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Abstract

Although deep learning for Diabetic Retinopathy (DR)
screening has shown great success in achieving clinically
acceptable accuracy for referable versus non-referable DR,
there remains a need to provide more fine-grained grading of
the DR severity level as well as automated segmentation of
lesions (if any) in the retina images. We observe that the DR
severity level of an image is dependent on the presence of
different types of lesions and their prevalence. In this work,
we adopt a multi-task learning approach to perform the DR
grading and lesion segmentation tasks. In light of the lack of
lesion segmentation mask ground-truths, we further propose
a semi-supervised learning process to obtain the segmenta-
tion masks for the various datasets. Experiments results on
publicly available datasets and a real world dataset obtained
from population screening demonstrate the effectiveness of
the multi-task solution over state-of-the-art networks.

Introduction

Automated screening for Diabetic Retinopathy (DR) using
deep learning has achieved significant progress and demon-
strated excellent performance in terms of having accurate
classifications for referable versus non-referable DR (Ting
et al. 2019). The top performing deep learning networks
have obtained scores of above 90% for the area under the
Receiver Operating Characteristics curve (ROC) for mod-
erate and above DR severity level (Sayres et al. 2019;
Ting et al. 2017). However, there remains a need to provide
more fine-grained grading of the DR severity level.

A diabetic retina image can be graded into different levels
of severity according to the International Clinical Diabetic
Retinopathy Scale (ICDRS) (Gulshan et al. 2016). There
are 5 levels in this scale: 0 (no apparent DR), 1 (mild DR), 2
(moderate DR), 3 (severe DR), 4 (poliferative DR). Figure 1
shows sample retinal images and their corresponding DR
severity level based on ICDRS. Learning a model to clas-
sify retina images into the various groups is a challenge due
to limited labeled data. This is further worsened by the situa-
tion where the labels can be noisy as a result of the subjective
labeling by different human graders.
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Figure 1: Sample retina images and their ICDRS grade taken
from (Gulshan et al. 2016).

We observe that human graders examine the retina im-
age for the presence of one or more lesions such as microa-
neurysms, hemorrhages, hard exudates and soft exudates be-
fore they assign the DR severity level to the image. The
ability to automate the segmentation of lesions in a retina
image can facilitate this grading process, and serve to val-
idate the DR severity level assigned by the grader. In this
work, we explore the feasibility of adopting a multi-task
learning approach to perform these two closely related tasks:
DR grading and lesion segmentation. Specifically, we ex-
tend the well-known UNet architecture (Ronneberger, Fis-
cher, and Brox 2015) by replacing its encoder with a clas-
sic VGG-16 network (Simonyan and Zisserman 2014). This
creates a dual-stream network, where the VGG-16 encoder
outputs the DR grading and the decoder outputs the lesion
segmentation. Both streams thus complement each other.
The pixel level lesion segmentations provide justification for
the DR severity level grading, while the severity level grad-
ing guides the lesion segmentation. Additionally, the streams
regularize each other during training which prevent over-
fitting of the individual tasks.

Obtaining precise pixel level annotation of abnormali-
ties associated with DR like microaneurysms, soft exudates,
hard exudates and hemorrhages is labour intensive. Given
the limited availability of this invaluable resource for model
learning and performance evaluation, we propose a semi-
supervised approach for effective multi-task learning. Ex-
periment results on several benchmark datasets demonstrate
that our approach leads to a significant performance boost
over existing networks, notably in differentiating retina im-
ages having moderate DR from mild DR.
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Related Work

Traditional DR screening systems typically first identify re-
gions of interests for feature extraction before using the ex-
tracted features for classification (Lim et al. 2014). Subse-
quently, advances in deep learning enabled the entire retina
image to be passed as input through some neural network
which classifies whether the image has referable DR (Zhou
et al. 2018; Ting et al. 2017).

