
Goal-Driven Autonomy in a Navy Strategy Simulation

Matt Molineaux1, Matthew Klenk2, and David W. Aha2
1Knexus Research Corporation; Springfield, VA 22153

2Navy Center for Applied Research in Artificial Intelligence;
Naval Research Laboratory (Code 5514); Washington, DC 20375

matthew.molineaux@knexusresearch.com | {matthew.klenk.ctr,david.aha}@nrl.navy.mil

Abstract

Modern complex games and simulations pose many
challenges for an intelligent agent, including partial
observability, continuous time and effects, hostile
opponents, and exogenous events. We present
ARTUE (Autonomous Response to Unexpected
Events), a domain-independent autonomous agent that
dynamically reasons about what goals to pursue in
response to unexpected circumstances in these types
of environments. ARTUE integrates AI research in
planning, environment monitoring, explanation, goal
generation, and goal management. To explain our
conceptualization of the problem ARTUE addresses,
we present a new conceptual framework, goal-driven
autonomy, for agents that reason about their goals.
We evaluate ARTUE on scenarios in the TAO
Sandbox, a Navy training simulation, and demonstrate
its novel architecture, which includes components for
Hierarchical Task Network planning, explanation, and
goal management. Our evaluation shows that ARTUE
can perform well in a complex environment and that
each component is necessary and contributes to the
performance of the integrated system.

1. Introduction
Many modern video games and training simulations
are complex environments that are continuous in time
and space, partially observable, open with respect to
the introduction of new objects, and unpredictable
due to hostile opponents and exogenous events.
These complications make the environment difficult
to predict, and plans quickly become obsolete;
mechanisms for handling surprises and other
prediction failures are of high importance. To operate
autonomously in these environments, intelligent
agents must perform situation assessment, select
appropriate goals, create plans to satisfy these goals,
and execute them. During execution, opportunities
and obstacles may occur outside the scope of the

current goals, but which are important to its
central mission. Our focus is on a new generation of
agents that generate and reason about their goals as a
primary focus of their reasoning process.

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 This differs from approaches such as online
planning, in which an agent generates new plans for
user-provided goals during a plan's execution. We
extend online planning with a conceptual model of
goal-driven autonomy (GDA), in which an agent
reasons about its goals, identifies when they need to
be updated, and changes or adds to them as needed
for subsequent planning and execution. We present a
conceptual model for GDA that integrates four
reasoning tasks: environment monitoring,
discrepancy explanation, goal generation, and goal
management. Our hypothesis is that GDA enables an
agent to outperform planning alone in complex
environments.
 We instantiate the GDA model in the ARTUE
system, which integrates: (1) a novel Hierarchical
Task Network (HTN) planner that reasons about
exogenous events by projecting future states in
dynamic continuous environments, (2) an explanation
component that reasons about hidden information in
the environment, (3) a component that uses domain
knowledge in the form of principles to reason about
and generate new goals, and (4) a goal management
component responsible for prioritizing and issuing
goals to the planner. ARTUE is novel in its approach
to handling unexpected changes in the world by first
explaining those changes, then generating new goals
which incorporate the explained knowledge about
hidden aspects of the environment. This approach
allows ARTUE to handle challenges from new and
unobservable objects within the framework of
planning. Unlike most modern agents, ARTUE
explicitly reasons about hidden state, the passage of
time, continuous and discrete state, and exogenous
events. To demonstrate its utility, we describe an
evaluation of ARTUE on three scenarios from a
Navy training simulation, the Tactical Action Officer
(TAO) Sandbox (Auslander et al. 2009). Our ablation
study illustrates the importance of the four GDA
subtasks, showing that each contributes significantly
to performance.

2. Related Work
Classical planning makes assumptions about how an
agent finds a sequence of actions that transform an
initial state into some goal state (Ghallab et al. 2004).

