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Abstract 

Modern complex games and simulations pose many 
challenges for an intelligent agent, including partial 
observability, continuous time and effects, hostile 
opponents, and exogenous events. We present 
ARTUE (Autonomous Response to Unexpected 
Events), a domain-independent autonomous agent that 
dynamically reasons about what goals to pursue in 
response to unexpected circumstances in these types 
of environments. ARTUE integrates AI research in 
planning, environment monitoring, explanation, goal 
generation, and goal management. To explain our 
conceptualization of the problem ARTUE addresses, 
we present a new conceptual framework, goal-driven 
autonomy, for agents that reason about their goals. 
We evaluate ARTUE on scenarios in the TAO 
Sandbox, a Navy training simulation, and demonstrate 
its novel architecture, which includes components for 
Hierarchical Task Network planning, explanation, and 
goal management. Our evaluation shows that ARTUE 
can perform well in a complex environment and that 
each component is necessary and contributes to the 
performance of the integrated system.   

1. Introduction  
Many modern video games and training simulations 
are complex environments that are continuous in time 
and space, partially observable, open with respect to 
the introduction of new objects, and unpredictable 
due to hostile opponents and exogenous events. 
These complications make the environment difficult 
to predict, and plans quickly become obsolete; 
mechanisms for handling surprises and other 
prediction failures are of high importance. To operate 
autonomously in these environments, intelligent 
agents must perform situation assessment, select 
appropriate goals, create plans to satisfy these goals, 
and execute them. During execution, opportunities 
and obstacles may occur outside the scope of the 

current goals, but which are important to its 
central mission. Our focus is on a new generation of 
agents that generate and reason about their goals as a 
primary focus of their reasoning process. 
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 This differs from approaches such as online 
planning, in which an agent generates new plans for 
user-provided goals during a plan's execution. We 
extend online planning with a conceptual model of 
goal-driven autonomy (GDA), in which an agent 
reasons about its goals, identifies when they need to 
be updated, and changes or adds to them as needed 
for subsequent planning and execution. We present a 
conceptual model for GDA that integrates four 
reasoning tasks: environment monitoring, 
discrepancy explanation, goal generation, and goal 
management. Our hypothesis is that GDA enables an 
agent to outperform planning alone in complex 
environments. 
 We instantiate the GDA model in the ARTUE 
system, which integrates: (1) a novel Hierarchical 
Task Network (HTN) planner that reasons about 
exogenous events by projecting future states in 
dynamic continuous environments, (2) an explanation 
component that reasons about hidden information in 
the environment, (3) a component that uses domain 
knowledge in the form of principles to reason about 
and generate new goals, and (4) a goal management 
component responsible for prioritizing and issuing 
goals to the planner. ARTUE is novel in its approach 
to handling unexpected changes in the world by first 
explaining those changes, then generating new goals 
which incorporate the explained knowledge about 
hidden aspects of the environment. This approach 
allows ARTUE to handle challenges from new and 
unobservable objects within the framework of 
planning. Unlike most modern agents, ARTUE 
explicitly reasons about hidden state, the passage of 
time, continuous and discrete state, and exogenous 
events. To demonstrate its utility, we describe an 
evaluation of ARTUE on three scenarios from a 
Navy training simulation, the Tactical Action Officer 
(TAO) Sandbox (Auslander et al. 2009). Our ablation 
study illustrates the importance of the four GDA 
subtasks, showing that each contributes significantly 
to performance. 

2.  Related Work 
Classical planning makes assumptions about how an 
agent finds a sequence of actions that transform an 
initial state into some goal state (Ghallab et al. 2004). 
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GDA relaxes several of these assumptions 
simultaneously, in contrast to many efforts that focus 
on relaxing only some subset of these assumptions.  
Deterministic environments: Classical planning 
assumes that each future state is determined by the 
action executed in the current state. Contingency 
planning relaxes this by generating conditional plans 
that are executed only when an action does not 
achieve its intended effects (Dearden et al. 2003). 
Uncertainty in future state prediction is often 
captured as partial observability, which can be 
modeled using Markov decision processes (Puterman 
1994). Likhachev and Stentz (2009) observe that 
these approaches scale poorly, and cannot incorporate 
domain-specific heuristic knowledge about the 
environment. To address this, their PCPP planner 
instead reasons about preferences between unknown 
values of the state when generating the plan. 
Static environments: Another classical assumption is 
that the environment does not change other than 
through the execution of agent actions. Plan 
monitoring can be used to detect changes in the 
environment that can cause plan failure. For example, 
incremental planners plan for a fixed time horizon, 
execute the plan, and then generate a new plan from 
the current state. This process continues until a goal 
state is reached. For example, CPEF (Myers 1999) 
generates plans to achieve air superiority in military 
combat and replans when unexpected events occur 
during execution (e.g., a plane is shot down). Some 
recent approaches instead focus solely on dynamic 
replanning (e.g., HoTRiDE regenerates only part of 
its plan when an action fails (Ayan et al. 2007)).  
Discrete effects: Complex environments are subject 