The lack of interpretability of such deep learning sys-
tems for DR screening has led to research in semantic seg-
mentation which classify pixels into various retinal fea-
tures, namely - optic disc, microaneurysms, haemorrahges,
soft and hard exudates (Saha, Sathish, and Sheet 2019;
Yan et al. 2019). More recent developments explore the uti-
lization of multi-task learning for deep neural networks. This
is achieved by having two outputs at the end of a network,
each with a different loss function (Zhou et al. 2018). A
weighted sum of the losses is then used for training.

The work in (Samala et al. 2017) investigates the use
of auxiliary tasks. This involves having outputs at various
points of the network with the goal of sharpening that sec-
tion of the network. Specific loss functions, which are more
characteristic of that section and its output task, are defined
and added to the overall training loss.

Our proposed approach combines multi-task learning
with auxiliary tasks by using the VGG16 encoder section
to output the image classification while the decoder section
outputs the image segmentation. Loss functions are defined
for each task and combined for training. More details will be
elaborated in the next section.

Proposed Network

Our proposed network is inspired by two widely used deep
learning architectures - UNet and VGG-16. VGG-16 has
shown great performance for both general image classifica-
tion and medical image grading tasks. Using VGG-16 en-
ables us to leverage on its feature extraction strengths to ob-
tain the grading classification of retinal images. Further, the
availability of pretrained weights of VGG16 on ImageNet
and Places365 datasets allows us to leverage on the success-
ful improvements that transfer learning has displayed for im-
age classification and segmentation.

The simplest and most commonly employed use of multi-
task learning has an added output beside the original output.
In the case of a UNet architecture, this involves adding a
DR grading output at the end of the decoder section of the
network as shown in Figure 2.

Another way is to have a two-step network where the
UNet outputs the segmentation mask which is then used to
process the grading prediction (see Figure 3). However, from
a training perspective, this is not ideal because of the need
to separate the training of the network into two steps - first
for the segmentation output, then for DR grading output.

Figure 4 describes a network by which the encoder out-
puts a grading prediction, while the decoder outputs the
usual segmentation prediction. This network is based on
the functional similarities between VGG-16 and the encoder
portion of UNet. We replace the encoder portion with a
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Figure 2: Variant A. Multiple outputs at the decoder section
of UNet.
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Figure 3: Variant B. Two-step network.

VGG-16 network, and this VGG-16 encoder section conse-
quently outputs the DR grading classification of the retina
image, while the decoder utilises the features extracted by
the VGG-16 network to obtain the lesion segmentation re-
sult. Figure 5 gives the details of each layer in this network.
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Figure 4: Variant C. Proposed network.

Encoder Section

As mentioned, we replaced the conventional UNet encoder
with a VGG16 network, passing skip connections to the de-
coder section before every Max-Pool operation. At the end
of the 5th VGG-16 convolutional block, the fully connected
layers are replaced by a Global-Max-Pooling operation to
extract the final features before proceeding to complete the
image classification task with the Dense operation.

13268



Grading  
Output

Segmentation 
Output

k=64
k=128

k=256
k=512

k=512

k=256
k=128

k=64
k=32

k=16
k=4

G
lobal 

M
ax-Pool

u=512

Figure 5: Details of the layers in the proposed network, where k and u is the number of kernels and dense units respectively.
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Figure 6: Retinal image segmentation by different encoder architectures. Red and yellow markings indicate red lesions and
yellow lesions respectively, while purple markings indicate optic disc.

We have also considered and compared alternative ar-
chitectures such as ResNet (He et al. 2016), InceptionV3
(Szegedy et al. 2016) and DenseNet (Huang et al. 2017).
However, despite outperforming VGG-16 in most image
classification tasks, notably in (Russakovsky et al. 2015),
these networks fair poorly when implemented as the encoder
network for image segmentation tasks.

Figure 6 shows the segmentations by the various encoder
architectures. We observe the ResNet and InceptionV3 do
not pick up the red lesions, while DenseNet detects only par-
tial regions that correspond to the red lesions. This is prob-
ably due to the use of batchnorm operation in these alterna-
tive networks that produces a less accurate representation of
features for this task.