1548

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

GDA relaxes several of these assumptions
simultaneously, in contrast to many efforts that focus
on relaxing only some subset of these assumptions.
Deterministic environments: Classical planning
assumes that each future state is determined by the
action executed in the current state. Contingency
planning relaxes this by generating conditional plans
that are executed only when an action does not
achieve its intended effects (Dearden et al. 2003).
Uncertainty in future state prediction is often
captured as partial observability, which can be
modeled using Markov decision processes (Puterman
1994). Likhachev and Stentz (2009) observe that
these approaches scale poorly, and cannot incorporate
domain-specific heuristic knowledge about the
environment. To address this, their PCPP planner
instead reasons about preferences between unknown
values of the state when generating the plan.
Static environments: Another classical assumption is
that the environment does not change other than
through the execution of agent actions. Plan
monitoring can be used to detect changes in the
environment that can cause plan failure. For example,
incremental planners plan for a fixed time horizon,
execute the plan, and then generate a new plan from
the current state. This process continues until a goal
state is reached. For example, CPEF (Myers 1999)
generates plans to achieve air superiority in military
combat and replans when unexpected events occur
during execution (e.g., a plane is shot down). Some
recent approaches instead focus solely on dynamic
replanning (e.g., HoTRiDE regenerates only part of
its plan when an action fails (Ayan et al. 2007)).
Discrete effects: Complex environments are subject

health, and fuel all can continuously change over
time. However, few systems can process continuous
effects (e.g., COLIN can plan using durative actions
with linear continuous effects (Coles et al., 2009)).
Static goals: Classical planning assumes that the
goals are all-or-nothing and static. If no plan can
achieve all of the goals, then classical planners will
fail. Partial satisfaction planning (PSP) relaxes this
all-or-nothing constraint, and instead focuses on
generating plans that achieve some
goals (i.e., the plan that gives the maximum trade-off
between total achieved goal utilities and total
incurred action cost) (van den Briel et al. 2004).
Other researchers have addressed the limitations of
static goals. For example, Coddington and Luck
(2004) bestowed agents with motivations, which
generate goals in response to specific states. For

battery charge falls below 50%,
then a goal to attain a full battery charge will be
generated (Meneguzzi and Luck 2007). Another
approach is to allow for goals to reference objects
that are unknown at planning time. Open world

quantified goals combine information about sensing
objects and generating goals into an existing PSP
system (Talamadupula et al. 2009). Similarly,
Goldman (2009) describes a system with universally
quantified goals that allows planning for sets of
entities whose cardinality is unknown at planning
time. Several systems (e.g., PECAS (Hawes et al,
2009)) generate goals at execution time based on a

 Although these assumptions characterize complex
environments, none of these previous efforts relax all
four simultaneously, which is the focus of GDA.
 There is a rich history of developing agent
architectures for increasingly sophisticated
environments, e.g., TACAIR-SOAR (Jones et al.
1999). Unlike reactive architectures, such as
ICARUS (Langley and Choi 2006), GDA separates
environmental and goal reasoning from action
selection, which permits additional reflection as
required. Recently, Choi (2010) has been working on
extensions to the Icarus architecture which create
goals using constraint-like goal descriptions,
Furthermore, the goals considered here may differ
substantially from the current goals and consequently
should not be considered subgoals. They may be
autonomously generated, and involve objects that are
not known or available until execution time. We
detail the GDA framework in Section 3.

3. Goal-Driven Autonomy
Cox (2007) INTRO system provides the inspiration
for several concepts in goal-driven autonomy with its
focus on integrated planning, execution, and goal
reasoning. We extend these ideas and consider them
as a general agent framework.

GDA is a conceptual model of online planning in
autonomous agents. Figure 1 illustrates how GDA

Figure 1: A Conceptual Model for Goal-Driven Autonomy

1549

model of online planning. The
GDA model primarily expands and details the scope
of the Controller, which interacts with a Planner and
a State Transition System (an execution
environment). We present only a simplified version
of this model, and the ARTUE system is only one
possible implementation.

System is a tuple () with states S, actions
A, exogenous events E, and state transition function
: S (A E) 2S, which describes how

execution or occurrence transforms the
environment from one state to another. In complex
environments, the agent has only partial access to the
state, set of events, and state transition function.

The Planner receives as input a planning problem
(M ,sc,gc), where M is a model of , sc is the current
state, and gc G is a goal that can be satisfied by
some set of states Sg S. The Planner outputs a plan
pc, which is a sequence of actions Ac=[ac c+n]. In
the GDA model, the Planner generates a
corresponding sequence of expectations
Xc=[xc c+n], where each xi Xc is a set of state
constraints corresponding to the sequence of states
[sc+1 c+n+1] expected to occur when executing Ac
in sc using M .