health, and fuel all can continuously change over 
time. However, few systems can process continuous 
effects (e.g., COLIN can plan using durative actions  
with linear continuous effects (Coles et al., 2009)).  
Static goals: Classical planning assumes that the 
goals are all-or-nothing and static. If no plan can 
achieve all of the goals, then classical planners will 
fail. Partial satisfaction planning (PSP) relaxes this 
all-or-nothing constraint, and instead focuses on 
generating plans that achieve some 
goals (i.e., the plan that gives the maximum trade-off 
between total achieved goal utilities and total 
incurred action cost) (van den Briel et al. 2004). 
Other researchers have addressed the limitations of 
static goals. For example, Coddington and Luck 
(2004) bestowed agents with motivations, which 
generate goals in response to specific states. For 

battery charge falls below 50%, 
then a goal to attain a full battery charge will be 
generated (Meneguzzi and Luck 2007). Another 
approach is to allow for goals to reference objects 
that are unknown at planning time. Open world 

quantified goals combine information about sensing 
objects and generating goals into an existing PSP 
system (Talamadupula et al. 2009). Similarly, 
Goldman (2009) describes a system with universally 
quantified goals that allows planning for sets of 
entities whose cardinality is unknown at planning 
time. Several systems (e.g., PECAS (Hawes et al, 
2009)) generate goals at execution time based on a 

 
 Although these assumptions characterize complex 
environments, none of these previous efforts relax all 
four simultaneously, which is the focus of GDA.  
 There is a rich history of developing agent 
architectures for increasingly sophisticated 
environments, e.g., TACAIR-SOAR (Jones et al. 
1999). Unlike reactive architectures, such as 
ICARUS (Langley and Choi 2006), GDA separates 
environmental and goal reasoning from action 
selection, which permits additional reflection as 
required.  Recently, Choi (2010) has been working on 
extensions to the Icarus architecture which create 
goals using constraint-like goal descriptions, 
Furthermore, the goals considered here may differ 
substantially from the current goals and consequently 
should not be considered subgoals. They may be 
autonomously generated, and involve objects that are 
not known or available until execution time. We 
detail the GDA framework in Section 3.  

3.  Goal-Driven Autonomy  
Cox  (2007) INTRO system provides the inspiration 
for several concepts in goal-driven autonomy with its 
focus on integrated planning, execution, and goal 
reasoning. We extend these ideas and consider them 
as a general agent framework. 

GDA is a conceptual model of online planning in 
autonomous agents. Figure 1 illustrates how GDA 

Figure 1: A Conceptual Model for Goal-Driven Autonomy 
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model of online planning. The 
GDA model primarily expands and details the scope 
of the Controller, which interacts with a Planner and 
a State Transition System  (an execution 
environment). We present only a simplified version 
of this model, and the ARTUE system is only one 
possible implementation. 

System  is a tuple ( ) with states S, actions 
A, exogenous events E, and state transition function 
: S (A E) 2S, which describes how 

execution or occurrence transforms the 
environment from one state to another. In complex 
environments, the agent has only partial access to the 
state, set of events, and state transition function. 

The Planner receives as input a planning problem 
(M ,sc,gc), where M  is a model of , sc is the current 
state, and gc G is a goal that can be satisfied by 
some set of states Sg S. The Planner outputs a plan 
pc, which is a sequence of actions Ac=[ac c+n]. In 
the GDA model, the Planner generates a 
corresponding sequence of expectations 
Xc=[xc c+n], where each xi Xc is a set of state 
constraints corresponding to the sequence of states 
[sc+1 c+n+1] expected to occur when executing Ac 
in sc using M . 