Decoder Section

We introduce three enhancements to the conventional UNet
decoder section in our proposed network. First, we use trans-
posed convolutions (Dumoulin and Visin 2016) instead of
the usual up-sampling approaches. Transposed convolutions
has been shown to be a more accurate means of decoding the
features extracted for image segmentation tasks, achieved by
mathematically transposing the initial convolutional kernel.
Second, the decoder is modified to mirror that of a VGG-
16 network, which provides better decoding. Finally, we re-
place the last sigmoid activation function with a softmax op-
eration since a pixel cannot belong to multiple classes. Our
experiments show that these enhancements lead to notable
improvements for the lesion segmentation task.

Loss Functions

Our proposed network utilizes two loss functions from the
segmentation task and the DR grading task which provide
mutually beneficial sharpening and regularization of the net-
work weights during backpropagation. Specifically, the loss
function of the segmentation task signals back to the en-
tire network (encoder and decoder) its segmentation loss be-
tween the predicted result and the ground truth, while the
loss function of the grading task signals back to the encoder
section its grading classification loss. Moreover, the network
is refined through the direct relation that both loss signals
have on each other - an image with a DR severity level of
1 only has red lesions, while an image with a DR severity
level of 4 has both red and yellow lesions.

The lesion segmentation task outputs a prediction S of di-
mension h x w x 5 from an input image of dimension h x
w x c, where h and w are the height and width of the in-
put image, c is the number of channels and we have a total
of 5 DR classes. The vector S is then compared against the
ground-truth segmentation mask Y . For this, we use the bi-
nary cross-entropy loss as shown in Equation (1):

LB(S, Y ) = −
h∑

i=1

w∑

j=1

5∑

k=1

Yi,j,k logSi,j,k

+ (1− Yi,j,k) log(1− Si,j,k)

(1)

Note that although previous work has shown success for
using Dice-loss or Jaccard-loss to improve image segmenta-
tion results due to their higher sensitivity to class imbalanced
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Figure 7: Semi-supervised training process.

Table 1: Performance of the network variants for the lesion
segmentation and DR grading classification tasks

Dice (%) ROC (%)
Variant A 55.37 86.27
Variant B 73.89 82.05
Variant C 76.12 89.45

Table 2: Dice score of networks for lesion segmentation
Network Red lesions Yellow lesions

UNet 62.25 ±7.646 76.03 ±1.415
LinkNet 73.56 ±1.026 83.54 ±0.19

Feature Pyramid 72.66 ±0.541 77.28 ±0.429
DeepLabv3 56.73 ±1.217 72.01 ±1.661

MTUnet 75.15 ±0.778 84.27 ±0.456

datasets, however, our initial experiments involving various
combinations of either Dice Loss, generalized Dice Loss or
Jaccard loss did not yield good performance for our segmen-
tation task.

The DR grading task outputs a prediction vector P , in
one-hot encoding format for the 5 DR classes. P is then
compared against the grading ground-truth G. We use the
multi-category cross-entropy loss as shown in Equation (2):

LC(P,G) = −
5∑

k=1

Gi,j,k, logPi,j,k (2)

Finally, we weight and combine these two losses above into
a multi-task network loss LM as follows:

LM = LB + αLC (3)

where α is a hyper-parameter. We experimented with differ-
ent values of α and found that α = 1 gives the best result for
both tasks.

Semi-Supervised Training

Given the limited number of images that have ground-truth
labels for both retinal grading and segmentation mask, we
propose a semi-supervised approach to increase the number
of images to train the proposed network. Figure 7 shows the
training processs.

We first use a small dataset where the ground truth seg-
mentation mask is available to obtain an initial network for
the lesion segmentation task. With this initial network, we

obtain the segmentation masks for the training dataset where
the images are only labeled with the DR severity levels. Note
that if an image in the training dataset has a severity level of
0, then we ignore the red and yellow lesion outputs from the
initial network. We also increase the accuracy of this initial
network by applying data augmentation using random ro-
tations, width/height shifts, shear, zoom, vertical/horizontal
flips and channel shifts on-the-fly during training.

