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Abstract

Food waste and food insecurity are two challenges that co-
exist in many communities. To mitigate the problem, food
rescue platforms match excess food with the communities in
need, and leverage external volunteers to transport the food.
However, the external volunteers bring significant uncertainty
to the food rescue operation. We work with a large food res-
cue organization to predict the uncertainty and furthermore
to find ways to reduce the human dispatcher’s workload and
the redundant notifications sent to volunteers. We make two
main contributions. (1) We train a stacking model which pre-
dicts whether a rescue will be claimed with high precision
and AUC. This model can help the dispatcher better plan for
backup options and alleviate their uncertainty. (2) We develop
a data-driven optimization algorithm to compute the optimal
intervention and notification scheme. The algorithm uses a
novel counterfactual data generation approach and the branch
and bound framework. Our result reduces the number of no-
tifications and interventions required in the food rescue op-
eration. We are working with the organization to deploy our
results in the near future.

1 Introduction

In the US, over 25% of the food is wasted, with an average
American wasting about one pound of food per day (Con-
rad et al. 2018). Meanwhile, 11.8% of American households
struggle to secure enough food at some point (Coleman-
Jensen et al. 2018). Among the several responses to this
inefficient food distribution, food rescue organizations are
emerging in many cities. They receive edible food from
restaurants and groceries (“donors”) and send it to orga-
nizations serving low-resource communities (“recipients”).
These food rescue organizations are an important force to
fight against food waste and food insecurity, both included
in the United Nations’ Sustainable Development Goals.

A food rescue organization functions as a platform be-
tween the donors and the recipients. Upon receiving the no-
tice from a donor, the organization matches the food to a
recipient. Typically, it transports the food from the donor to
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tion

Figure 1: 412 Food Rescue operations

the recipient, or stores the food at its own facility if neces-
sary. This incurs cost and there are existing works on op-
timizing the matching process to minimize this cost (Nair
et al. 2018), and some attempt to create a market (Prender-
gast 2016). However, many of these organizations operate
under tight budget and human resource constraints. As a re-
sult, some outsource the transportation of food to local vol-
unteers, which brings in a new dimension to the problem.

We collaborate with 412 Food Rescue (412FR), a food
rescue organization serving over 1000 donors and recipient
organizations in Pittsburgh, US. The dispatcher at 412FR
matches the food by calling each recipient till some recipient
accepts. The dispatcher determines the order of these calls
based on numerous factors such as the proximity between
the donor and recipient and the estimated recipient’s will-
ingness to accept the food. This decision is not hard-coded
but depends on the dispatcher’s rich experience. After the
matching, they post the rescue on 412FR’s smartphone apps.
412FR’s over 7000 volunteers can see the rescue’s start and
end location as well as the weight and type of food (Fig. 1a).
A volunteer can claim the rescue on the app and then com-
plete the rescue by picking up the food from the donor within
its pickup window (Fig. 1b) and delivering it to the recipient.

Relying on volunteers saves cost for the organization, but
there is a high degree of uncertainty in whether a rescue will
be claimed and completed. Over the years, 412FR has used
many methods to get more rescues claimed and completed.
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First, after a rescue request is posted, the app will push noti-
fication to volunteers within 5 miles (Fig. 1c). After 15 min-
utes, if no one has claimed the rescue, the app will push
notification to all available volunteers. Second, dispatcher
monitors all rescues to be claimed or to be completed. If no
one has claimed a rescue by the last hour of its pickup win-
dow, the dispatcher calls regular volunteers they are familiar
with to help with the rescue. For the ones claimed and to be
completed, dispatcher needs to answer volunteers’ inquiries
about delivery details in real-time. As such, the dispatcher
has a heavy workload. However, while it is helpful to en-
gage with the volunteers, too many notifications might drive
them away (Felt, Egelman, and Wagner 2012).

