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Abstract

All known SAT-solving paradigms (backtracking, lo-
cal search, and the polynomial method) only yield a
2n(1−1/O(k)) time algorithm for solving k-SAT in the worst
case, where the big-O constant is independent of k. For
this reason, it has been hypothesized that k-SAT cannot be
solved in worst-case 2n(1−f(k)/k) time, for any unbounded
f : N → N. This hypothesis has been called the “Super-
Strong Exponential Time Hypothesis” (Super Strong ETH),
modeled after the ETH and the Strong ETH. We prove two
results concerning the Super-Strong ETH:

1. It has also been hypothesized that k-SAT is hard to solve
for randomly chosen instances near the “critical thresh-
old”, where the clause-to-variable ratio is 2k ln 2−Θ(1).
We give a randomized algorithm which refutes the Super-
Strong ETH for the case of random k-SAT and planted k-
SAT for any clause-to-variable ratio. In particular, given
any random k-SAT instance F with n variables and
m clauses, our algorithm decides satisfiability for F in
2n(1−Ω(log k)/k) time, with high probability (over the
choice of the formula and the randomness of the algo-
rithm). It turns out that a well-known algorithm from the
literature on SAT algorithms does the job: the PPZ algo-
rithm of Paturi, Pudlak, and Zane (1998).

2. The Unique k-SAT problem is the special case where
there is at most one satisfying assignment. It is natural to
hypothesize that the worst-case (exponential-time) com-
plexity of Unique k-SAT is substantially less than that
of k-SAT. Improving prior reductions, we show the time
complexities of Unique k-SAT and k-SAT are very tightly
related: if Unique k-SAT is in 2n(1−f(k)/k) time for an
unbounded f , then k-SAT is in 2n(1−f(k)(1−ε)/k) time
for every ε > 0. Thus, refuting Super Strong ETH in the
unique solution case would refute Super Strong ETH in
general.
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Introduction

k-SAT is the canonical NP-complete problem for k ≥ 3:
Given a Boolean formula in conjunctive normal form with
clauses of width at most k, is it satisfiable? In practice,
k-SAT is often cited as a “solved problem” (Gomes et al.
2008), due to the incredible performance of modern SAT
solvers on instances arising from practice (mostly hardware
and software verification).

However, it is very possible that in the future, the demands
and designs from practice will change significantly, lead-
ing to significantly different SAT instances. In general, the
worst-case complexity of k-SAT is far from understood, in
spite of tremendous effort devoted to finding faster worst-
case algorithms. Because it is widely believed that P �= NP,
the search has been confined to super-polynomial-time al-
gorithms. Although is trivial to obtain an algorithm running
in 2n · mO(1) time on k-SAT instances with m clauses and
n variables, we cannot seem to improve the base of the ex-
ponent below 2: there are are no known algorithms for k-
SAT which run in (2 − ε)n · mO(1) time for a universal
constant ε > 0, independent of k. This apparent barrier to
algorithms led researchers to the following two popular hy-
potheses which strengthen P �= NP:
• Exponential Time Hypothesis (ETH) (Impagliazzo and

Paturi 2001) There is an α > 0 such that no 3-SAT algo-
rithm runs in 2αn time on all n-variable instances.

• Strong Exponential Time Hypothesis (SETH) (Cal-
abro, Impagliazzo, and Paturi 2009) There is no ε > 0
such that for all k, k-SAT can be solved in (2− ε)n time.
In fact, the performance of known worst-case k-SAT al-

gorithms is even worse than what the hypotheses conjec-
ture. The current best known algorithms for k-SAT all have
running time 2n(1−Ω( 1

k )), i.e., time 2n(1−
c
k ) for a constant

c > 0. As k → ∞, the running time bound converges to 2n,
but moreover this bound converges to 2n at a certain rate.

Somewhat surprisingly, this best-known 2n(1−Ω( 1
k ))

bound can be achieved by multiple algorithmic paradigms,
such as randomized backtracking (Paturi, Pudlák, and Zane
1999; Paturi et al. 2005), local search (Schöning 1999), and
the polynomial method (Chan and Williams 2016). Even
for simpler variants such as Unique k-SAT (where we are
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promised there is at most one satisfying assignment), there
are no known algorithms with a better dependence on k in
the exponent. Hence it is consistent with current theory that
this runtime of 2n(1−Ω( 1

k )) is actually optimal for worst-
case k-SAT. This possibility was termed the Super-Strong
ETH in a 2015 talk by the second author (Williams August
2015).

