
The Thirty-Second Innovative Applications of Artificial Intelligence Conference (IAAI-20)

Accelerating Ranking in E-Commerce
Search Engines through Contextual Factor Selection

Anxiang Zeng,1,2 Han Yu, Qing Da, Yusen Zhan, Chunyan Miao1 3* 3 1,2*

1School of Computer Science and Engineering, Nanyang Technological University (NTU), Singapore
2Alibaba-NTU Singapore Joint Research Institute

3Alibaba Group, Hangzhou, China
*Corresponding authors: daqing.dq@alibaba-inc.com, ascymiao@ntu.edu.sg

Abstract

In large-scale search systems, the quality of the ranking re-
sults is continually improved with the introduction of more
factors from complex procedures. Meanwhile, the increase in
factors demands more computation resources and increases
system response latency. It has been observed that, under
some certain context a search instance may require only a
small set of useful factors instead of all factors in order to re-
turn high quality results. Therefore, removing ineffective fac-
tors accordingly can significantly improve system efficiency.
In this paper, we report our experience incorporating our Con-
textual Factor Selection (CFS) approach into the Taobao e-
commerce platform to optimize the selection of factors based
on the context of each search query in order to simultane-
ously achieve high quality search results while significantly
reducing latency time. This problem is treated as a combi-
natorial optimization problem which can be tackled through
a sequential decision-making procedure. The problem can
be efficiently solved by CFS through a deep reinforcement
learning method with reward shaping to address the prob-
lems of reward signal scarcity and wide reward signal distri-
bution in real-world search engines. Through extensive off-
line experiments based on data from the Taobao.com plat-
form, CFS is shown to significantly outperform state-of-the-
art approaches. Online deployment on Taobao.com demon-
strated that CFS is able to reduce average search latency
time by more than 40% compared to the previous approach
with negligible reduction in search result quality. Under peak
usage during the Single’s Day Shopping Festival (Novem-
ber 11th) in 2017, CFS reduced peak load search latency
time by 33% compared to the previous approach, helping
Taobao.com achieve 40% higher revenue than the same pe-
riod during 2016.

Introduction

Information retrieval plays an important role in com-
mercial applications, ranging from web searching en-
gines (Google.com, Baidu.com, etc.) to e-commence web-
sites (Taobao.com, Amazon.com). Such applications usually
need to rank a large set of data items in response to users’
requests. To support these applications, there are generally
two issues to be considered: a) effectiveness, how accurate
and reliable the search results in the final ranking list are and

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

b) efficiency, how fast the search engine’s response to the
user’s queries can be and whether the computational over-
head of the ranking operation is as low as possible from a
system perspective. It is a challenge to address both issues
in large-scale applications for providing excellent user expe-
rience and an efficient performance solution.

To address the high computational cost of more factors as
well as large-scale traffic requests, a search engine generally
has to degrade the service level in terms of effectiveness, i.e.,
reducing the number of recalled items, deactivating some
unnecessary service and so on, in oder to avoid access de-
lay or even unavailability, which severely affects the users’
experience (Li et al. 2009). Liu et al. proposed a cascading
ranking model to address the trade-off between effectiveness
and efficiency in the large-scale e-commerce search applica-
tions (Liu et al. 2017), by reducing the number of items in
the ranking process with some strategies, which sheds a light
on us to optimize the e-commerce search engine in another
possible way. In a search engine, a set of factors is applied
to the ranking process and not all of those factors are nec-
essary under all circumstances. On the one hand, there may
exist redundancy of factors; on the other hand, conversion
rates vary on items under different contexts1. For instance,
for the users with higher purchasing power or for long-tail
queries, maybe cheap factors are enough. The above obser-
vations shows the possibility of simultaneously improving
effectiveness and efficiency by carefully selecting a subset
of all factors under certain circumstances, which indeed is a
standard combinatorial optimization problem, but with aux-
iliary context description.

Recently, Bello et al. show that reinforcement learning
is capable of solving combinatorial optimization problem
like TSP via pointer network (Vinyals, Fortunato, and Jaitly
2015; Bello et al. 2016). In this paper, we report our experi-
ence deploying an innovative model via reinforcement learn-
ing based approach – Contextual Factor Selection (CFS)
– in Taobao.com to address the aforementioned challenge.
We formally define our optimization problem with a general
framework and a loss function which reflects both ranking
effectiveness and efficiency. Then, we transform the con-
textual combinatorial optimization problem into a sequen-
tial decision-making problem by incorporating the contex-

1Here, the 〈u, q〉 user-query pair denotes the context.

13212

tual setting and factor selection into the state and action of
an MDP, respectively. The reward is designed to encourage
saving in the computational cost as well as ensuring that the
ranking results are still effective. Our algorithm outperforms
the previous algorithm used by Taobao since deployment in
Jan 2017. In the Singles’ Day Shopping Festival in 2017, we
also demonstrated the capabilities of this new method under
large-scale real-world usage.