The Controller sends the actions in the plan to
and processes the resulting observations. The GDA
model takes as input initial state s0, initial goal g0,
and M , which are sent to the Planner to generate
plan p0 and expectations X0. When executing p0, the
Controller performs the following four knowledge-
intensive tasks, which uniquely distinguish the GDA
model:

1. Discrepancy detection: GDA must first detect
unexpected events before deciding how to
respond to them. This task compares the
observations sc+1 obtained from executing action
ac in state sc with the expectation xc X (i.e., it
tests for constraint violations corresponding to
unexpected observations). If one or more
discrepancies d D are found, then explanation
generation is performed to explain them.

2. Explanation generation: The cause for a detected
discrepancy must be revealed so that it can be
addressed. Given a state sc and discrepancy(ies)
d D, this task hypothesizes one or more
explanations e E of their cause.

3. Goal generation: Resolving the discrepancies may
warrant a change in the current goal(s). This task
generates goal(s) g G in response to D, given
explanation(s) e E and the current state sc S.

4. Goal management: The generation of a new goal
may warrant its immediate focus and/or removal
of some existing goals. Given a set of pending
goals GP G (one or more of which may be the
focus of the current plan execution) and new
goal(s) g G, this task may update GP (e.g., by
adding g and/or deleting/modifying other pending

goals) and will select the next goal(s) g GP to be
given to the Planner. (It is possible that g=g .)

GDA makes no commitments to specific types of
algorithms for the highlighted tasks (e.g., goal
management may involve comprehensive goal
transformations (Cox and Veloso 1998)), and treats
the Planner as a black box. In Section 5, we describe
one instantiation of this model.

4. The TAO Sandbox Environment
The TAO Sandbox is a strategy simulator used by the
US Navy to train Tactical Action Officers in anti-
submarine warfare (Auslander et al. 2009). Figure 2
shows a screenshot from the TAO Sandbox. In this
simulation, trainees accomplish their objectives by
giving orders to naval ships, planes, and helicopters.
Vessel positions, fuel levels, heading, and speed are
important fluents, continuously varying numeric
quantities, in this domain. T
orders, which occur instantaneously. The effects of
these orders may be instantaneous (e.g., launch a
helicopter), of fixed duration (e.g., move to a specific
location), or of indefinite duration (e.g., follow
another vessel). Therefore, agents interacting with the
simulation must reason about instantaneous
occurrences and continuous effects.
 Attempting missions in the TAO Sandbox
autonomously is a continuous planning problem
(desJardins et al. 1999). Opportunities and failures
arise that require an effective response. In addition to
being continuous, we define complex environments to
be partially observable, and open with respect to new
objects and unpredictable events. Therefore, our
GDA agent monitors both the continuous and discrete
state of the environment during plan execution.
 In order to describe and reason about the TAO
Sandbox environment, we modeled it using the
domain language PDDL+. PDDL+ (Fox and Long
2006) was designed to support reasoning about mixed

Figure 2: A screen shot from the TAO Sandbox with
callouts highlighting friendly and enemy units.

1550

discrete-continuous domains, such as the TAO
Sandbox. In addition to the actions of traditional
planning, changes to the discrete state occur as the
result of instantaneous events in the environment,
some of which can be predicted, and others of which
can only be recognized afterward. To capture
changes in the continuous state, PDDL+ introduces
ongoing processes, which are defined by their
participant types, conditions, and effects.

5. The ARTUE Prototype
To explain novel features and the
integration of components resulting in a GDA
system, we describe a cycle
in a simplified version of a Norwegian transport
scenario from the TAO Sandbox domain. This
scenario involves four objects: a transport ship, two
ports, and a destination. -supplied goal
is to move the transport ship to the destination. This
is at first a simple goal to achieve, but as the scenario
progresses, a severe storm will rise quickly that can
sink the ship; this storm cannot be (directly) observed
until a time too late to save the ship. To protect itself,
the ship may seek shelter in one of two ports. Further
complicating the situation, unseen icebergs are in the
water that can stop the ship. To safely guide the ship
to its destination, ARTUE will need to execute plans,
monitor them for failures, determine why those
failures occurred, and generate new goals.