The Controller sends the actions in the plan to  
and processes the resulting observations. The GDA 
model takes as input initial state s0, initial goal g0, 
and M , which are sent to the Planner to generate 
plan p0 and expectations X0. When executing p0, the 
Controller performs the following four knowledge-
intensive tasks, which uniquely distinguish the GDA 
model:  

1. Discrepancy detection: GDA must first detect 
unexpected events before deciding how to 
respond to them. This task compares the 
observations sc+1 obtained from executing action 
ac in state sc with the expectation xc X (i.e., it 
tests for constraint violations corresponding to 
unexpected observations). If one or more 
discrepancies d D are found, then explanation 
generation is performed to explain them.  

2. Explanation generation: The cause for a detected 
discrepancy must be revealed so that it can be 
addressed. Given a state sc and discrepancy(ies) 
d D, this task hypothesizes one or more 
explanations e E of their cause.  

3. Goal generation: Resolving the discrepancies may 
warrant a change in the current goal(s). This task 
generates goal(s) g G in response to D, given 
explanation(s) e E and the current state sc S.  

4. Goal management: The generation of a new goal 
may warrant its immediate focus and/or removal 
of some existing goals. Given a set of pending 
goals GP G (one or more of which may be the 
focus of the current plan execution) and new 
goal(s) g G, this task may update GP (e.g., by 
adding g and/or deleting/modifying other pending 

goals) and will select the next goal(s) g GP to be 
given to the Planner. (It is possible that g=g .) 

GDA makes no commitments to specific types of 
algorithms for the highlighted tasks (e.g., goal 
management may involve comprehensive goal 
transformations (Cox and Veloso 1998)), and treats 
the Planner as a black box. In Section 5, we describe 
one instantiation of this model.   

4. The TAO Sandbox Environment 
The TAO Sandbox is a strategy simulator used by the 
US Navy to train Tactical Action Officers in anti-
submarine warfare (Auslander et al. 2009). Figure 2 
shows a screenshot from the TAO Sandbox. In this 
simulation, trainees accomplish their objectives by 
giving orders to naval ships, planes, and helicopters. 
Vessel positions, fuel levels, heading, and speed are 
important fluents, continuously varying numeric 
quantities, in this domain. T
orders, which occur instantaneously. The effects of 
these orders may be instantaneous (e.g., launch a 
helicopter), of fixed duration (e.g., move to a specific 
location), or of indefinite duration (e.g., follow 
another vessel). Therefore, agents interacting with the 
simulation must reason about instantaneous 
occurrences and continuous effects. 
 Attempting missions in the TAO Sandbox 
autonomously is a continuous planning problem 
(desJardins et al. 1999). Opportunities and failures 
arise that require an effective response. In addition to 
being continuous, we define complex environments to 
be partially observable, and open with respect to new 
objects and unpredictable events. Therefore, our 
GDA agent monitors both the continuous and discrete 
state of the environment during plan execution.  
 In order to describe and reason about the TAO 
Sandbox environment, we modeled it using the 
domain language PDDL+. PDDL+ (Fox and Long 
2006) was designed to support reasoning about mixed 

Figure 2: A screen shot from the TAO Sandbox with 
callouts highlighting friendly and enemy units. 
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discrete-continuous domains, such as the TAO 
Sandbox. In addition to the actions of traditional 
planning, changes to the discrete state occur as the 
result of instantaneous events in the environment, 
some of which can be predicted, and others of which 
can only be recognized afterward. To capture 
changes in the continuous state, PDDL+ introduces 
ongoing processes, which are defined by their 
participant types, conditions, and effects.  

5.  The ARTUE Prototype 
To explain  novel features and the 
integration of components resulting in a GDA 
system, we describe a cycle 
in a simplified version of a Norwegian transport 
scenario from the TAO Sandbox domain. This 
scenario involves four objects: a transport ship, two 
ports, and a destination. -supplied goal 
is to move the transport ship to the destination. This 
is at first a simple goal to achieve, but as the scenario 
progresses, a severe storm will rise quickly that can 
sink the ship; this storm cannot be (directly) observed 
until a time too late to save the ship. To protect itself, 
the ship may seek shelter in one of two ports. Further 
complicating the situation, unseen icebergs are in the 
water that can stop the ship. To safely guide the ship 
to its destination, ARTUE will need to execute plans, 
monitor them for failures, determine why those 
failures occurred, and generate new goals.  