Application Description

Suppose thatO is the set of all available items in a database.
Q is the set of all possible queries and U denotes the set
of all users’ information. Let {〈u, q〉1, 〈u, q〉2, . . . , 〈u, q〉m}
be a set of user-query pairs, where 〈u, q〉i ∈ U × Q de-
notes the i-th user-query pair from the search requests.
Oi = {oi,1, oi,2, · · · , oi,ni} is the set of items associated
with the i-th user-query request, where ni is the number
of the related items. The ranking problem in e-commerce
can be formally defined as a task to generate a permuta-
tion function σi ∈ Σi, where σiis an one-to-one corre-
spondence from {1, 2, . . . , ni} to itself and Σi denotes the
set of all the possible permutations on Oi. The goal is to
maximize the probability of purchase under the permutation.
The permutation is usually generated by a ranking function
F (〈u, q〉i, oi,j) → R which scores each item oi,j ∈ Oi

for the request 〈u, q〉i. Let xi,j ∈ R
n be the corresponding

factor vector of item oi,j ∈ Oi under query 〈u, q〉i, where
i = 1, 2, . . . ,m; j = 1, 2, . . . , ni. Without loss of general-
ity, the ranking model is defined by

F (〈u, q〉i, oi,j) = f
(
xi,j

)
, (1)

where f : Rn → R is the ranking function. It could be any
function such as a linear model, a deep neural network or
a tree model. The ranking function is usually trained from
a dataset D =

{(
〈u, q〉i,xi,yi

)}N

i=1
logged from a real

system, where N is the number of training samples and
yi = {y1,i, y2,i, . . . , yi,ni} denotes the labels associated
with the items. Specifically, yi,j ∈ Y = {view, click, buy}
represents the feedback of the user on the j-th item. The
training can be conducted with any learning to rank meth-
ods (Li 2011). It is worth noting that, in this paper we assume
that a trained ranking function is given and consider the gen-
eral case that the ranking function provided is a black box.

There has been some previous work for resolving the ef-
fectiveness and efficiency challenge. Here, we review will
some of them which are most relevant to our work. Cascade
learning is originally proposed to address the effectiveness
and efficiency issue in traditional classification and detection
problems (Bourdev and Brandt 2005; Schneiderman 2004;
Viola and Jones 2003). Liu et al. develop a cascade ranking
model for a large-scale e-commerce search system and de-
ploy it in Taobao.com (Liu et al. 2017). However, they only
exploited optimization in terms of the number of ranking
items. In this work, we mainly focus on factor usage during
the ranking process.

Feature selection approaches aim to remove irrelevant
and/or redundant features to improve learning performance
(Guyon and Elisseeff 2003). Traditional feature selection

techniques roughly fall into two categories: 1) filter meth-
ods and 2) wrapper methods. Filter methods use learner-
irrelevant measurements to evaluate and select features, such
as information gain and Relief (Kira and Rendell 1992).
Wrapper methods involve the final learner in the feature se-
lection process, such as using the accuracy to measure the
goodness of features. Liu et al. proposed the TEFE (Time-
Efficient Feature Extraction) approach, which balances the
test accuracy and test time cost by extracting a proper sub-
set of features for each test object (Liu et al. 2008). In
the learning to rank literature, feature selection is a com-
mon strategy to improve efficiency. In general, a set of use-
ful factors are selected from a complete set of all possi-
ble factors according to some criteria such as importance
to ranking (Geng et al. 2007; Wang, Lin, and Metzler 2010;
Wang, Metzler, and Lin 2010). Geng et al. proposed a selec-
tion method based on factor importance in a query-free man-
ner, but they did not consider the real computational cost and
query-dependent factors (Geng et al. 2007). There are also
some query-dependent methods, in which the cost (delay)
of the query is considered (Wang, Lin, and Metzler 2010;
Wang, Metzler, and Lin 2010). In contrast, we consider the
computational cost (delay) of individual factors.

Use of AI Technology

Contextual Factor Selection for Ranking

In this subsection, we describe the proposed Contextual
Factor Selection (CFS) approach to help a search engine
achieve both high effectiveness and high efficiency. A fac-
tor vector xi,j ∈ R

p is assigned to the corresponding item
oi,j ∈ Oi, in which each dimension of the factor vector
is calculated on-line with different computational cost. Let
xi,j = {xi,j

1 , xi,j
2 , . . . , xi,j

p } be the factor vector associated
with a cost vector c = {c1, c2, . . . , cp}, where ck denotes
the computational cost of the k-th factor. Let Ω be the set of
all factors and S be a subset of Ω. The indicator function for
whether a factor belongs to Ω is defined as

IS(k) =

{
1, xk ∈ S,

0, xk /∈ S.
(2)

From a practical point of view, some of factors are not
necessary for ranking. For example, given a set of factors
Ω = {xi,j

k | k = 1, 2, . . . , p}, a subset S of Ω with
highly confident factors might be sufficient under some con-
texts. Therefore, given an item oi,j and an indicator func-
tion IS , the computational cost function can be written
as

∑p
k=1 IS(k)ck, where the indicator function determines

whether or not we use the factor for the ranking process2.
Thus, given a set of itemsOi, the total computational cost is

ni∑
j=1

p∑
k=1

IS(k)ck. (3)

As defined in Equation 1, the ranking model with all fac-
tors can be written as FΩ(oi,j) = f(xi,j

1 , xi,j
2 , . . . , xi,j

p) and

2We mainly consider the computational cost of the factors while
ignoring other costs.