In this paper, we aim to reduce the dispatcher’s work-
load and the redundant notifications sent to the volunteers,
without decreasing the claim rate of the rescues. We make
two main contributions. 1) We train a stacking model to pre-
dict whether a rescue will be claimed. Our stacking model
achieves an AUC of 0.81, serving as a reliable reference of
the risk of a rescue. The model informs the dispatcher how
likely a rescue is going to be claimed, thus helping the dis-
patcher better plan for backup options. (2) We perform data-
driven optimization to find the optimal Intervention and No-
tification Scheme (INS), i.e., when the dispatcher should in-
tervene and seek help from regular volunteers and when and
to whom the notifications should be sent. We estimate the
counterfactual rescue outcomes and use a branch and bound
method to improve computational efficiency. The resulting
INS can improve over the current practice by reducing the
number of notifications sent and the dispatcher interven-
tions, while keeping the rescues’ expected claim rates. Our
analysis suggests to the platform some changes in their cur-
rent INS, which can save the most valuable resources to food
rescue: the dispatcher’s attention and volunteers’ interest.

We are working with 412FR to deploy our results. In fact,
such organizations are not rare at all. In the US alone, similar
organizations are already operating in over 55 cities, help-
ing over 11 million people, and the numbers will only keep
growing. Thus, our work could potentially improve the dis-
patching decisions at a large scale, not to mention the similar
volunteer-based community services other than food rescue.

2 Related Work
The operational challenges of food rescue organizations
have received much attention. Nair et al. (2018) and Gunes,
van Hoeve, and Tayur (2010) study matching the donor
and recipient with a routing problem. This is related to the
more general problem of online matching (Karp, Vazirani,
and Vazirani 1990; Mehta, Waggoner, and Zadimoghaddam
2015). Prendergast (2016) and Lundy et al. (2019) consider
the incentive of the agencies and design a market for the food
rescue platform. Phillips, Hoenigman, and Higbee (2011)
explore predicting the future donations. However, all these
works assume the organization manages the donations with-
out the participation of volunteers, and thus they are not ap-
plicable to our problem. In addition, the well-studied task al-
location problem (Ho and Vaughan 2012) does not perfectly
fit our scenario, as 412FR has no control over the volunteers.
The only work which assumes similar operation is (Lee et al.

(a) Claim rate vs. temperature. (b) Percentage of unclaimed
rescues by zip code district.

Figure 2: Data analysis results. The temperature range i rep-
resents (10.5i− 11.5, 10.5i− 1]◦F.

2019). It studies the stakeholders’ perception of fairness and
democracy on the food matching decisions, while we focus
on improving the efficiency of food rescue operations.

Our prescriptive analysis uses counterfactual estimation
of rescue outcomes under various dispatching schemes. This
relates to the extensive literature on causal inference with
observational data (Dehejia and Wahba 2002). However,
412FR has always used the same dispatching scheme for all
rescues, and it is currently impossible to contact volunteers
for pre- and post-intervention tests (Pratt, McGuigan, and
Katzev 2000). Thus, existing work is not applicable and we
develop a new way of constructing counterfactual datasets.

3 Predicting the Claim of Rescues

Our first task is to predict whether a rescue would be
claimed. We use the operational dataset of 412FR which
contains rescues from March 2018 to May 2019. The dataset
records the time log of each step in the rescue: posting,
claimed by volunteer, and completion, along with the ID of
the volunteer who claimed the rescue. We treat a rescue as
unclaimed and assign a negative label if it was never claimed
or if it was claimed within the last hour of the pickup win-
dow by a selected group of volunteers who had done more
than 10 rescues within the last two months. We assume the
latter ones had gone through dispatcher’s intervention and
would not have been claimed otherwise. The dataset con-
tains 4574 rescues with 749 negative ones among which 672
were not claimed by anyone and 77 were claimed within the
last hour of the pick up window by the selected group.

3.1 Feature engineering

We use a number of features for the prediction. The first
group of features are directly related to the rescue, such as
the travel time and distance between the donor and the recip-
ient generated by Google Maps Platform, the weight of the
food, time of day, and which time slot the rescue belongs to.

We also used the weather information on the day of rescue
from Climate Data Online, including the average temper-
ature, precipitation and snowfall, as data analysis suggests
that weather is correlated with the rescue outcome (Fig. 2a).