5.1. HTN Planning 
In GDA, the Planner generates (1) plans to satisfy the 
goals selected by the system and (2) expectations 
about how the environment will change during plan 
execution. For ARTUE, we extended the SHOP2 
HTN planner (Nau et al. 2003) to reason about 
PDDL+ domains. Our extensions include the addition 
of a wait action, which allows SHOP2 to incorporate 
the passage of time in its plans, and a state projection 
algorithm, which projects the continuous effects of 
active processes and the timing of exogenous events. 
For further details, see (Molineaux et al. 2010). 
 ARTUE begins with the task: (MoveShip Ship1 
Destination1). Our HTN methods decompose this 
task into the following actions: (navigate Ship1 
Destination1), (wait 10). Using the state 
projection algorithm, the Planner predicts changes to 
the continuous and discrete state throughout the 

execution (e.g., the expected changes in the 
ship s location throughout its movement). 

5.2. Discrepancy Detection 
In the GDA framework, an agent must monitor the 
state for unexpected events. ARTUE does this by 
examining the state whenever a wait action completes 
and at fixed intervals during longer waits. 

Discrepancies between the observed state and the 
expected state projected by the Planner trigger the 
explanation generation process. 
 For discrete states, discrepancies are found using a 
set difference operation between the set of expected 
literals and the set of observed literals. For 
continuous states, the observed and expected value of 
each fluent is compared; a discrepancy is considered 
to occur whenever these values differ by less than 
0.1% of the (absolute) observed value. 

In our example, after 5 minutes, a lightning strike 
is observed in the environment. As this was not 
predicted, the literal (see lightning) is present in 
the observed discrete state but not the expected 
discrete state, which triggers explanation generation.  

5.3. Explanation Generation 
Discrepancies between an expected state and an 
actual state arise as a result of one of three 
circumstances:  

1. A hidden factor is influencing the state.  
2. The dynamics according to which the state was 

projected were incorrect, meaning that the 
lawed. 

3. The perception of the state is incorrect. 
ARTUE generates explanations of discrepancies in 
search of the hidden factors that affect the state in the 
first case; the other two cases are primarily 
distractions for our purposes (see below). 
Explanations are produced by abduction over the 
conditions and effects found in the planning domain 
using an Assumption-based Truth Maintenance 
System (ATMS; de Kleer 1986). 
 Before execution time, ARTUE transforms the 
PDDL+ domain into a set of ATMS rules that infers 
the effects of all processes and events in the domain 
over some known period of time during which no 
non-wait actions occur. For reasoning about hidden 
state, the planning domain includes a set of hidden 
predicates, which refer to information that cannot be 
observed directly, but can be abduced during 
explanation, as well as processes and events that are 
defined using these hidden predicates. 
 During explanation, a list of possible hidden facts 
is generated using a list of hidden discrete predicates 
belonging to the domain, a list of all known objects 
from the observed state, and skolem objects which 
stand for possible unobserved objects. All of these 
possible literals become assumptions, facts that may 
be assumed to be part of the state if no contradiction 
occurs.   
 Using this information, the ATMS searches for 
possible worlds containing only observed facts and 
(assumed) hidden facts that are consistent with the 
generated rules.  
 One complication to this process comes from 
inaccurate perceptions. In continuous environments, 
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measuring and rounding errors often make exact 
perceptions impossible. Therefore, ARTUE considers 
possible worlds to be consistent when fluent values 

n 
discrepancy detection, measurements within 0.1% of 
the observed value are considered equivalent. This is, 
admittedly, a poor model of perception error, and can 
be improved in future work. 
 Another complication occurs when domain 
knowledge is incomplete. ARTUE allows for the 
possibility that not all processes and events in the 
environment are specified completely and accurately. 
If no consistent possible worlds are found, a partial 
explanation can still be constructed. Therefore, 
ARTUE searches for possible worlds in which each 
successor fact, by itself, is consistent with all the 
prior facts. When no such world can be found, the 
fact that cannot be explained is discarded. 
Explanation then takes place over all remaining facts 
that are true in some known possible world. In future 
work, explanation failures due to incomplete domain 
knowledge could lead to the construction of learning 
goals (Ram and Leake 1995) to refine  
knowledge.  
 Ideally, after explanation generation ARTUE will 
have found one or more possible worlds in which all 
of the observed facts are true. If so, then the 
assumptions shared by all possible explanations will 
be  
and can be used in goal generation and future 
planning steps.  
 In the running example, explanation generation 
finds a single possible world, containing one 
assumption, (stormApproaching Ship1), 
which explains the lightning strike. This fact is 
adopted as a belief, and goal generation is triggered. 