5.1. HTN Planning
In GDA, the Planner generates (1) plans to satisfy the
goals selected by the system and (2) expectations
about how the environment will change during plan
execution. For ARTUE, we extended the SHOP2
HTN planner (Nau et al. 2003) to reason about
PDDL+ domains. Our extensions include the addition
of a wait action, which allows SHOP2 to incorporate
the passage of time in its plans, and a state projection
algorithm, which projects the continuous effects of
active processes and the timing of exogenous events.
For further details, see (Molineaux et al. 2010).
 ARTUE begins with the task: (MoveShip Ship1
Destination1). Our HTN methods decompose this
task into the following actions: (navigate Ship1
Destination1), (wait 10). Using the state
projection algorithm, the Planner predicts changes to
the continuous and discrete state throughout the

execution (e.g., the expected changes in the
ship s location throughout its movement).

5.2. Discrepancy Detection
In the GDA framework, an agent must monitor the
state for unexpected events. ARTUE does this by
examining the state whenever a wait action completes
and at fixed intervals during longer waits.

Discrepancies between the observed state and the
expected state projected by the Planner trigger the
explanation generation process.
 For discrete states, discrepancies are found using a
set difference operation between the set of expected
literals and the set of observed literals. For
continuous states, the observed and expected value of
each fluent is compared; a discrepancy is considered
to occur whenever these values differ by less than
0.1% of the (absolute) observed value.

In our example, after 5 minutes, a lightning strike
is observed in the environment. As this was not
predicted, the literal (see lightning) is present in
the observed discrete state but not the expected
discrete state, which triggers explanation generation.

5.3. Explanation Generation
Discrepancies between an expected state and an
actual state arise as a result of one of three
circumstances:

1. A hidden factor is influencing the state.
2. The dynamics according to which the state was

projected were incorrect, meaning that the
lawed.

3. The perception of the state is incorrect.
ARTUE generates explanations of discrepancies in
search of the hidden factors that affect the state in the
first case; the other two cases are primarily
distractions for our purposes (see below).
Explanations are produced by abduction over the
conditions and effects found in the planning domain
using an Assumption-based Truth Maintenance
System (ATMS; de Kleer 1986).
 Before execution time, ARTUE transforms the
PDDL+ domain into a set of ATMS rules that infers
the effects of all processes and events in the domain
over some known period of time during which no
non-wait actions occur. For reasoning about hidden
state, the planning domain includes a set of hidden
predicates, which refer to information that cannot be
observed directly, but can be abduced during
explanation, as well as processes and events that are
defined using these hidden predicates.
 During explanation, a list of possible hidden facts
is generated using a list of hidden discrete predicates
belonging to the domain, a list of all known objects
from the observed state, and skolem objects which
stand for possible unobserved objects. All of these
possible literals become assumptions, facts that may
be assumed to be part of the state if no contradiction
occurs.
 Using this information, the ATMS searches for
possible worlds containing only observed facts and
(assumed) hidden facts that are consistent with the
generated rules.
 One complication to this process comes from
inaccurate perceptions. In continuous environments,

1551

measuring and rounding errors often make exact
perceptions impossible. Therefore, ARTUE considers
possible worlds to be consistent when fluent values

n
discrepancy detection, measurements within 0.1% of
the observed value are considered equivalent. This is,
admittedly, a poor model of perception error, and can
be improved in future work.
 Another complication occurs when domain
knowledge is incomplete. ARTUE allows for the
possibility that not all processes and events in the
environment are specified completely and accurately.
If no consistent possible worlds are found, a partial
explanation can still be constructed. Therefore,
ARTUE searches for possible worlds in which each
successor fact, by itself, is consistent with all the
prior facts. When no such world can be found, the
fact that cannot be explained is discarded.
Explanation then takes place over all remaining facts
that are true in some known possible world. In future
work, explanation failures due to incomplete domain
knowledge could lead to the construction of learning
goals (Ram and Leake 1995) to refine
knowledge.
 Ideally, after explanation generation ARTUE will
have found one or more possible worlds in which all
of the observed facts are true. If so, then the
assumptions shared by all possible explanations will
be
and can be used in goal generation and future
planning steps.
 In the running example, explanation generation
finds a single possible world, containing one
assumption, (stormApproaching Ship1),
which explains the lightning strike. This fact is
adopted as a belief, and goal generation is triggered.