13213

the one with a subset S is written as

FS(oi,j) = f
(
IS(1)x

i,j
1 , IS(2)x

i,j
2 , . . . , IS(p)x

i,j
p

)
(4)

Intuitively, we can treat the permutation generated by FΩ

as the optimal one since it includes all the factors we have
during the ranking process. Thus, given a 〈u, q〉i request, the
objective is

min
S⊆Ω

DOi(FΩ||FS) + λni

p∑
k=1

IS(k)ck, (5)

where DOi (FΩ||FS) denotes the distance between func-
tions FΩ and FS over the item set Oi, which could be any
distance between two functions, i.e., Kullback-Leibler diver-
gence (Kullback and Leibler 1951). The second term is the
computational cost of the factors in the set S. λ > 0 is the
trade-off parameter and ni is the number of items in query i.
Intuitively, the objective function implies that it reduces the
usage of factors as much as possible, while approximating
the original ranking function FΩ as close as possible.

However, Equation 5 is intractable even for a single
〈u, q〉i request. Consequently, it is a NP-hard problem in
general (Davis, Mallat, and Avellaneda 1997; Natarajan
1995). Moreover, we need to perform contextual factor se-
lection, (i.e., solving a general NP-hard problem for every
〈u, q〉i, which is impractical in a large-scale system even
with a small number of contexts). To overcome this chal-
lenge, we generalize the solution of Equation 5 at the con-
textual level. That is, we do not directly search for the opti-
mal subset S� and define :

S〈u,q〉 = H (〈u, q〉 | θ) (6)
where H is a model parameterized by θ and the user-query
pair 〈u, q〉 characterizes the context. Such formulation re-
duces the solution space to a global parameter from the orig-
inal multiple optimal subset selection problems, based on the
assumption that similar 〈u, q〉 representations should have
similar optimal subset structures. Thus, our goal becomes to
search for the global parameter vector θ in order to minimize
the loss defined in Equation 5 over all the 〈u, q〉 requests.

To illustrate our method, we adopt the linear ranking func-
tions as a demonstration, and other representations, (i.e.,
deep neural network and tree based ranking function, can
be derived by similar way). In the linear setting, the score of
item oi,j under user-query 〈u, q〉i is

f(xi,j
1 , xi,j

2 , . . . , xi,j
p) =

p∑
k=1

wi
kx

i,j
k , (7)

where wi
k is the corresponding weight of factor xi,j

k .
From another point of view, the permutation σi ∈ Σi sig-

nificantly depends on the factors used to calculate the scores.
Formally, given a user-query pair 〈u, q〉i and a correspond-
ing weight vector w〈u,q〉i , the linear ranking function is:

f

(
IS〈u,q〉i

(1)xi,j
1 , IS〈u,q〉i

(2)xi,j
2 , . . . , IS〈u,q〉i

(n)xi,j
p

)

=

p∑
k=1

IS〈u,q〉i
(k)wi

kx
i,j
k (8)

where IS〈u,q〉i
(k) is the indicator function, which depends

on the user-query pair 〈u, q〉i. For convenience, IS〈u,q〉i
∈

{0, 1}p denotes the binary vector with respect to the fac-
tor vector xi,j . Therefore, the ranking permutation σi highly
depends on the ranking function f(·) and the indicator func-
tion IS〈u,q〉i

, assuming the weight vector is fixed if the rank-
ing model is given. Thus, the crucial part of ranking opti-
mization is to learn an indicator function IS〈u,q〉i

to deter-
mine the utilization of the factors. To simplify the notation,
we write IS〈u,q〉i

as Iθ , where the parameter θ characterizes
the factor subset S〈u,q〉i . Hence, the ranking permutation σIθ

i

can be derived by the ranking function f(·) and the indica-
tor function Iθ . Thus, we can rewrite the distance function
DOi (FΩ||FS) as DOi (σΩ||σS), where σΩ and σS are per-
mutations derived by ranking function FΩ and FS , respec-
tively.

With the optimal ranking permutation σΩ, we then define
the distance over a item set Oi between a permutation σIθ

i
and the optimal ranking permutation σΩ as

DOi (σΩ||σIθ
i) =

2

ni(ni − 1)

ni∑

j,k=1,j �=k
σΩ(j)≥σΩ(k)

1(σ
Iθ
i (j) < σ

Iθ
i (k)),

(9)

where 1(σIθ
i (j) < σIθ

i (k)) equals 1 if σIθ
i (j) < σIθ

i (k) and
0 otherwise. The definition of the distance D is analogous
the averaged pairwise loss in learning to rank literature. The
distance measures how far away the derived permutation is
to the optimal one. With the distance and total cost function
defined above, our goal is, given a user-query pair 〈u, q〉i,
the corresponding item setOi and the ranking function f , to
learn an indicator function Iθ that minimizes the the distance
D function and the total computational costs. Formally, the
objective in Equation 5 can be further rewritten as

