ing calculus. In order to show that the divide-and-conquer
approach is applicable to RA and BA, we must first show
that these conditions are satisfied:

1. Path-consistency decides consistency for atomic net-
works: given a path-consistent network where all the la-
bels are base relations, then there exists an instantiation of
all variables such that all constraints are satisfied.

2. Atomic Network Amalgamation Property (aNAP): given
two atomic networks with an overlapping part, they can
be amalgamated into a large network and no existing con-
straints are modified by applying path-consistency.

For the first condition, it follows from the work in (Bal-
biani, Condotta, and del Cerro 1998) that path-consistent
atomic networks of RA and BA are strong-n-consistent. This
result coupled with the theorem 1 in (Li, Huang, and Renz
2009) entails that BA and RA both possesses Atomic Net-
work Amalgamation Property.

Point-Based Representation
After the network has been appropriately partitioned, we en-
code the smaller networks into a propositional satisfiability
problem. We propose a point-based encoding for BA that
is an extension of the point-based encoding for IA (Pham,
Thornton, and Sattar 2008). For RA, we simply reduce the
point-based constraint to one less dimension.

As any block can be uniquely represented by two points in
3D space, we refer to these representative points of a block
p as p1, p2. Any BA base-relation r between two blocks
p and q can be transformed into a collection of PA rela-
tion along the x, y and z axis between the representative
points of p and q. We define this transformation as µ(r) =
(vx p1q1, vx p1q2, vx p2q1, vx p2q2, vy p1q1, vy p2q2, vy p2q1,
vy p2q2, zy p1q1, vz p1q2, vz p2q1, vz p2q2), where for exam-
ple, vx p1q1 denotes the PA relation between points p1 and
q1 along the x axis.
Definition 1. Given a BA network Θ with n nodes and its
corresponding PA networks Px, Py and Pz (each with 2n
points, P[x|y|z] 1, . . . , P[x|y|z] 2n), the corresponding point-
based CSP of Θ is a triple (X,D,C) where

• X = {Xx ij , Xy ij , Xz ij |i, j ∈ [1 . . . 2n], i < j}.
These are the variables of the CSP, where for example,
Xx ij represents a PA relation between two points i and
j on the x-axis.
• D = {Dx ij , Dy ij , Dz ij , } where each Dx ij is the set

of domain values of Xx ij , which is the set of point rela-
tions between Px i and Px j on the x-axis. Likewise with
Dy ij for the y-axis and Dz ij for the z-axis.

• C is a set of the following constraints, corresponding to
the PA constraints on the x, y and z axes and the forbid-
den constraints to rule out spurious BA relations permit-
ted by PA constraints alone:
–

∧
u∈Dx ik,v∈Dx kj

Xx ik = u ∧Xx kj = v

⇒ Xx ij ∈ Dx ij ∩ (u ◦ v)
–

∧
u∈Dy ik,v∈Dy kj

Xy ik = u ∧Xy kj = v

⇒ Xy ij ∈ Dy ij ∩ (u ◦ v)
–

∧
u∈Dz ik,v∈Dz kj

Xz ik = u ∧Xz kj = v

⇒ Xz ij ∈ Dz ij ∩ (u ◦ v)
–

∧
r 6∈Mpq

µ(r) 6= (Xx p1q1, Xx p1q2, Xx p2q1, Xx p2q2,

Xy p1q1, Xy p1q2, Xy p2q1, Xy p2q2

Xz p1q1, Xz p1q2, Xz p2q1, Xz p2q2).
Theorem 1. Let Θ be a BA network and Φ be the corre-
sponding point-based CSP defined in Definition 1, then Θ is
consistent iff Φ is consistent.