The third group of features involve the number of avail-
able volunteers near the donor and recipient’s locations. In-
stead of using zip code, we evenly divide the area of oper-
ation of 412FR into a grid with 300 cells because the zip
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Features Rescue 1 Rescue 2
Fastest travel time of rescue 8 min 28 min
Travel distance of rescue 2.4 miles 18 miles
Weight of the food 5 lb 20 lb
Time of day 1pm 2pm
Time Slot Weekday

Afternoon
Weekend
Afternoon

Precipitation 0 0.12 inch
Snowfall 0 0
Average temperature 62 ◦F 76 ◦F
AVs in donor’s cell 20 91
Average AVs in
donor’s neighboring cells

40 250

AVs in recipient’s cell 30 300
AVs in donor and recipient’s
cells with vehicle

21 116

Table 1: Two example data points for the predictive model.

code districts vary a lot in size (Fig. 2b) and the grid allows
for better specificity. Each volunteer could set in their app
the time slots they do not want to receive any notifications,
which can also be interpreted as their availability. An active
volunteer (AV) in a grid cell for a rescue is one who had
done a rescue in the cell and marked themselves as available
for the rescue’s pick-up time slot in the app. We use as fea-
ture the number of AVs in the donor’s and recipient’s cells
and the number of them averaged over the cells adjacent to
the donor’s. The number of AVs who indicate they have ve-
hicles is helpful as well, as those without vehicles might be
more constrained in their choice of rescues.

We also tested some other features such as average house-
hold income and vehicles. However, they do not improve the
performance of the model. An example of the features we
use for the training the machine learning model is shown in
Table 1. These two data points are for illustration purpose
and are not real rescues, as per our agreement with 412FR.

3.2 Stacking Model

We first attempted a few baseline models including Gaussian
Process (GP) and Random Forest (RF) with different param-
eters but got unsatisfying performance, especially with the
false positives, i.e. when the rescue is unclaimed but we pre-
dict it as claimed. In the context of food rescue, we want to
inform human dispatchers which rescues will be unclaimed
without human intervention and need extra attention. Thus,
false positives can be costly because it may lead to the ig-
norance of a rescue in need of intervention and the waste
of donated food, while false negatives are less concerning
because it only leads to unnecessary extra attention from
the human dispatcher. To deal with weak learners, we use a
stacking approach inspired by (Wolpert 1992), whose struc-
ture is shown in Fig. 3. First, we split the training data into
two sets, DA and DB . We use DA to train various base
models (Fig. 3, 1©) and then we use these trained models
to make predictions on DB (Fig. 3, 2©). Finally, we train a
meta learner using the base models’ predictions on DB to

GP 1 2 3 4 5
Kernel DP DP Matern RBF RBF
Alpha 0.5 0.01 0.3 0.1 0.03

Table 2: GP parameters. Alpha is the dual coefficient of
training data points in kernel space. DP means dot product.

Figure 3: The stacking model.

determine the stacking model’s estimate (Fig. 3, 3©). In our
case, we use 5 GP regressors and 1 RF classifier as the base
model. The 5 GPs have different kernels and parameters for
length scales. The parameters for GPs are shown in Table 2.
The Random Forest Classifier has 100 estimators and the
max-depth for any decision tree is 9.

All the six models are trained on the same data DA. We
use the mean values of the GPs’ predictions and the binary
label of the RF classifier, on DB , as the input to the neural
network meta learner. We report the results in Sec. 5.

4 Optimizing Intervention and Notification

We also perform prescriptive analysis to optimize the INS
of 412FR, determining the guideline for dispatcher interven-
tion and the rules for sending notifications. Our goal is to re-
duce the frequency that the dispatcher intervenes to “save” a
rescue, or the mobile app notifications sent, ideally both.

We formalize the problem by defining an INS as a tu-
ple (x, y, z), with x, y, z described below. When a rescue
is posted, the mobile app first sends notifications to the vol-
unteers who are within y miles from the donor. If no vol-
unteer claims the rescue within the first x minutes, the app
then sends the notification again to all volunteers who have
indicated availability in the corresponding time slot. The dis-
patcher monitors the rescue after it is posted. If a rescue has
not been claimed by z minutes before its pickup deadline,
the dispatcher intervenes by directly contacting a group of
regular volunteers and asking them if they are willing to
claim it. If wr is the duration from the posting time to the
pickup deadline of rescue r, then the dispatcher intervenes
wr − z minutes after the rescue is posted. We assume that
upon the dispatcher’s intervention, with probability μ the
rescue immediately gets claimed, otherwise it has no effect.