L(〈u, q〉i,Oi, f | θ) = DOi(σΩ||σIθ
i) + λ

ni∑
j=1

p∑
k=1

Iθ(k)ck

=
2

ni(ni − 1)

ni∑
j,k=1,j �=k

σΩ(j)≥σΩ(k)

1(σIθ
i (j) < σIθ

i (k))

︸ ︷︷ ︸
Ranking Effectiveness

+ λni

p∑
k=1

Iθ(k)ck︸ ︷︷ ︸
Ranking Efficiency

(10)

RankCFS: A Reinforcement Learning Approach

As the optimization problem defined in Equation 5 is NP-
hard in general, finding the exact solution is computation-
ally intractable. Inspired by recent work (Bello et al. 2016;
Benbouzid, Busa-Fekete, and Kégl 2012), we propose to
learn an indicator function θ using reinforcement learning,
by transforming the assignment of each element in the in-
dicator vector as a sequential decision-making problem. We
refer to this approach as RankCFS.

13214

Reinforcement Learning and Actor-Critic Methods In
this subsection, we will review some basic concepts in rein-
forcement learning. This subsection could be skipped If the
readers are similar with reinforcement learning.

In reinforcement learning, an agent sequentially selects
actions to maximize total expected pay-off. These prob-
lems are typically formalized as Markov decision processes
(MDPs) with a tuple of 〈S,A,P,R, γ〉, where S ⊆ R

d

and A ⊆ R
m denote the state and action spaces. P :

S × A × S → [0, 1] represents the transition probability
governing the dynamics of the system, R : S × A → R is
the reward function quantifying the performance of the agent
and γ ∈ (0, 1) is a discount factor specifying the degree to
which rewards are discounted over time. At each step t, the
agent is in state st ∈ S and must choose an action at ∈ A,
transitioning it to a successor state st+1 ∼ p(st+1|st,at) as
given by P and yielding a reward rt. A policy π (at|st) :
S × A → [0, 1] is defined as a probability distribution over
state-action pairs.

Policy gradients (Kober and Peters 2011; Sutton and
Barto 1998) are a class of reinforcement learning algorithms
that have shown successes in solving complex robotic prob-
lems (Kober and Peters 2011). Such methods represent the
policy πθ(at|st) by an unknown vector of parameters θ ∈
R

d. The goal is to determine the optimal parameter vector θ�

that maximize the expected discounted cumulative reward
J (θ) =

∑
τ P (τ |θ)R(τ), where τ = [s0:T ,a0:T] denotes

a trajectory over a possibly finite horizon T and P (τ |θ) de-
notes the probability of acquiring a trajectory under the pol-
icy parameterization πθ(·). the policy gradient of J (θ) can
be estimated using the the likelihood ratio trick as

∇θJ (θ) =
∑
τ

P (τ |θ)∇θ logP (τ |θ)R(τ) (11)

which is usually approximated with empirical estimate
for m sample trajectories under the policy πθ , i.e.,
1
m

∑m
j=1∇θ logP (τ j |θ)R(τ j). The gradient can be ap-

plied in every step t and further improved by introducing
a learned bias V πθ (st|μ) to reduce the variance of this esti-
mate as in (Mnih et al. 2016)

dθ ← ∇θ log πθ(at|st)(Rt − V πθ (st|μ)) (12)

where Rt =
∑T

i=t γ
i−tri is the discounted cumulative re-

ward from step t and V πθ (st|μ) is the function approxima-
tion of Rt parameterized by μ.

Converting CFS into an MDP Setting It is possible to
learn a selected factor, by a reinforcement learning policy,
instead of approximating the indicator vector Iθ directly.
However, it results in a combinatorial action space which
leads to computational intractability and searching failure
with a high probability.

To reduce the action space, we introduce a fixed factor se-
quence so that a policy can sequentially determine the cor-
responding utility of factors. Formally, for each user-query
〈u, q〉i request, the vector function Iθ can be determined in p
steps, where in the k-th step (1 ≤ k ≤ p), we need to decide
whether the k-th factor should be included in the ranking
function or not for this request, (i.e. ak ∈ A = {Skip,Keep}

π

x1 x2 x3

S = {1, 2, p}

〈u, q〉i
sp

ap

xp

Figure 1: An example of the pruning procedure via rein-
forcement learning

is the action taken at step k and A is the action space). ak is
obtained through a policy

ak = π(sk|θ), (13)

where sk is the state representation of k-th step. Then we
can obtain

Iθ(k) =

{
0, if ak = Skip
1, if ak = Keep.

(14)

After p steps, Iθ is determined and so is the ranking per-
mutation σIθ . Then, we can directly calculate the loss
L(〈u, q〉i,Oi, f | θ) to evaluate the effectiveness of selected
actions, which can be further used to define the total reward
of the actions generated in p steps during the episode. (Fig-
ure 1). The key idea lies in the state design (base on which
the action is generated), the reward design (how to evalu-
ate each action) and the optimization method for this rein-
forcement learning problem (how to find the optimal policy)
which will be described in details below.