Proof. (⇒) Let Θ′ be a consistent scenario of Θ. As
the labels of Θ′ consist of only base relations, it cor-
responds to a point-based CSP Φ′ that is a consis-
tent scenario of Φ. (⇐) Let Φ′ be an instantia-
tion of Φ satisfying C. Let the inverse of µ(r) be
µ−1(Xx p1q1, Xx p1q2, Xx p2q1, Xx p2q2, Xy p1q1,
Xy p1q2, Xy p2q1, Xy p2q2, Xz p1q1, Xz p1q2, Xz p2q1,
Xz p2q2), such that it maps to the PA atomic relations of
four end points over three dimensions to exactly one BA re-
lation. So we construct a BA network Θ′ from Φ′ by labeling
each edge (l,m) with the corresponding BA atomic relation
µ−1(Xx p1q1, Xx p1q2, Xx p2q1, Xx p2q2, Xy p1q1,
Xy p1q2, Xy p2q1, Xy p2q2, Xz p1q1, Xz p1q2, Xz p2q1,
Xz p2q2). Therefore, Θ′ is a consistent scenario of Θ as Φ′
satisfies all constraints of C

Encoding to Propositional Satisfiability
To encode a BA CSP as a propositional satisfiability prob-
lem, we first encode the projection of the problem in IA
on three different axis. The IA CSP on each of the axis is
encoded into SAT using the previous point-based encoding
scheme. In addition, to fully encode the set of constraints C
in Definition 1, we need to add the following set of clauses
for every relation M between blocks p and q:

•
∧

r 6∈Mpq

(¬xu1
x p1q1 ∨ ¬xv1

x p1q2 ∨ ¬x
y1
x p2q1 ∨ ¬xz1

x p2q2

¬xu2
y p1q1 ∨ ¬xv2

y p1q2 ∨ ¬x
y2
y p2q1 ∨ ¬xz2

y p2q2

¬xu3
z p1q1 ∨ ¬xv3

z p1q2 ∨ ¬x
y3
z p2q1 ∨ ¬xz3

z p2q2)

where µ(r) = (u1, v1, y1, z1, u2, v2, y2, z2, u3, v3, y3, z3)

318



This set of clauses are designed to rule out the possible
BA relations that are described by the set of PA relations but
not part of the original problem description. In practice they
can be simplified into fewer and shorter clauses.

Example
We will proceed to introduce an example to our approach.
As we are dealing with large calculus and the problem can
be enormously complex, we will deal with extremely simple
scenarios to illustrate our approach.

We begin with a simple BA CSP with 4 nodes. The con-
straints are described as follows:

1. N1(<,<,<) ∨ (>,>,>)N2

2. N1(<, s, s)N3

3. N2(di,>,>)N3

4. N3(<, d, f) ∨ (<, f, fi) ∨ (o, d, di) ∨ (>, d, fi)N4

First we apply the divide-and-conquer technique. It parti-
tions the network into two smaller networks: (N1, N2, N3)
and (N3, N4). We do not have to encode the latter as it is
trivially consistent and overlaps only one node to the former.

Now we proceed to encode the constraints 1 to 3. We
first convert the constraints into the point-based constraints
between two points that would uniquely identify the block.
E.g. the constraint between two points in N1 is:
• (N1s <x N1e) ∧ (N1s <y N1e) ∧ (N1s <z N1e)

where (N1s <x N1e) denotes the “starting” point of N1

is positioned less than the “ending” point of N1 along the
x-axis. Likewise the constraint for points in N2 and N3. To
encode the relation between representative points of N1 and
N2 on the x-axis, the following constraints are introduced:
• (N1s <x ∨ >x N2s) ∧ (N1s <x ∨ >x N2e)
• (N1e <x ∨ >x N2s) ∧ (N1e <x ∨ >x N2e)

We introduce similar constraints for the y and z axis.
However, this is not sufficient to describe the BA relation
(<,<,<) ∨ (>,>,>), as those constraints allow for spuri-
ous BA relations such as (<,>,<). To rule out such spu-
rious relations, we must also describe the interdependencies
between the axis. The “forbidden” constraints between N1s

and N2s can be simplified as the following:
• ¬(N1s <x N2s ∧N1s >y N2s)
• ¬(N1s <x N2s ∧N1s >z N2s)
• ¬(N1s <y N2s ∧N1s >z N2s)

Similar constraints are introduced for the pairs
(N1s,N2e), (N1e,N2s) and (N1e,N2e). This com-
pletes the encoding for the first constraint in the original
CSP. Constraint 2 and 3 are encoded in a similar way and
that completes the transformation.