Super-SETH: For all unbounded function f : N → N,
there is no (randomized) 2n(1−

f(k)
k )-time algorithm for

k-SAT.
In the full version of this work (Vyas and Williams 2019),

we study Super-SETH in two natural restricted scenarios:
• Random/Planted k-SAT. In the case of random k-SAT,

two cases are generally studied. The first is that of find-
ing a SAT assignment to a random k-SAT instance, where
each clause is drawn uniformly and independently from
the set of all possible k-width clauses. The second case
is that of finding SAT assignments to planted k-SAT in-
stances, where a random (hidden) solution σ is sampled,
then each clause is drawn uniformly and independently
from the set of all possible k-width clauses that satisfy σ.
Random k-SAT has a well-known “sharp threshold” be-
havior: depending on the ratio of clauses-to-variables, the
formula is either very likely to be satisfiable, or very likely
to be unsatisfiable. In particular, for αsat = 2k ln 2−Θ(1)
and for all constant ε > 0, random k-SAT instances are
SAT w.h.p. (with high probability) for m < (αsat − ε)n
and UNSAT w.h.p. for m > (αsat + ε)n (Ding, Sly, and
Sun 2015). Note that, as far as decidability is concerned,
for instances below (respectively, above) the threshold we
may simply output “SAT” (respectively, “UNSAT”) and
we will be correct whp. It has been conjectured (Cook
and Mitchell 1996; Selman, Mitchell, and Levesque 1996)
that random instances at the threshold m = αsatn are
the hardest random instances, and it is difficult to de-
termine their satisfiability. We are motivated by the fol-
lowing strengthening of this conjecture: Are random in-
stances near the threshold as hard as the worst-case
instances of k-SAT?

• Unique k-SAT. The Unique k-SAT problem is the spe-
cial case of finding a SAT assignment to a k-CNF, when
one is promised that there is at most one satisfying as-
signment. It is well-known to be NP-complete under ran-
domized reductions (Valiant and Vazirani 1986). As men-
tioned earlier, the best known algorithms for Unique k-
SAT have the same running time behavior of 2n(1−O( 1

k ))

as k-SAT. In fact some of the best-known k-SAT algo-
rithms (PPZ and PPSZ) (Paturi, Pudlák, and Zane 1999;
Paturi et al. 2005) have an easier analysis when re-
stricted to the case of Unique k-SAT (Paturi et al. 2005;
Hertli 2014). The current best known algorithm for k-
SAT (Hansen et al. 2019) only mildly improves over
the PPSZ algorithm. Could worst-case algorithms for
Unique k-SAT be marginally faster than those for k-
SAT?

In principle, both of the above special cases could have
the same exponential-time complexity as k-SAT, or both

could be easier, at least from the perspective of Super-SETH
(where the dependence on k in the exponent matters). In
the full version of this work (Vyas and Williams 2019), we
prove that Super-SETH is false for Random k-SAT, and the
Super-SETH for Unique k-SAT is equivalent to the general
Super-SETH: the dependence on k in the exponent is essen-
tially the same for the two problems.

Prior Work

There has been substantial work on polynomial-time al-
gorithms for random k-SAT that return satisfying assign-
ments when the number of clauses m is noticeably below
the threshold. Note that, even though we know that in-
stances below the threshold are satisfiable with high prob-
ability, that does not immediately give a way to find a sat-
isfying assignment. Chao and Franco (Chao and Franco
1990) first proved that the unit clause heuristic (the same
key component of the PPZ algorithm (Paturi, Pudlák, and
Zane 1999)) finds solutions with high probability for ran-
dom k-SAT, when m ≤ c2kn/k for some constant c > 0.
Currently, the best-known polynomial-time algorithm in this
regime is by Coja-Oghlan (Coja-Oghlan 2010) and it can
find satisfying assignments for random k-SAT (whp) for
m ≤ c2kn log k/k for some constant c > 0. Interestingly,
polynomial time algorithms are also known for the case of
large m. Specifically, it is known that for a certain constant
C0 = C(k) and m > C0 · n there are polynomial-time al-
gorithms that find satisfying assignments to planted k-SAT
instances by Krivelevich and Vilenchik (Krivelevich and Vi-
lenchik 2006) and random k-SAT (conditioned on satisfi-
ability) by Coja-Oghlan, Krivelevich and Vilenchik (Coja-
Oghlan, Krivelevich, and Vilenchik 2007). However, both
of these results require that m is at least 4kn/k (Vilenchik
2019). To our knowledge, no algorithmic improvements bet-
ter than 2n−n/O(k) time have yet been reported for random
k-SAT very close to the threshold.

(Valiant and Vazirani 1986) gave a poly-time randomized
reduction from SAT instances F on n variables to Unique-
SAT instances F ′ on n variables such that, if F is SAT, then
F ′ is a unique satisfying assignment with probability at least
Ω(1/n), and if F is UNSAT then F ′ is UNSAT. This reduc-
tion does not apply to convert k-SAT instances to Unique
k-SAT instances, as they do not preserve the clause width
(nor do they preserve the number of variables, when trans-
formed into k-SAT instances in the natural way). To address
this, (Calabro et al. 2008) gave a randomized polynomial-
time reduction with one-sided error from k-SAT to Unique
k-SAT which works with probability 2−O(n log2(k)/k). The
probability bound was further improved by (Traxler 2008)
to 2−O(n log(k)/k). Both reductions imply that either both k-
SAT and Unique k-SAT have 2δn time algorithms for some
universal δ < 1, or neither of them do. In other words,
SETH for k-SAT and the corresponding SETH for Unique
k-SAT are equivalent. However, these results are not suf-
ficient for an equivalence with respect to Super-SETH: for
example, assuming the above results, it is still possible that
k-SAT has no 2n(1−ωk(1/k)) time algorithms, while Unique
k-SAT has a 2n(1−Ω(log k/k)) time algorithm.
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Our Results

Average-Case k-SAT Algorithms First we present an al-
gorithm breaking Super-Strong ETH for random k-SAT. In
particular, we give a 2n(1−Ω( log k

k ))-time algorithm which
finds a satisfying assignment for random-k-SAT (condi-
tioned on satisfiability) whp, for all values of m. In fact, our
algorithm is an old one from the SAT algorithms literature:
the PPZ algorithm of (Paturi, Pudlák, and Zane 1999).