The State and Reward Design The optimal policy should
generalize over the state space, and the optimal actions for
an episode only depend on the 〈u, q〉i request. Thus, ideally,
the state should be designed as

sk = (v〈u,q〉i , k) ∈ Rl+1 (15)

where v〈u,q〉i ∈ Rl is the representations for the user-query
pair 〈u, q〉i. The corresponding reward rk is then defined as

rk =

{
0, 1 ≤ k < p

−L(〈u, q〉i,Oi, f | θ), k = p.
(16)

The agent obtains a reward of 0 when the episode is not ter-
minated, (i.e. 1 ≤ k < p), and a reward of -L(〈u, q〉i,Oi, f |
θ) when the episode ends, like in the goal-directed tasks.
Following this definition and by assigning γ to 1, we can
then conclude that the objective in this reinforcement learn-
ing problem is exactly the negative of the objective in Equa-
tion 10:

R(τ) =

p∑
k=1

γk−1rk = −L(〈u, q〉i,Oi, f | θ) (17)

13215

Algorithm 1 RankCFS

Input:

D: Training data set D = {(〈u, q〉i,Oi)}Ni=1
f : The ranking function
γ, λ, β, rc, Tmax: Parameters of the algorithm

Output:
θ: Parameters of actor model

1: Initialize θ and μ
2: T ← 1
3: repeat
4: for each (〈u, q〉i,Oi) ∈ D (For each page view) do
5: T ← T + 1
6: Initialized the initial state s1 as in Eq. 19
7: for k = 1, 2, . . . , p do
8: Taking action ak ∈ {Skip, Keep} on the k-th

factor based on πθ(sk), observe rk and sk+1.
9: Cache the tuple (sk,ak, rk, sk+1)

10: end for
11: R← 0
12: for k = p, p− 1, . . . , 1 do
13: R← rk + γR
14: θ ← Adam(θ,∇θ log πθ(ak|sk)(R− V πθ (st|μ)))
15: μ← Adam(μ, (R− V πθ (sk|μ))∇μV

πθ (sk|μ))
16: end for
17: end for
18: until T > Tmax

This means that maximizing R(τ) can directly minimize L,
allowing us to find the optimal solution of L through deep
reinforcement learning.

However, empirically there are two issues that make
learning the optimal policy for above reinforcement learn-
ing problem difficult. Firstly the reward is sparse over states.
This is known as the sparse feedback problem (Kulkarni
et al. 2016). Secondly the rewards ard distributed widely
in a continuous space, making the critic model difficult to
converge. Inspired by the reward shaping (Ng, Harada, and
Russell 1999) technique, we consider slightly adjusting the
representations of states and rewards, to mitigate these is-
sues.

We firstly initialize I
′
θ = [1, 1, ..., 1] ∈ Rp as an all-1

vector. Thus at a given step k, we update I
′
θ as

I
′
θ(t|k) =

{
Iθ(t), 1 ≤ t < k

1, k ≤ t ≤ p.
(18)

Then, we extend our state vector as

sk = (v〈u,q〉i , k, I
′
θ(·|k)) ∈ Rl+p+1. (19)

Thus, each state memorizes the decisions made before
during an episode. At each step k, the reward is calculated
based on I

′
θ(·|k), (i.e. at each step it is pre-evaluated for the

decisions made so far), assuming the remaining decisions
are all ”1”s by default. For each reward rk, we decompose it
into the effectiveness part T (sk,ak) and the efficiency part
G(sk,ak), i.e., rk = T (sk,ak) + G(sk,ak). For the effi-
ciency part, we simply add a penalty when selecting the k-th

factor as

G(sk,ak) =

{
0, if ak = Skip
−λnick, if ak = Keep.

(20)

This part is consistent with the Equation 10. For the effec-
tiveness part, we choose to give a constant penalty if the
ranking loss under I

′
θ exceeds a pre-defined threshold as

T (sk,ak) =

{
−rc, DOi(σΩ||σI

′
θ
i) > β

0, otherwise.
(21)

With such a design, we enable help the critic module to
distinguish bad and good ranking results much more eas-
ily. Moreover, we can avoid generating poor ranking perfor-
mance with a large penalty rc.

Learning the Policy After transforming the original prob-
lem into a reinforcement learning problem, we then apply an
existing reinforcement learning methods to learn a solution
policy. In this paper, we choose the well-known policy gradi-
ent method with actor-critic models as described in (Mnih et
al. 2016). It is worthing noting that, the difficulty of the orig-
inal optimization problem does not decrease with the intro-
duction of reinforcement learning techniques. The RL-based
approach here acts as a solver whose solution space contains
the optimal solutions, and provides an efficient search path
to the optimal solutions through trial-and-error.

Algorithm 1 shows the training details. The data D =

{(〈u, q〉i,Oi)}Ni=1, the reward discount factor γ, the parame-
ters used in the reward definition λ, β, rc, and the maximum
number of training steps Tmax are given as inputs to the al-
gorithm. The parameter of the actor network θ is the output
of the algorithm. We firstly initialize the parameters of the
actor and critic network, as well as the step counter T . The
training phase starts with the iteration of each of the page
views, with which an episode will be generated during the
Lines 6-10. Then, the standard policy gradient method is ap-
plied in Lines 14-15, where the tuple (sk,ak, rk, sk+1) is
organized in descending order so that the discounted cumu-
lative reward R can be updated incrementally as specified in
Line 13. The training process ends when the number of steps
exceeds the given threshold Tmax.