412FR has always used a default INS: x̂ = 15 (minutes),
ŷ = 5 (miles), and ẑ = 60 (minutes). We look for the opti-
mal INS in a finite set S of candidate INSs which minimizes

λEr∼R[c1(x, y, z, r)] + Er∼R[c2(x, y, z, r)] (1)
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Notation Meaning
x Second round notification time, default x̂
y First round notification radius, default ŷ
z Intervention time from deadline, default ẑ
μ Dispatcher intervention success probability
r r.v.: a rescue, following distribution R.
wr Duration from r being posted to deadline
λ Trade-off of intervention and notification.
s(·) Average number of dispatcher interventions
v(·) Average number of 1st round notifications
q(·) Average number of 2nd round notifications
p(a, ·) Proportion of rescues claimed in a minutes
S Domain of optimization variables (x, y, z)
bi Claim rate lower bound

Table 3: Notations for the optimization problem.

where R is the distribution of rescues, and λ controls the
trade-off between two quantities: the expected number of
dispatcher interventions and the expected number of noti-
fications sent to volunteers. c1 is the average number of dis-
patcher intervention for rescue r, c2 is the average number
of notifications sent for r given the INS. We also want to
maintain a high claim rate, i.e., Er∼R[c3(ai, x, y, z, r)] ≥ bi
for a given set of ai, bi where c3 is the probability that rescue
r is claimed within first ai minutes.

Without knowing the exact distribution R, we can only
estimate these expected values through data. Given a dataset
D of rescues under INS (x, y, z), we define p(a, x, y, z) as
the proportion of rescues in D that are claimed in a min-
utes; s(x, y, z) as the proportion of rescues in D that are not
claimed by volunteers before the dispatcher intervenes; v(y)
as the average number of available volunteers who are within
y miles of the donor who receive the first round notifications;
q(x, y, z) as the average number of available volunteers who
receive the second round notifications. Formally,

p(a, x, y, z) =
1

|D|
∑

r∈D
I (rescue r claimed in a min) ,

s(x, y, z) =
1

|D|
∑

r∈D
I (r not claimed in wr − z min) ,

v(y) =
1

|D|
∑
r∈D

# available volunteers within y miles of r

q(x, y, z) =
1

|D|
∑
r∈D

I

(
r not claimed
in x min

)
× # available

volunteers for r

Assuming data points in D are sampled from R, we have

Er∼R[c1(x, y, z, r)] ≈ s(x, y, z)

Er∼R[c2(x, y, z, r)] ≈ v(y) + q(x, y, z)

Er∼R[c3(a, x, y, z, r)] ≈ p(a, x, y, z)

Our final optimization problem is as follows.

min
x,y,z

C(x, y, z) = λs(x, y, z) + v(y) + q(x, y, z) (2)

s.t. p(ai, x, y, z) ≥ bi, ∀i ∈ I (3)
(x, y, z) ∈ S

From the historical data and dispatcher’s advice, we could
estimate μ, Vy, ai, bi, S. However, estimating s(·), q(·), p(·)
poses significant difficulty. We need to estimate the counter-
factual claim time (CCT) for all INSs (x, y, z) �= (x̂, ŷ, ẑ).

4.1 Counterfactual claim time (CCT) estimation

Given a rescue happened under the default INS (x̂, ŷ, ẑ), we
estimate its CCT under some other INS (x, y, z). We make
the following assumptions.

• No matter when a volunteer receives the notification, upon
receiving it they take the same amount of time to respond,
and the effect of human intervention is independent of the
app notification.

• The intervention outcome is not affected by the INS.

• Given a list of regular volunteers (provided by dispatch-
ers or derived from data), if a rescue is recorded in the
historical data as claimed by a regular volunteer after the
dispatcher intervention time, i.e., w − ẑ minutes after the
rescue is posted, we give the credit to dispatcher interven-
tion. If a rescue was claimed after the dispatcher interven-
tion time by anyone else, we assume that the dispatcher’s
intervention have failed.

Suppose the rescue was claimed by volunteer i located d
miles from the donor in the historical data. At a high level,
in most cases we compute the claim time of volunteer i in
the new INS (x, y, z) and take that as our CCT estimate.
For example, suppose i is within the first round notification
radius, i.e. d ≤ ŷ and claims the rescue in 7 minutes under
(x̂, ŷ, ẑ). This rescue would have a CCT of 12 minutes when
x = 5, z = ẑ = 60 and y < d ≤ ŷ, i.e., i is now outside the
first round notification radius. This is because the volunteer
i needs 7 minutes to respond after getting notification, but
now they only receive the notification 5 minutes after the
rescue is available. We also factor in the effect of dispatcher
intervention when the intervention happens before the CCT
k, i.e. wr − z < k. For rescue r, we report the expected
claim time mz(k) = μmin{wr−z, k}+(1−μ)k. In another
scenario, if in the historical data, volunteer i who is not in the
first round notification radius claims the rescue before the
second round notification, we assume the volunteer’s action
is due to actively checking the available rescues and is not
affected by the notification. Thus, the CCT remains the same
for all INS. The complete computation is shown in Fig. 4.