Performance Study

We implemented the three network variants in Keras and
carried out experiments to evaluate their performance. We
adopt Adam algorithm to optimise the networks, with an ini-
tial learning rate of 1e-5. The input size of each network is
512 x 512 x 3. ImageNet pretrained weights are used as the
initial weights of the encoder section, while weights of the
decoder section are initialized by the He Normal algorithm.
A 4X Tesla V100 GPU server is utilized to train the network.
We use the following datasets in our experiments.

1. Indian Diabetic Retinopathy Image Segmentation
Dataset (IDRiD-S) (Porwal et al. 2018). This is a
publicly available dataset with 81 retinal images for the
segmentation task where each image has a manually
labelled segmentation mask. We split these images
into training and test sets of 54 images and 27 images
respectively.

2. Indian Diabetic Retinopathy Image Dataset (IDRiD-D)
(Porwal et al. 2018). This publicly available dataset con-
tains 413 images which have been manually classified
into the 5 DR severity levels.

3. Kaggle DR Competition Dataset1 (Kaggle). This dataset
consists of 35126 training images, 10906 validation im-
ages and 42670 test images provided by EyePACS2, a
free platform for DR screening. Each image has a manu-
ally labelled grading of 0 to 4. For the training set of the
DR grading classification task, we combine the training
and test images and downsample the images by the num-
ber of images with DR severity level of 4. This gives us
1914 images per severity level.

4. Singapore National Diabetic Retinopathy Screening Pro-
gram (SiDRP14-15) (Ting et al. 2017). This dataset con-
sists of retinal images obtained from the DR screening
of a multi-ethnic population with ground-truth labels for

1https://www.kaggle.com/c/diabetic-retinopathy-detection
2http://www.eyepacs.com/data-analysis
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Table 3: ROC (%) of networks for the different DR severity levels on IDRiD
Network No DR Mild Moderate Severe Proliferative
NASNet 93.00 ±0.784 79.07 ±3.881 71.75 ±5.342 72.63 ±4.239 83.95 ±4.729

DenseNet-201 62.25 ±13.49 38.64 ±5.872 40.49 ±5.590 36.98 ±6.060 36.83 ±12.78
ResNeXt-101 92.09 ±3.223 79.28 ±4.391 67.22 ±2.499 72.26 ±9.102 66.62 ±4.879

InceptionResNetV2 94.86 ±3.286 77.92 ±10.03 67.91 ±13.00 75.74 ±5.868 67.17 ±14.09
MTUnet 99.00 ±0.330 89.94 ±2.093 84.13 ±3.011 82.86 ±3.110 87.20 ±2.859

Table 4: ROC (%) of networks for the different DR severity levels on SiDRP14-15
Network No DR Mild Moderate Severe Proliferative
NASNet 61.37 ±0.569 47.14 ±1.547 59.81 ±3.224 81.88 ±8.410 87.64 ±0.538

DenseNet-201 51.00 ±3.190 48.11 ±2.053 43.44 ±9.126 57.47 ±16.385 66.33 ±14.374
ResNeXt-101 55.55 ±3.921 52.10 ±1.461 58.69 ±4.049 75.59 ±12.481 42.76 ±5.103

InceptionResNetV2 66.79 ±4.272 46.84 ±5.985 59.16 ±10.337 83.23 ±7.013 83.52 ±2.653
MTUnet 78.56 ±0.122 58.44 ±0.606 84.75 ±1.875 97.77 ±0.745 98.11 ±0.867

grading classification. This dataset consists of 71896 im-
ages from 14880 patients.

We evaluate the effectiveness of the networks for both the
lesion segmentation and DR grading tasks. For the lesion
segmentation task, let X be the set of pixels extracted, and
Y be the set of annotated pixels in the ground truth. We use
the Dice similarity coefficient which measures the similarity
between the two sets X and Y as follows:

Dice(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

For the DR grading task, we use the area under the Receiver
Operating Characteristic (ROC) curve to measure the classi-
fication accuracy for the different severity levels.

Experiments on Network Variants

We first evaluate the three network variants. Each network is
trained for 50 epochs using the downsampled Kaggle dataset
with segmentation labels obtained from the semi-supervised
training procedure using IDRiD-S as the training set.