Application Development and Deployment

Before the actual deployment of the technique, we compared
our method based on an offline dataset from Taobao with
the norm elimination method, the l1-based feature selection
method, the tree-based feature selection method and the F -
test feature selection method in an off-line evaluation setting
in order to facilitate decision-making about which technique
shall be deployed.

Norm Elimination this method removes those factors for
which the absolute values of weights are less than a prede-
fined threshold ε.

l1-based feature selection is a model-based feature se-
lection method. It selects factors according to the l1 regu-
larizer. The basic idea is to eliminate those factors whose
corresponding l1 coefficients are zero. Since this method

13216

(a) Pairwise loss (b) Factor usage. (c) Weighted factor usage

Figure 2: Off-line comparison of pairwise loss, factor usage and weighted averaged factor usage among various approaches.

must be based on a supervised machine learning model,
we need to convert our ranking problem into a supervised
one. We define the training dataset as follows. Let the la-
bel li,j = f(xi,j

1 , xi,j
2 , . . . , xi,j

p) =
∑p

k=1 w
i
kx

i,j
k and corre-

sponding factor vector xi,j , thus the set of training samples
has the form DT = {li,j ,xi,j} such that j = 1, . . . , ni and
i = 1, . . . , N . Therefore, we can train a regressor using the
training set DT and select the factors base on the trained
model. We adopt Lasso as our comparison method.

Cost-sensitive l1-based feature selection cost-sensitive
lasso. It adds a cost to l1 regularizer according to the com-
putational time of each factor.

Tree-based feature selection is similar to the l1-based
feature selection. The main difference is that we replace the
Lasso model with a non-linear regression tree model.
F -test feature selection is a model-free feature selection

method that selects top k factors based on F -test scores.
Rank Contextual Factor selection (RankCFS) algo-

rithm is the proposed actor-critic method which is capable
of adjusting the selection of factors based on the contexts of
the search queries.

For l1-based feature selection, tree-based feature selec-
tion and F -test feature selection, we adopt their implemen-
tations in scikit-learn (Pedregosa et al. 2011). We implement
RankCFS with Tensorflow (Abadi et al. 2016). For the opti-
mal ranking model in the off-line evaluation, we select one
of the linear ranking models from Taobao.com and treat it
as a black box so that only the inputs and the outputs of the
ranking model are considered during the experiments. We
set the constant ε = 0.1 in the Norm Elimination method
and the constant that multiplies the l1 term α equals 0.05 in
the Lasso model. We choose the default ExtraTreeRegres-
sor in scikit-learn package as our tree model. The actor and
critic are construct by two deep neural networks (DNN) with
three fully connected layers, respectively. The DNN struc-
ture of the actor is 266 × 128 × 128 × 20 and that of the
critic is 266×128×128×1. We adopt relu as the activation
functions for the hidden layers, Adam as our optimizer and
the learning rates of actor and critic are set to 0.0001 and
0.001, receptively.

We sample a dataset with 100, 000 samples train the l1-

based, Tree-based and F -test approaches3 on 50, 000 sam-
ples and then test them on the remaining of 50, 000 sam-
ples 4. For the l1, Tree-based and F-test methods, feature
selection is performed after the training. That is, we use a
fixed feature selection policy during the testing stage. Since
our method considers the computational costs of factors, the
computational cost vector c is obtained from the on-line op-
erational environment of Taobao.com.

We test our methods on 5, 000 page views and each page
view contains 10 items so that there are 50, 000 testing ex-
amples. Then, we evaluate the averaged pairwise loss de-
fined in Equation 9 and factor usage over page views. Fig-
ures 2a-2b show our experiment results. Generally, the Norm
Elimination method removes those factors whose absolute
values are small under different contexts. Therefore indica-
tors such as loss and factor usage may vary over page views.
Figure 2a shows that RankCFS with the threshold β = 0.05
outperforms all other methods in terms of pairwise loss. In
addition, in Figure 2b, it can be observed that the averaged
factor usage of RankCFS is also close to the lowest Tree-
based method. Figure 2c illustrates the weighted factor us-
age, in which the weights are the corresponding computa-
tional costs. This metric is more appropriate for describing
the factor usage in terms of efficiency due to the variations
in computational costs among factors. For example, only the
absolute values of weights are considered in the Norm Elim-
ination method, while RankCFS tends to eliminate those
factors with high computational costs. Although, RankCFS
with β = 0.05 and Tree-based method have similar aver-
aged factor usage, RankCFS with β = 0.05 has much lower
weighted factor usage. This demonstrates that our approach
reduces the computational burden in context-aware manner
and saves more computational resources. Empirically, our
method is capable of exploring for the better solution in a
combinatorial solution space with significantly reduced fac-
tor usage. The F-test method suffers high pairwise losses
since it is a model-free method, it does not consider the rank-
ing model we adopt.

3It is not necessary to train Norm Elimination method since it
only removes those factors whose absolute values of weights are
less than a positive constant ε.

410, 000 page views and 10 items in each page view.