4. Empirical Evaluation
We now test the effectiveness of our procedure on randomly
generated instances of the RA and the BA. For the RA, we
can compare our results with GQR, the current state-of-the-
art constraint solver, while the BA cannot be solved by any
existing solver we are aware of. It should be noted that for
these large calculi, the total number of relations is much
larger than the number of relations that are used in the ran-
domly generated instances. We used Intel Core2Duo 2.4
GHz processor with 2GB of RAM in all our experiments.

Rectangle Algebra
In the first experiment we benchmarked our solver on the
RA. We randomly generated instances varying in size from
20 to 50 nodes, the average degree (connections per node)
from 5 to the maximum degree, and the average label size
(base relations per relation) from 10 to 160. For each setting
we generated 5 instances, a total of 2,240 instances. We set
a time limit for each instance of 1 hour.

The first observation we make is that there is a phase-
transition where randomly generated instances change form
mostly consistent to mostly inconsistent. However, unlike
for previously evaluated calculi the phase transition does not
depend on the average degree but on the average label size.
One reason for this might be that calculi with a small num-
ber of base relations (such as RCC-8 or IA) do not allow us
to vary the average label size too much as there are only 8
resp. 13 different labels. Therefore, it wasn’t possible previ-
ously to discover this fact. For the RA we have 169 labels to
choose from which allows us to greatly vary the average la-
bel size. As expected, the hardest instances are found around
the phase transition region, most of them cannot be solved
within the time limit. For the average degree, it seems that
the higher the degree, the harder the instances. Note that for
space reasons, we only show the runtimes and not the phase
transitions. However, the phase transition regions lie within
the regions of the largest runtimes (see Fig.3).

When comparing the performance of our solver with
GQR, it turns out that our solver is considerably faster and
that it can solve a number of instances that GQR cannot
solve. We compared the average and median runtime on
those instances that both solvers solved. In addition, we plot
the failure rate for both solvers (see Fig. 2).

Block Algebra
In the second experiment we benchmarked our solver on
the BA. We randomly generated instances of size 10 and 20
nodes and varied the average degree from 5 to the maximum
degree, and the average label size from 10 to 2160. For each
setting we generated 5 instances, a total of 1290 instances
with a time limit of 1 hour per instance. Again, the phase
transition and the location of the hard instances depends on
the average label size and not the average degree, and the
higher the average degree the harder the instances. It turns
out that all instances that are not in the phase transition re-
gion can be easily solved (see Fig. 1).

Summary and Discussion
Large qualitative calculi inevitably occur when we combine
different calculi in order to get more expressive formalisms
that cover different aspects of space or time. There has been
some discussion in the research community whether such
large calculi are desirable and feasible or whether they de-
feat the purpose of a qualitative representation that makes

Figure 1: Avg CPU Time for 10 and 20 Nodes in BA

319



Figure 2: Comparing Average, Mean CPU Time and Failure Rate for RA Networks between Hybrid Solver and GQR

Figure 3: Hybrid solver CPU Time for RA networks of size 20, 30, 40 and 50, over avg. label size and avg. degree.

only a small number of distinctions. We have argued that
large calculi are useful provided that they are (1) based on
a reasonably small and easy to understand and to remember
set of relations, and (2) that effective and efficient reason-
ing is possible. We can assume that the first condition is
met whenever a large calculus is an obvious combination
of smaller calculi that satisfy the condition. Therefore, the
main criterion for combined calculi is whether reasoning can
be done effectively and efficiently. One problem for large
calculi is that tractable subsets, which have previously been
the key element for efficient solutions to the NP-hard rea-
soning problems, may not only be hard or impossible to find
but also to store and retrieve. Hence we have explored an
alternative solution method which is based on transforma-
tion of a set of spatial or temporal constraints into a propo-
sitional formula and which does not rely on tractable sub-
sets. We proposed a novel procedure that utilizes a recent
method on dividing networks into a number of equivalent
smaller subnetworks, and then develop a transformation of
the smaller networks into an equivalent propositional for-
mula. We prove that both steps can be applied and produce
the correct result.