Table 1 shows the results. We see that variant C outper-
forms the other two networks for both lesion segmentation
and DR grading. As such, we will use variant C as the net-
work for the rest of our experiments. We call our proposed
network MTUnet.

Experiments on Lesion Segmentation

In this set of experiments, we compare the performance of
our proposed MTUnet for the lesion segmentation task with
the following networks:

1. UNet (Ronneberger, Fischer, and Brox 2015). This is the
original UNet architecture and serves as our baseline.

2. LinkNet (Chaurasia and Culurciello 2017). This is simi-
lar to UNet except that concatenation is replaced by ad-
dition for skip connections.

3. Feature Pyramid Network (Lin et al. 2017). This network
extracts features of the image at different scales and com-
bines them into a joint prediction.

4. DeepLabv3 (Chen et al. 2017). This approach uses
Atrous convolutions to retain context.

We train all these methods using the 54 training images in
IDRiD-S, and test them on 27 testing images. For MTUnet,
we use the semi-supervised process in Figure 7 to obtain the
DR severity level for the images in IDRiD-S.

Table 2 shows the average results of three training runs.
We observe that our MTUnet outperforms all the other net-
works for both the segmentation of red and yellow lesions.
Notably, under the paired t-test at 10% significance level, the
improvement of MTUnet over LinkNet is statistically signif-
icant, suggesting that having a DR grading as an auxiliary
task helps to sharpen the lesion segmentation task.

Experiments on DR Grading Classification

Finally, we evaluate the grading classification performance
of our proposed MTUnet. We compare MTUnet with the fol-
lowing networks:

1. NASNet (Zoph et al. 2018). NasNet leverages on the use
of reduction cells which are convolutional cells that re-
turn a feature map where the feature map height and
width is reduced by a factor of two.

2. DenseNet-201 (Huang et al. 2017). This network con-
nects each layer to every other layer in a feed-forward
fashion.

3. ResNeXt-101 (He et al. 2016). This is an improved vari-
ation of ResNet where neurons at one path are no longer
connected to the neurons at other paths.

4. InceptionResNetV2 (Szegedy et al. 2017). This is an im-
provement from InceptionV3 by harnessing the effective-
ness of residual connections as in ResNet.

All the networks are trained using the down-sampled
Kaggle dataset. Since the images in Kaggle do not have
the ground truth lesion segmentation, we use the semi-
supervised process to obtain the segmentation mask labels
for these images. We test the networks on the IDRiD-D and
SiDRP14-15 datasets.

Table 3 shows the ROC scores of the various networks
for the IDRiD-D dataset. We observe that MTUnet is able to
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achieve higher scores for all severity levels as compared to
the alternative networks. Notably, MTUnet obtains laudable
scores of at least 82.86% and at most 99% across all severity
levels.

Table 4 gives The ROC scores of the various networks
for the SiDRP14-15 dataset. Again, we see that MTUnet
outperforms all the alternative networks for all severity lev-
els. Importantly, while the alternative networks fare poorly
in identifying moderate DR images, MTUnet performs well
with an ROC score of 84.75%, which is at least a 24% per-
formance difference. This is significant because from a clin-
ical perspective, moderate DR triggers the commencement
of medical treatment.

Conclusion

In this work, we have described a multi-task deep learn-
ing system called MTUnet which leverages on the close re-
lation between DR grading and lesion segmentation tasks.
Specifically, we have proposed an extended UNet architec-
ture with VGG-16 substituted as the encoder section of the
network. This network accepts a retinal fundus image in-
put and outputs both the DR grading and the lesion seg-
mentation. To deal with the lack of lesion segmentation
ground-truth masks, we have additionally proposed a semi-
supervised approach to obtain the segmentation masks re-
quired for multi-task training. Experiment results on var-
ious benchmark datasets demonstrate the effectiveness of
our multi-task approach over state-of-the-art networks. Cru-
cially, the 25% performance difference obtained in the iden-
tification of moderate DR on SiDRP14-15 illustrates the
clinical significance of our approach.
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