5.4. Goal Generation 
In GDA, the agent considers the explained 
discrepancy(ies) and the current state to determine 
what goals, if any, should be generated. ARTUE uses 
background knowledge for this task in the form of 
principles, which are schemas whose components are 
a set of participants, a condition, an intensity level, 
and a goal form. Each participant is assigned a type 
(e.g., FriendlyShip). Conditions are statements 
concerning the participants that must hold in the 

to generate the goal specified by the 
goal form. The intensity level is a fixed value 
proportional to the importance or urgency of 
satisfying the generated goal. Once a goal is 
generated, the intensity of the principle used to 
generate it is passed with the goal to the goal 
manager. 
 In our example, given the approaching storm 
explanation and the current state, ARTUE attempts to  
generate goals for each of its principles. When some 
set of objects from correspond to 

the principle its 
condition, the corresponding goal is generated.  

Table 1: A principle directing the agent to spawn a find 
shelter goal to avoid an incoming storm. 

 Using the principle in table 1, ARTUE finds one 
set of objects that satisfies the conditions according 
to its current beliefs (i.e., ?vehicle = Ship1). For 
this set of entities, the agent creates an instantiation 

asserts it as a goal 
(i.e., (DirectShipToShelter Ship1)). This goal 
and its intensity are added to the list of pending goals, 
which becomes:  

 (MoveShip Ship1 Destination1) 
 LowIntensity 

 (DirectShipToShelter Ship1)  
 HighIntensity 

5.5. Goal Management 
Given multiple goals, the agent must decide which 
one to pursue next, and how to act in the presence of 
competing goals. We call this task goal management. 
Currently, ARTUE can only execute one plan at a 
time. When multiple goals exist, the goal with the 
highest intensity is selected. If the Planner cannot 
generate a plan to achieve that goal, the goal with the 
next highest intensity is selected, until an achievable 
goal is found. 

In our example, two goals are active: 
(DirectShipToShelter Ship1) and (MoveShip 
Ship1 Destination1). The first goal has a higher 
intensity, and given that the Planner can generate a 
plan to satisfy it, it becomes the selected goal.  

6.  Evaluation 
We present results for three scenarios defined in the 
TAO Sandbox environment. In each of these 
scenarios, a situation arises outside the scope of the 

 that is nonetheless highly important to 
address. Performance is scored using a scenario-
specific score metric based on satisfaction of a user-
specified goal as well as the response to an 
unexpected situation. To demonstrate the 
contribution of each component, we constrast the 
ARTUE agent with three ablated versions: PLAN1, 
REPLAN, and EXPLAIN. PLAN1 performs planning 
once and never changes its plan. REPLAN monitors 
the environment for discrepancies and changes its 

Name FindShelter 
Participants ?vehicle type = FriendlyShip 
Condition (stormApproaching ?vehicle) 

Intensity 
Level 

HighIntensity 

Goal form (DirectShipToShelter 
?vehicle) 
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plan when any discrepancies are detected, but does 
not generate explanations or change its goals. 
EXPLAIN explains discrepancies it detects in the 
environment, adding to its beliefs about the current 
state, but forms no new goals. Finally, the complete 
GDA agent, ARTUE, monitors, explains, and 
generates and manages its own goals. 
 The three scenarios that we use to test ARTUE 
differ widely in their tasks, so as to illustrate its 
generality. For ARTUE, parameterization is minimal 
and knowledge creation costs are high. Domain 
knowledge for ARTUE consists of the PDDL+ 
domain, HTN methods and tasks, a set of principles, 
and rules used in goal generation. The amounts of 
knowledge created for the TAO Sandbox domain, 
covering all 3 scenarios, is as follows:  22 defined 
types, 115 predicate forms (17 hidden), 8 fluent 
forms, 33 action models, 37 event models, 7 process 
models, 42 tasks, 148 methods,  9 principles, and 28 
goal generation rules. 
 In the first scenario, Scouting, ARTUE is given a 
goal to identify nearby ships. To do this, a task group 
vessel must be sent close enough to visually identify 
each unknown ship. During this exercise, a hidden 
submarine torpedoes a nearby ship, causing it to sink. 
The score is based on identifying each of the nearby 
ships as well as the sub (which requires special 
sensors), and also destroying the sub, which is 
outside the scope of the user-supplied goal.  
 In the second scenario, Iceberg, a ship is 
transporting cargo to a destination in Norway. During 
its transport, a storm arises, which is presaged by a 
lightning strike. This strike causes a large iceberg to 
calve, blocking the entrance to a nearby port. Due to 
the severity, all ships must seek shelter, and a 
nearby ship, which does not detect the iceberg, 
founders on it. The score for this scenario is based on 
how close the ship comes to its destination, how long 