5.4. Goal Generation
In GDA, the agent considers the explained
discrepancy(ies) and the current state to determine
what goals, if any, should be generated. ARTUE uses
background knowledge for this task in the form of
principles, which are schemas whose components are
a set of participants, a condition, an intensity level,
and a goal form. Each participant is assigned a type
(e.g., FriendlyShip). Conditions are statements
concerning the participants that must hold in the

to generate the goal specified by the
goal form. The intensity level is a fixed value
proportional to the importance or urgency of
satisfying the generated goal. Once a goal is
generated, the intensity of the principle used to
generate it is passed with the goal to the goal
manager.
 In our example, given the approaching storm
explanation and the current state, ARTUE attempts to
generate goals for each of its principles. When some
set of objects from correspond to

the principle its
condition, the corresponding goal is generated.

Table 1: A principle directing the agent to spawn a find
shelter goal to avoid an incoming storm.

 Using the principle in table 1, ARTUE finds one
set of objects that satisfies the conditions according
to its current beliefs (i.e., ?vehicle = Ship1). For
this set of entities, the agent creates an instantiation

asserts it as a goal
(i.e., (DirectShipToShelter Ship1)). This goal
and its intensity are added to the list of pending goals,
which becomes:

 (MoveShip Ship1 Destination1)
 LowIntensity

 (DirectShipToShelter Ship1)
 HighIntensity

5.5. Goal Management
Given multiple goals, the agent must decide which
one to pursue next, and how to act in the presence of
competing goals. We call this task goal management.
Currently, ARTUE can only execute one plan at a
time. When multiple goals exist, the goal with the
highest intensity is selected. If the Planner cannot
generate a plan to achieve that goal, the goal with the
next highest intensity is selected, until an achievable
goal is found.

In our example, two goals are active:
(DirectShipToShelter Ship1) and (MoveShip
Ship1 Destination1). The first goal has a higher
intensity, and given that the Planner can generate a
plan to satisfy it, it becomes the selected goal.

6. Evaluation
We present results for three scenarios defined in the
TAO Sandbox environment. In each of these
scenarios, a situation arises outside the scope of the

 that is nonetheless highly important to
address. Performance is scored using a scenario-
specific score metric based on satisfaction of a user-
specified goal as well as the response to an
unexpected situation. To demonstrate the
contribution of each component, we constrast the
ARTUE agent with three ablated versions: PLAN1,
REPLAN, and EXPLAIN. PLAN1 performs planning
once and never changes its plan. REPLAN monitors
the environment for discrepancies and changes its

Name FindShelter
Participants ?vehicle type = FriendlyShip
Condition (stormApproaching ?vehicle)

Intensity
Level

HighIntensity

Goal form (DirectShipToShelter
?vehicle)

1552

plan when any discrepancies are detected, but does
not generate explanations or change its goals.
EXPLAIN explains discrepancies it detects in the
environment, adding to its beliefs about the current
state, but forms no new goals. Finally, the complete
GDA agent, ARTUE, monitors, explains, and
generates and manages its own goals.
 The three scenarios that we use to test ARTUE
differ widely in their tasks, so as to illustrate its
generality. For ARTUE, parameterization is minimal
and knowledge creation costs are high. Domain
knowledge for ARTUE consists of the PDDL+
domain, HTN methods and tasks, a set of principles,
and rules used in goal generation. The amounts of
knowledge created for the TAO Sandbox domain,
covering all 3 scenarios, is as follows: 22 defined
types, 115 predicate forms (17 hidden), 8 fluent
forms, 33 action models, 37 event models, 7 process
models, 42 tasks, 148 methods, 9 principles, and 28
goal generation rules.
 In the first scenario, Scouting, ARTUE is given a
goal to identify nearby ships. To do this, a task group
vessel must be sent close enough to visually identify
each unknown ship. During this exercise, a hidden
submarine torpedoes a nearby ship, causing it to sink.
The score is based on identifying each of the nearby
ships as well as the sub (which requires special
sensors), and also destroying the sub, which is
outside the scope of the user-supplied goal.
 In the second scenario, Iceberg, a ship is
transporting cargo to a destination in Norway. During
its transport, a storm arises, which is presaged by a
lightning strike. This strike causes a large iceberg to
calve, blocking the entrance to a nearby port. Due to
the severity, all ships must seek shelter, and a
nearby ship, which does not detect the iceberg,
founders on it. The score for this scenario is based on
how close the ship comes to its destination, how long