We claim that our estimation is conservative, i.e., we will
never underestimate the claim time. This is important in
practice, because overestimation may merely lead to unnec-
essary resource spent but underestimation may cause a res-
cue to fail. Our estimation is accurate when i is within the
first round notification radius in the counterfactual INS but
not in the default INS and intervention happens after the
claim time, as i would still be the first volunteer to claim
the rescue under the counterfactual INS. In some other cases,
there exists the unobservable possibility that some other vol-
unteer might claim the rescue before i in the counterfactual
INS, and hence we might overestimate the claim time.
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Figure 4: Construction of the CCT for INS (x, y, z) based
on default INS (x̂, ŷ, ẑ). a is the rescue’s actual claim time.
d is the distance from the rescue’s volunteer to the donor.

4.2 Solving the optimization problem

Given the CCT estimate for each rescue, we can estimate
the functions s(·), q(·), p(·) using the counterfactual dataset.
However, there is no closed-form expression for them. Com-
puting their values at every point in a brute force way is obvi-
ously inefficient. We propose a branch-and-bound algorithm
and a feasibility check to find optimal INS more efficiently.

First, we note that the CCT, as detailed in Fig. 4, is in-
creasing in x and decreasing in y and z. Since p(·) is the
empirical estimate based on the claim time, if some infea-
sible INS (x, y, z) does not satisfy claim rate constraint (3),
any INS (x̃, ỹ, z̃) with x̃ ≥ x, ỹ ≤ y, z̃ ≤ z is also infeasi-
ble. Thus, we need not generate CCT for (x̃, ỹ, z̃).

Using a similar observation, we devise our main algo-
rithm, Alg. 2. Note that s(x, y, z) decreases as x, z decreases
and y increases, v(y) decreases as y decreases, q(x, y, z)
decreases as x, y, z increases. Therefore, if we replace all
the variables in all terms with the extreme values in domain
S that can minimize C(x, y, z) (as shown in Table 4), we
get a lower bound of C(x, y, z). We define a subproblem
as the original optimization problem with k of the variables
in the INS specified and the remaining ones unspecified for
k = 0, 1, 2, 3. To compute a lower bound for each subprob-
lem, we replace the unspecified variables in each term with
the extreme values according to Table 4. For example, if z is
specified, and x, y are unspecified, we get a lower bound

C̄ = λs(xmin, ymax, z) + v(ymin) + q(xmax, ymax, z)

In Alg. 2, we start with the original problem where none of
the variables are specified (k = 0). We branch to lower level
subproblems in the order of z → y → x, as this order tends
to prune the fastest. For each subproblem, we either compute
a lower bound, or when all variables are specified, compute
the exact cost. We generate one counterfactual dataset for
computing the exact cost (Line 3, Alg. 1), and at most two
datasets when computing the lower bound (Line 8, Alg. 1),
since s(·) and z(·) are minimized at two different INSs and
v(·) does not depend on the CCT. The implicit pruning on
Line 3 guarantees Alg. 2 finds the optimal solution.

s(x, y, z) xmin ymax zmin

v(y) ymin

q(x, y, z) xmax ymax zmax

Table 4: Replace (unspecified) variables in each term with
the extreme values to get a lower bound.

Algorithm 1: Solve-Relaxation
1 Optional input arguments: x, y, z
2 if all of x, y, z specified then
3 Generate CCTs with (x, y, z).
4 if feasible then

5 Compute cost C̄ = C(x, y, z)

6 return subproblem (C̄, (x, y, z))

7 else
8 Generate CCTs with unspecified parameter replaced

by extreme values in Table 4.
9 Compute lower bound C̄

10 return subproblem (C̄, (x, y, z))

5 Results

5.1 Prediction

We “predict the future with the past”. As mentioned in Sec-
tion 3, we treat rescues done by volunteers who have done
over 10 rescues in the last two months in the last hour of the
pick-up window as unclaimed. Thus, we exclude the rescues
in the first two months from our prediction task as we do
not have the volunteer history for these early entries. As a
result, the training data consist of rescues from May 2018 to
December 2018 and testing data consist of rescues from Jan-
uary 2019 to May 2019. In addition, since the dataset is im-
balanced on the number of claimed and unclaimed rescues,
we oversample the unclaimed rescues so that the ratio of
claimed and unclaimed rescues is 1:1. The oversampling is
applied to only the training dataset for the predictive model.