the passengers aboard the foundering ship, which is 
outside the scope of its supplied goals. 
 The third scenario, SubHunt, involves a search for 
an enemy sub that has been spotted nearby. A ship is 
sent out to find and engage it. However, this sub has 
been laying mines which can incapacitate the 
searching ship. Points are awarded for finding and 
destroying the sub, as well as sweeping the mines.
 We tested each agent 25 times per scenario with 
random variation in object starting locations and 
prearranged events, and held these constant across all 
versions. Table 2 shows the average scores for each 
agent on each scenario. All scores are scaled between 
0 and 1, with 1 being the maximum performance. 
However, scores are not directly relatable between 
scenarios. The difference between GDA and each 
ablated agent is statistically significant (p<.0001) in 
each scenario. In addition, the differences between 
successive ablations are also significant (p<.01). 

Table 2: Agent scores in the TAO Sandbox ablation study 
Agent Scouting Iceberg SubHunt 

PLAN1 0.33 0.35 0.35 
REPLAN 0.40 0.48 0.48 
EXPLAIN 0.58 0.64 0.74 
ARTUE 0.74 0.73 0.98 

 To illustrate the complexity of the reported 
scenarios, table 3 lists the following characteristics 
describing how much work ARTUE performed on 
each scenario averaged over 25 runs: number of 
discrepancy checks, number of replans, average 
(longest) plan length, average (longest) simulated 
time, and average (longest) clock time. Most of 

searches through a set of world states which is 
exponential in the number of discrepancies. 

Table 3: Scenario Difficulty Characteristics 
Characteristic Scouting Iceberg SubHunt 
# Discrepancy Checks 24.6 30.4 16.5 
# Replans 10.4 5.5 11.5 
Plan Length 50 (149) 36 (463) 10.1 (45) 
Sim. Time (mins) 18 (49) 153 (240) 84 (126) 
Clock Time (mins) 10 (22) 15 (28) 3.5 (6) 

 This study helps to identify the capabilities that 
each GDA task provides. PLAN1 cannot tolerate 
even minor changes expectation failures. REPLAN 
responds correctly to small unexpected events such as 
course changes that occur during the Identify 
scenario. This requires that the event and its 
repercussions be immediately apparent. EXPLAIN 
adapts well to both the unexpected storm and the 
enemy submarine because it deduces their presence 
without sighting them and plans around them. 
Finally, ARTUE goal generation and management 
steps are useful when unexpected situations arise 
which suggest pursuing other goals that most agents 
would not consider, such as saving the sinking ship. 

7.  General Discussion 
These results support our hypothesis that GDA agents 
like ARTUE can competently respond to unexpected 
events in complex environments. By conception, the 
GDA process integrates a diverse set of AI 
components. Our evaluation shows that each 
component produces a significant increase in 
performance, and each component makes the 
contribution of successor components possible.  
 In particular, ARTUE integrates HTN planning 
with continuous effects, discrepancy detection, 
explanation generation using an ATMS, and goal 
generation and management using principles. Each of 
these components is domain independent. To further 
evaluate its generality, we are currently applying 
ARTUE to other strategy simulations with complex 
environments (i.e., open, partially observable, 
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continuous environments with hostile opponents and 
exogenous events). 
 Further investigations are warranted for studying 
GDA and its ARTUE implementation in complex 
task environments. Additional research is required on 
individual components (e.g., the HTN planning 
extensions for continuous effects, categorization of 
discrepancies, and principles for goal generation) as 
well as their integration in GDA agents for complex 
environments. These investigations will extend 
ARTUE toward our vision of robust autonomy.  
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