the passengers aboard the foundering ship, which is
outside the scope of its supplied goals.
 The third scenario, SubHunt, involves a search for
an enemy sub that has been spotted nearby. A ship is
sent out to find and engage it. However, this sub has
been laying mines which can incapacitate the
searching ship. Points are awarded for finding and
destroying the sub, as well as sweeping the mines.
 We tested each agent 25 times per scenario with
random variation in object starting locations and
prearranged events, and held these constant across all
versions. Table 2 shows the average scores for each
agent on each scenario. All scores are scaled between
0 and 1, with 1 being the maximum performance.
However, scores are not directly relatable between
scenarios. The difference between GDA and each
ablated agent is statistically significant (p<.0001) in
each scenario. In addition, the differences between
successive ablations are also significant (p<.01).

Table 2: Agent scores in the TAO Sandbox ablation study
Agent Scouting Iceberg SubHunt

PLAN1 0.33 0.35 0.35
REPLAN 0.40 0.48 0.48
EXPLAIN 0.58 0.64 0.74
ARTUE 0.74 0.73 0.98

 To illustrate the complexity of the reported
scenarios, table 3 lists the following characteristics
describing how much work ARTUE performed on
each scenario averaged over 25 runs: number of
discrepancy checks, number of replans, average
(longest) plan length, average (longest) simulated
time, and average (longest) clock time. Most of

searches through a set of world states which is
exponential in the number of discrepancies.

Table 3: Scenario Difficulty Characteristics
Characteristic Scouting Iceberg SubHunt
Discrepancy Checks 24.6 30.4 16.5
Replans 10.4 5.5 11.5
Plan Length 50 (149) 36 (463) 10.1 (45)
Sim. Time (mins) 18 (49) 153 (240) 84 (126)
Clock Time (mins) 10 (22) 15 (28) 3.5 (6)

 This study helps to identify the capabilities that
each GDA task provides. PLAN1 cannot tolerate
even minor changes expectation failures. REPLAN
responds correctly to small unexpected events such as
course changes that occur during the Identify
scenario. This requires that the event and its
repercussions be immediately apparent. EXPLAIN
adapts well to both the unexpected storm and the
enemy submarine because it deduces their presence
without sighting them and plans around them.
Finally, ARTUE goal generation and management
steps are useful when unexpected situations arise
which suggest pursuing other goals that most agents
would not consider, such as saving the sinking ship.

7. General Discussion
These results support our hypothesis that GDA agents
like ARTUE can competently respond to unexpected
events in complex environments. By conception, the
GDA process integrates a diverse set of AI
components. Our evaluation shows that each
component produces a significant increase in
performance, and each component makes the
contribution of successor components possible.
 In particular, ARTUE integrates HTN planning
with continuous effects, discrepancy detection,
explanation generation using an ATMS, and goal
generation and management using principles. Each of
these components is domain independent. To further
evaluate its generality, we are currently applying
ARTUE to other strategy simulations with complex
environments (i.e., open, partially observable,

1553

continuous environments with hostile opponents and
exogenous events).
 Further investigations are warranted for studying
GDA and its ARTUE implementation in complex
task environments. Additional research is required on
individual components (e.g., the HTN planning
extensions for continuous effects, categorization of
discrepancies, and principles for goal generation) as
well as their integration in GDA agents for complex
environments. These investigations will extend
ARTUE toward our vision of robust autonomy.

Acknowledgements
Thanks to our reviewers. This work was sponsored
by DARPA/IPTO. Thanks to PM Michael Cox for
providing motivation and technical direction.
Matthew Klenk is supported by an NRC postdoctoral
fellowship. The views, opinions, and findings
contained in this paper are those of the authors and
should not be interpreted as representing the official
views or policies, either expressed or implied, of
DARPA or the DoD.

References
Auslander, B., Molineaux, M., Aha, D.W., Munro, A., &

Pizzini, Q. (2009). Towards research on goal reasoning
with the TAO Sandbox (Technical Report AIC-09-155).
Washington, DC: Naval Research Laboratory, Navy Center
for Applied Research on AI.