13217

Table 1: Comparisons of different methods in terms of Av-
eraged Pairwise Loss (APL), Averaged Factor Usage (AFU)
and Weighted Factor Usage (WFU)

Algorithm APL AFU WFU
F-test / k = 8 0.47 8 72.44

F-test / k = 11 0.40 11 84.63
F-test / k = 14 0.29 14 107.93

Norm Elimination 0.35 7.41 78.84
Lasso 0.31 8 71.16

Cost-sensitive Lasso 0.32 7 65
Tree-based 0.3 7 63

RankCFS / β = 0.05 0.21 7.01 51.06
RankCFS / β = 0.15 0.27 9.07 67.40
RankCFS / β = 0.25 0.25 8.4 63.72

Overall, the experiments show that our RankCFS algo-
rithm successfully explores the function space and find an
high quality approximations to the optimal ranking func-
tion. We summarized the complete experimental results in
Table 1 under different parameter settings, which shows that
RankCFS with β = 0.25 outperforms the other methods in
general. Therefore, RankCFS was deployed in Taobao.com
to replace the previous search algorithm in Jan 2017.

Application Use and Payoff

To demonstrate the payoff generated, we conduct the exper-
iment in the real-world large-scale operational environment
of Taobao.com with a standard A/B test setting. We adopt
the same learning structure as the off-line setting, but with a
more complex nonlinear optimal ranking model. The train-
ing is conducted with more than×109 training samples on a
distributed streaming system in an on-line learning fashion.

We conducted a standard A/B test experiment in our
operational environment, where roughly 6% of the users
are selected at random for testing. The parameter β ∈
{0.25, 0.15, 0.05} and λ ∈ {0.9, 0.8, 0.7} are tuned through
the GMV and search latency. The goal is to minimize the
impact on the GMV as much as possible, while reducing the
latency as much as possible. Figure 3a shows the best results
with β = 0.05 and λ = 0.9. Our method reduces the average
search latency by approximately 40%, compared to the con-
trol group. For the maximum search latency, out algorithm
has reduced it by roughly 25%.

The Singles’ Day Shopping Festival Performance

Alibaba Singles’ Day shopping festival is one of the biggest
shopping extravaganzas around the world which can be
thought of as the Chinese version of Black Friday. In 2017,
by the end of day (November 11), sales hit a new record of
$25.3 billion, more than 40% higher than sales on the same
day in 2016. It attracted over hundreds of millions users
from more than 200 different countries. The infrastructure
system manages to handle 0.325 millions orders per second
during peak usage5. The e-commerce search system played

5https://techcrunch.com/2017/11/11/
alibaba-smashes-its-singles-day-record/

a crucial role in this event.
On November 11th, the search traffic burden of the e-

commerce search engine abruptly increases by multiple
times compared to a regular day. On the one hand, the e-
commerce search engine faces the high traffic challenge,
which might lead to system degradation. On the other hand,
it is still crucial to provide accurate search results.

During this event, the proposed approach was deployed
on top of (Liu et al. 2017) in order to perform optimiza-
tion at the search engine system level. The CLOES approach
enables the system to optimize the number of items in the
ranking process via a cascading model, while our method
concentrates on optimizing the set of selected ranking fac-
tors during the ranking process. Thus, both of these ap-
proaches can be applied on the search engine simultane-
ously. We use the CLOSE approach as our control group,
and the CLOES+RankCFS approach as the experimental
group, in which the parameter β = 0.056. Figure 3b depicts
the average latency change during the course of the experi-
ments. The proposed approach reduced the latency by more
than 20% compared to using only the CLOES approach. In
addition, our method saves approximately 33% peak usage
latency compared to using only the CLOES approach.

Maintenance

Since deployment in Jan 2017, we conducted internal re-
views on the effectiveness of the algorithm on a quarterly
basis to ensure efficiency operation. Each revision has re-
vealed the need for some modifications to the system. How-
ever, the framework of the algorithm has not been changed
in any significant way thus far.

Conclusions and Future Work

In this paper, we investigated the effectiveness and efficiency
issues in a real-world large-scale e-commerce search system.
We formally defined the contextual factor selection problem
in ranking system. Then, we converted the problem into a re-
inforcement learning problem through reward shaping to ac-
count for the scarcity and wide distribution of reward signals
in a practical search engine. We then proposed an efficient
approach to select the optimal set of factors to considered
based on the context of each search query in order to en-
hance efficiency and effectiveness. The algorithm has been
deployed in Taobao which is China’s largest e-commerce
platform. Actual usage data demonstrate that our method is
a practical solution for real-world large-scale e-commerce
search systems which significantly outperformed the previ-
ous algorithm in the platform.

In future research, we plan to explore other optimization
approaches such as memory usage and load balancing, in
conjunction with search latency. We will also incorporate the
considerations for fairness (Yu et al. 2018), persuasiveness
(Liu et al. 2019) and privacy preservation (Gao et al. 2019;
Yang et al. 2019) aspects related to search and recommen-
dation to further enhance user experience.

6Due to limited on-line resources available for the purpose of
A/B testing in the system, we are only able to use CLOES as our
control group.

13218

(a) Latency during regular operation (b) Latency during the Singles’ Day Shopping Festival A/B test

Figure 3: Latency in the e-commerce search engine on Taobao.com. The lower the value, the better the performance.