Table 5 shows the stacking model outperforms all baseline
models. Moreover, it yields almost no false positive errors.
This is especially important in the food rescue operation, as
the cost of not taking actions to a rescue which turns out un-
claimed due to a false positive is much higher than that of an
unnecessary dispatcher intervention due to a false negative.

5.2 Optimization

After consulting the dispatcher, we take μ = 0.4 as the prob-
ability that dispatcher intervention is effective. We require
that the optimal INS’s claim rate be no worse than default
INS. That is, we use ai = 1, 2, . . . 120 and bi being the em-
pirical claim rate at the ai-th minute under the default INS.

First, we demonstrate the effectiveness of the branch
and bound algorithm (Alg. 2). We set the domain S as
x, y ∈ {2, 4, 6, 8} and z ∈ {30, 40, 50, 60}. As shown in
Table 6, branch and bound needs to generate CCTs on much
less INSs than the brute force approach, although advan-
tage is less significant for smaller λ. In the sequel, we use
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Algorithm 2: Branch-and-Bound
1 Push Solve-Relaxation({}) to Frontier.
2 while Frontier set is not empty do

3 Get subproblem with lowest C̄ from Frontier.
4 if subproblem has all parameters specified then

5 return (C̄, (x, y, z)) #(optimal solution)
6 else
7 Follow the order z → y → x to expand the

node, i.e., if the first k variables are already
specified, create a subproblem for each
possible value of the (k + 1)th variable in S.

8 Add all subproblems Solve-Relaxation(x, y, z)
to Frontier.

Model Accuracy Precision Recall F1 AUC
GB 0.73 0.86 0.82 0.84 0.51
RF 0.71 0.87 0.78 0.82 0.54
GP 0.56 0.88 0.54 0.67 0.60
SM 0.69 1.00* 0.64 0.78 0.81

Table 5: Performance of selected models, GB: Gradient
Boosting Classifier, RF: Random Forest; GP: Gaussian Pro-
cess; SM: Stacking Model. * We run the experiments for SM
for 3 times. The precisions are 1.0, 1.0, 0.9969.

Alg. 2 and set the domain S as x ∈ {1, 1.5, 2, . . . , 25}, y ∈
{1, 1.5, 2, . . . , 10}, z ∈ {30, 32.5, 35, . . . , 90}.

Similar as above, we use the earlier data Dpast to predict
the more recent data Dfuture. First, we focus on computing
the optimal INS on Dpast in Fig. 6a. Both the 2nd round no-
tification time and the dispatcher intervention time decrease
as λ grows, i.e. the dispatcher’s intervention matters more in
the dispatching cost. This is aligned with the results in Ta-
ble 4. When the app notification is the primary concern, the
default INS is almost desirable, yet if we would like to min-
imize the interventions, the 2nd round notification needs to
go out sooner. Fig. 6b, we show the Pareto frontier (in red)
of optimizing on Dpast. The optimal INSs in Fig. 6a are
now shown in blue. The default INS lies within the frontier,
suggesting that the numbers of both interventions and notifi-
cations can be improved. The orange rectangle indicates the
INS region that is strictly superior to the default INS.

Of course, we would like to examine the quality of the
optimization solutions on unseen data. Thus, in Fig. 6c, we
show the projected number of interventions and notifications
on Dfuture of the optimal INSs on Dpast. For the same INS,
the performance is different between Fig. 6b and Fig. 6c be-
cause the claim probabilities are estimated using the two
datasets separately. Despite this difference, some optimal
INSs on Dpast still outperforms the current practice. We
therefore suggest two INSs (see Fig. 6c) to 412 Food Rescue,
as shown in Table 7. INS A is a strict improvement over the
current practice, reducing the number of both intervention
and notification. Our second solution, INS B, drastically re-
duce the labor of dispatcher by 24% at the expense of a mere
2% increase of notifications sent. Since 412FR handles 4574