In order to show that the PPZ algorithm solves random k-
SAT faster, we first show that PPZ yields a faster algorithm
for random planted k-SAT for large enough m.
Theorem 1. There is a randomized algorithm that, given
a planted k-SAT instance F on n variables and m clauses
with m > 2k−1 ln(2), outputs a satisfying assignment to
F in 2n(1−Ω( log k

k )) time with 1− 2−Ω(n( log k
k )) probability

(over the randomness in the planted k-SAT distribution, and
the randomness of the algorithm).

Next, we give an efficient reduction from random k-SAT
(conditioned on satisfiability, we denote this distribution by
R+) to planted k-SAT. Similar reductions/equivalences have
been observed before in (Ben-Sasson, Bilu, and Gutfreund
2002; Achlioptas and Coja-Oghlan 2008).
Theorem 2. Suppose there is an algorithm A for planted k-
SAT on n variables and m clauses, for all m ≥ 2k ln 2(1−
f(k)/2)n, which finds a solution in time 2n(1−f(k)) and
with probability 1 − 2−nf(k), where 1/k < f(k) = ok(1).
Then for any m′, given a random k-SAT instance sampled
from R+(n, k,m′), a satisfying assignment can be found in
2n(1−Ω(f(k))) time with 1− 2−nΩ(f(k)) probability.

Together, the two above theorems yield:
Theorem 3. Given a random k-SAT instance F sampled
from R+(n, k,m), we can find a solution in 2n(1−Ω( log k

k ))

time whp.
Remark 1. We obtain a randomized algorithm for ran-
dom k-SAT which always reports UNSAT on unsatisfiable
instances, and finds a SAT assignment whp on satisfiable in-
stances. Feige’s Hypothesis for k-SAT (Feige 2002) conjec-
tures that there are no efficient refutations for random k-SAT
above the threshold, i.e., there are no efficient algorithms
which always report SAT on satisfiable instances, and re-
port UNSAT on unsatisfiable instances with probability at
least 1/2. Refuting Feige’s hypothesis in our setting is an
intriguing open problem.

Our running time of 2n(1−Ω( log k
k )) implies that at least

one of the following are true:

• either the random instances of k-SAT at the threshold are
not the hardest instances of k-SAT, or

• Super-Strong ETH is also false for worst-case k-SAT.

For the PPZ algorithm, it is known that there are in-
stances of k-SAT for which PPZ requires a running time of
2n(1−O( 1

k )) (Pudlák, Scheder, and Talebanfard 2017). Thus
we can say that, with respect to the PPZ algorithm, random
k-SAT instances are provably more tractable than worst-case
k-SAT instances. On the other hand, for the PPSZ algorithm

which essentially gives the current best known running time
for k-SAT for large k, we only know 2n(1−O( log k

k )) lower
bounds (Pudlák, Scheder, and Talebanfard 2017), matching
our upper bounds for the random case. Hence it is possible
that PPSZ (or perhaps its recent improvement (Hansen et al.
2019)) actually runs in 2n(1−Ω( log k

k )) time for worst-case
k-SAT.

Unique k-SAT Equivalence We present a “mildly expo-
nential” time reduction from (worst-case) k-SAT to Unique
k-SAT, showing that the runtime exponents of the two prob-
lems are essentially equivalent:

Theorem 4. An algorithm running in 2(1−f(k)/k)n time
for Unique k-SAT (where f(k) is unbounded) implies a
2(1−f(k)/k+O((log f(k))/k))n time algorithm for k-SAT.

As mentioned earlier, the current best algorithm for k-
SAT PPSZ (Paturi et al. 2005) has a much easier analysis for
Unique k-SAT, and in fact it was an open question to show
that its running time on general instances of k-SAT matches
the running time for Unique k-SAT; this was eventually re-
solved by (Hertli 2014). Theorem 4 implies that, in order
to obtain faster algorithms for k-SAT which break Super-
Strong ETH, it is sufficient to restrict ourselves to Unique
k-SAT, which might simplify the analysis as in the case of
PPSZ.

Conclusion

The proofs of our results can be found in the SAT’19 con-
ference version (Vyas and Williams 2019). Since that paper
appeared, another algorithm for random k-SAT has been an-
nounced (based on local search) that achieves a running time
of 2n(1−O(log2 k)/k) (Lincoln and Yedidia 2019).
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