We analysed some very large calculi, the Rectangle Al-
gebra and the Block Algebra and evaluated how well our
procedure can decide consistency of randomly generated in-
stances. As for previous studies, the randomly generated
instances show a phase transition behaviour with the hardest
instances around the phase transition region. Interestingly,
we found that the phase-transition region does actually not
depend on average degree but on average label size, some-
thing which can only be detected for large calculi. It turned
out that our procedure can easily solve most instances, while
those instances around the phase transition region couldn’t
be solved in reasonable time. For the Rectangle Algebra, our
procedure performs better and solves more instances than
other methods, while for the Block Algebra, our procedure
is so far the only method that can produce a solution at all.

Given the huge number of relations of these algebras, our
results are a clear indication that large calculi can be practi-
cally useful and that efficient reasoning is possible for these
calculi. It is unsurprising that instances in the phase transi-

tion are very hard, since even for much smaller calculi these
instances are often too hard to solve. To the contrary, these
instances are actually useful as they provide easy to generate
benchmarks for modern SAT solvers.

References
Allen, J. F. 1983. Maintaining knowledge about temporal intervals.
Commun. ACM 26(11):832–843.
Balbiani, P.; Condotta, J.-F.; del Cerro, L. F. 1998. A model for
reasoning about bidimensional temporal relations. KR, 124–130.
Balbiani, P.; Condotta, J.-F.; and del Cerro, L. F. 2002. Tractability
results in the block algebra. J. Log. Comput. 12(5):885–909.
N. Eén and N. Sörensson. An extensible SAT-solver. SAT’03, 502–
518, 2003.
Gerevini, A., and Renz, J. 2002. Combining topological and size
information for spatial reasoning. Artif. Intell. 137(1-2):1–42.
Li, J. J.; Huang, J.; and Renz, J. 2009. A divide-and-conquer
approach for solving interval algebra networks. IJCAI, 572–577.
Nebel, B. 1997. Solving hard qualitative temporal reasoning prob-
lems: Evaluating the efficiency of using the ORD-horn class. Con-
straints 1(3):175–190.
Pham, D. N.; Thornton, J.; and Sattar, A. 2008. Modelling and
solving temporal reasoning as propositional satisfiability. Artif. In-
tell. 172(15):1752–1782.
Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A spatial logic
based on regions and connection. KR, 165–176.
Renz, J., and Nebel, B. 2007. Qualitative Spatial Reasoning using
Constraint Calculi. in Aiello, Pratt-Hartmann, van Benthem (eds)
Handbook of Spatial Logics, Springer, 161-215.
Renz, J. 2007. Qualitative Spatial and Temporal Reasoning: Effi-
cient Algorithms for Everyone. IJCAI, 526–531.
Renz, J., and Li, J. J. 2008. Automated complexity proofs for
qualitative spatial and temporal calculi. KR, 715–723.
Renz, J.; Rauh, R.; and Knauff, M. 2000. Towards cognitive ad-
equacy of topological spatial relations. Spatial Cognition, LNCS
1849, 184–197. Springer.
Westphal, M., and Wölfl, S. 2009. Qualitative csp, finite csp, and
sat: Comparing methods for qualitative constraint-based reasoning.
IJCAI, 628–633.
Wölfl, S., and Westphal, M. 2009. On combinations of binary
qualitative constraint calculi. IJCAI, 967–973.

320