Acknowledgments

This research is supported by the Nanyang Assistant Profes-
sorship (NAP), AISG-GC-2019-003, NRF-NRFI05-2019-
0002, NTU-SDU-CFAIR (NSC-2019-011), and Alibaba-
NTU-AIR2019B1.

References

Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.;
Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. 2016. Ten-
sorflow: A system for large-scale machine learning. In OSDI, vol-
ume 16, 265–283.
Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio, S. 2016.
Neural combinatorial optimization with reinforcement learning.
arXiv preprint arXiv:1611.09940.
Benbouzid, D.; Busa-Fekete, R.; and Kégl, B. 2012. Fast classifi-
cation using sparse decision dags. In ICML, 747–754.
Bourdev, L., and Brandt, J. 2005. Robust object detection via soft
cascade. In CVPR, volume 2, 236–243.
Davis, G.; Mallat, S.; and Avellaneda, M. 1997. Adaptive greedy
approximations. Constructive Approximation 13(1):57–98.
Gao, D.; Liu, Y.; Huang, A.; Ju, C.; Yu, H.; and Yang, Q. 2019.
Privacy-preserving heterogeneous federated transfer learning. In
IEEE BigData.
Geng, X.; Liu, T.-Y.; Qin, T.; and Li, H. 2007. Feature selection
for ranking. In SIGIR, 407–414.
Guyon, I., and Elisseeff, A. 2003. An introduction to variable
and feature selection. Journal of Machine Learning Research
3(Mar):1157–1182.
Kira, K., and Rendell, L. A. 1992. The feature selection problem:
traditional methods and a new algorithm. In AAAI, 129–134.
Kober, J., and Peters, J. 2011. Policy search for motor primitives
in robotics. Machine Learning 1(84):171–203.
Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenenbaum, J.
2016. Hierarchical deep reinforcement learning: Integrating tem-
poral abstraction and intrinsic motivation. In Lee, D. D.; Sugiyama,
M.; Luxburg, U. V.; Guyon, I.; and Garnett, R., eds., NIPS. 3675–
3683.
Kullback, S., and Leibler, R. A. 1951. On information and suffi-
ciency. The Annals of Mathematical Statistics 22(1):79–86.
Li, B.; Yu, H.; Shen, Z.; and Miao, C. 2009. Evolutionary organi-
zational search. In AAMAS, 1329–1330.
Li, H. 2011. Learning to Rank for Information Retrieval and Nat-
ural Language Processing. Morgan & Claypool Publishers.
Liu, L.-P.; Yu, Y.; Jiang, Y.; and Zhou, Z.-H. 2008. Tefe: A time-
efficient approach to feature extraction. In ICDM, 423–432.
Liu, S.; Xiao, F.; Ou, W.; and Si, L. 2017. Cascade ranking for
operational e-commerce search. In KDD, 1557–1565.

Liu, C.; Dong, Y.; Yu, H.; Shen, Z.; Gao, Z.; Wang, P.; Zhang, C.;
Ren, P.; Xie, X.; Cui, L.; and Miao, C. 2019. Generating persuasive
visual storylines for promotional videos. In CIKM, 901–910.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Harley, T.; Lilli-
crap, T. P.; Silver, D.; and Kavukcuoglu, K. 2016. Asynchronous
methods for deep reinforcement learning. In ICML, volume 48,
1928–1937.
Natarajan, B. K. 1995. Sparse approximate solutions to linear
systems. SIAM Journal on Computing 24(2):227–234.
Ng, A. Y.; Harada, D.; and Russell, S. J. 1999. Policy invariance
under reward transformations: Theory and application to reward
shaping. In ICML, 278–287.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion,
B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot,
M.; and Duchesnay, E. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12:2825–2830.
Schneiderman, H. 2004. Feature-centric evaluation for efficient
cascaded object detection. In CVPR.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Reinforcement
Learning. Cambridge, MA, USA: MIT Press.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer networks.
In Cortes, C.; Lawrence, N. D.; Lee, D. D.; Sugiyama, M.; and
Garnett, R., eds., NIPS. 2692–2700.
Viola, P., and Jones, M. 2003. Rapid object detection using a
boosted cascade of simple features. In CVPR, I–511–I–518.
Wang, L.; Lin, J.; and Metzler, D. 2010. Learning to efficiently
rank. In SIGIR, 138–145.
Wang, L.; Metzler, D.; and Lin, J. 2010. Ranking under temporal
constraints. In CIKM, 79–88.
Yang, Q.; Liu, Y.; Chen, T.; and Tong, Y. 2019. Federated machine
learning: Concept and applications. ACM TIST 10(2):12:1–12:19.
Yu, H.; Shen, Z.; Miao, C.; Leung, C.; Lesser, V. R.; and Yang, Q.
2018. Building ethics into artificial intelligence. In IJCAI, 5527–
5533.

13219

Corrigendum

The spelling of coauthor Yusen Zan in the paper "Accelerating Ranking in E-Commerce
Search Engines through Contextual Factor Selection" has been changed from Zan to
Zhan to correct the typographical error.