Ayan, N.F., Kuter, U., Yaman F., & Goldman R. (2007).
Hotride: Hierarchical ordered task replanning in dynamic
environments. In F. Ingrand, & K. Rajan (Eds.) Planning
and Plan Execution for Real-World Systems Principles
and Practices for Planning in Execution: Papers from the
ICAPS Workshop.Providence, RI:
[http://www.mbari.org/autonomy/ICAPS07-workshop]

van den Briel, M., Sanchez, R., Do, M.B., &
Kambhampati, S. (2004). Effective approaches for partial
satisfaction (over-subscription) planning. Proceedings of
the Nineteenth National Conference on Artificial
Intelligence (pp. 562-569). San Jose, CA: AAAI Press.

Choi, D. (2010). Coordinated Execution and Goal
Management in a Reactive Cognitive Architecture. Ph.D.
diss., Dept. of Aeronautics & Astronautics, Stanford
University., Stanford, CA.

Coddington, A. & Luck, M. (2004). A motivation-based
planning and execution framework. International Journal
on Artificial Intelligence Tools. 13(1). 5-25.

Coles, A.J., Coles, A., Fox, M., and Long, D. (2009).
Temporal planning in domains with linear processes.
Proceedings of the International Joint Conference on
Artificial Intelligence (pp. 1671-1676). Pasadena, CA:
AAAI Press.

Cox, M.T. (2007). Perpetual self-aware cognitive agents.
AI Magazine, 28(1), 32-45.

Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D.,
& Washington, R. (2003). Incremental contingency
planning. In M. Pistore, H. Geffner, & D. Smith (Eds.)

Planning under Uncertainty and Incomplete Information:
Papers from the ICAPS Workshop. Trento, Italy.

desJardins, M., Durfee, E., Ortiz, C., & Wolverton, M.
(1999). A survey of research in distributed, continual
planning. AI Magazine, 20(4), 13 22.

Fox, M. & Long, D. (2006). Modelling mixed discrete-
continuous domains for planning. Journal of Artificial
Intelligence Research, 27, 235-297.

Ghallab, M., Nau, D.S., & Traverso, P. (2004).
Automated planning: Theory and practice. San Mateo, CA:
Morgan Kaufmann.

Goldman, R.P. (2009). Partial observability,
quantification, and iteration for planning: Work in progress.
In Generalized Planning: Macros, Loops, Domain Control:
Papers from the ICAPS Workshop. Thessaloniki, Greece:
[http://www.cs.umass.edu/~siddhart/genplan09].

Hawes, N., Zender, H., Sjöö, K., Brenner, M., Kruijff,
G.J.M., Jensfelt, P. (2009). Planning and Acting with an
Integrated Sense of Space. In Proceedings of the 1st
International Workshop on Hybrid Control of Autonomous
Systems -- Integrating Learning, Deliberation and Reactive
Control (HYCAS) (pp. 25-32).

Jones, R., Laird, J., Nielsen, P., Coulter, K., Kenny, P.,
and Koss, F. (1999). Automated Intelligent Pilots for
Combat Flight Simulation. AI Magazine. 20(1).

Langley, P. & Choi, D. (2006). A unified cognitive
architecture for physical agents. In Proceedings of the
twenty-first AAAI conference on artificial intelligence.
Boston, MA: AAAI Press.

Likhachev, M. & Stentz, T. (2009). Probabilistic
planning with clear preferences on missing information.
Artificial Intelligence. 173, 696-721.

Meneguzzi, F.R., & Luck, M. (2007). Motivations as an
abstraction of meta-level reasoning. Proceedings of the
Fifth International Central and Eastern European
Conference on Multi-Agent Systems (pp. 204-214). Leipzig,
Germany: Springer.

Myers, K.L. (1999). CPEF: A continuous planning and
execution framework. AI Magazine, 20(4), 63-69.

Nau, D.S. (2007). Current trends in automated planning.
AI Magazine, 28(4), 43 58.

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock,
J. W., Wu, D., & Yaman, F. (2003). SHOP2: An HTN
planning system. Journal of Artificial Intelligence
Research. 20, 379 404.

Puterman, M.L. (1994). Markov Decision Processes:
Discrete Stochastic Dynamic Programming. New York:
John Wiley & Sons.

Ram, A. & Leake, D. (1995) Goal-Driven Learning.
Cambridge, MA: MIT Press.

Talamadupula, K., Benton, J., Schermerhorn, P., Kamb-
hampati, S., & Scheutz, M. (2009). Integrating a closed
world planner with an open world robot: A case study. In
Bridging the Gap between Task and Motion Planning:
Papers from the ICAPS Workshop. Thessaloniki, Greece.

1554