Figure 5: The ROC curves of the models

Brute force search Branch and bound
λ INSs Time (s) INSs Time (s)
107 64 192.6 18 65.5
106 64 183.7 18 64.9
105 64 185.1 16 56.4
104 64 190.9 34 125.0
103 64 187.1 35 129.3

Table 6: Running time and the number of INSs for which the
CCTs are generated.

rescues in a 430-day period, INS B can save the dispatcher
over 390 times of intervention a year in expectation. An in-
tervention takes the dispatcher at least the same amount of
time as matching a new food rescue, and often more. Thus,
the dispatcher could handle at least 390 extra rescues a year,
which is over 7500 pounds of food by the average donation
in our dataset. We choose INS B over the rightmost INS on
Fig. 6c because 412FR has relatively more shortage of dis-
patcher than volunteers. Finally, Fig. 6d shows our two INSs
have competitive claim rates on the unseen data. This sug-
gests the promise of deploying our method in the future.

6 Discussion

As mentioned in Section 2, there are other facets of the food
rescue problem that can be tackled with a computational ap-
proach, including optimizing the matching between donors
and recipients, and directly incentivizing volunteers to be
more active. We focus on predicting whether a rescue can be
claimed and optimizing INS as they are of higher priority to
our partners at 412FR with a clearer path for future deploy-
ment. Specifically, the matching is currently done manually
at 412FR. Rather than a mechanical process, the dispatcher’s
job requires a high level of situational judgment, interper-
sonal skills, and the rapport developed over time. Through
our multiple conversations with 412FR and direct experi-
ence of shadowing the dispatcher, we believe that currently,
automating the matching would not benefit 412FR without a
big change of the overall workflow involving all the donors,
recipients as well as 412FR. Motivating the volunteers to
boost claim rate would require 412FR to take new initiative
that is not in place. In contrast, the INS is a current practice
and it is easier to test our solution. Nonetheless, we will con-
sider these directions as we continue to work with 412FR.

In addition, our optimization framework is already tak-
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INS Interventions Notifications
A: (16.5, 5.5, 45) −13% (−0.06) 0% (−1)

B: (15.5, 5.5, 32.5) −24% (−0.10) +2% (+46)

Table 7: The projected change in the probability of interven-
tions and number of notifications of the proposed INSs. The
numbers in parentheses are the absolute change.

(a) Optimal INSs on Dpast (b) Pareto frontier on Dpast

(c) Performance of the optimal
INSs for Dpast on Dfuture

(d) Projected claim rate of two
recommended INSs on Dfuture

Figure 6: Experiment results of the data-driven optimization

ing into account the volunteer retention problem implicitly
as we try to reduce the notifications sent in the objective
function. Our framework can be extended to different objec-
tives, and one may design an objective that explicitly focuses
on volunteer retention. For example, a user’s probability of
uninstalling an app could be modeled as a function f(·) of
the number of notifications they receive in a week (Gibb
2018). To minimize the number of volunteers lost, we could
change the optimization objective from Eq. (1) to

En∼NEr1,...,rn∼Rn

∑
i∈V

Eni∼Ni({rj},x,y,z)f(ni)

where n is the number of total rescues in a week following
some distribution N , V is the set of volunteers, and ni is the
number of notifications volunteer i receives in a week fol-
lowing a distribution determined by the set of rescues and
the INS. Similar to Eq. (1), this objective value can be esti-
mated through the counterfactual datasets.

Another promising direction is to combine our prediction
model and the optimization algorithm to optimize rescue-
specific INS, for which our Alg. 2 can be adapted to work.
We defer the further investigation to future work.

7 Conclusion

We provide the first predictive and prescriptive analysis of
volunteer-based food rescue operations. Our stacking model

predicts the claim status of rescues with AUC of 0.81. Such
prediction helps the dispatcher better prepare for interven-
tions and alleviate their uncertainty. Our data-driven opti-
mization reduces the frequency of dispatcher intervention
and push notifications sent to volunteers, without harming
the claim rate. The dispatcher can use the saved effort to
handle an extra 7500 pounds of food a year that would oth-
erwise go to waste. By improving the operation efficiency of
inspiring organizations like 412FR, our research contribute
to the fight against food waste and insecurity. We are work-
ing with 412FR to deploy our results in the near future.
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