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Abstract

This paper presents a unified Vision-Language Pre-training
(VLP) model. The model is unified in that (1) it can be fine-
tuned for either vision-language generation (e.g., image cap-
tioning) or understanding (e.g., visual question answering)
tasks, and (2) it uses a shared multi-layer transformer net-
work for both encoding and decoding, which differs from
many existing methods where the encoder and decoder are
implemented using separate models. The unified VLP model
is pre-trained on a large amount of image-text pairs using the
unsupervised learning objectives of two tasks: bidirectional
and sequence-to-sequence (seq2seq) masked vision-language
prediction. The two tasks differ solely in what context the pre-
diction conditions on. This is controlled by utilizing specific
self-attention masks for the shared transformer network. To
the best of our knowledge, VLP is the first reported model that
achieves state-of-the-art results on both vision-language gen-
eration and understanding tasks, as disparate as image cap-
tioning and visual question answering, across three challeng-
ing benchmark datasets: COCO Captions, Flickr30k Cap-
tions, and VQA 2.0. The code and the pre-trained models are
available at https://github.com/LuoweiZhou/VLP.

Introduction

Inspired by the recent success of pre-trained language mod-
els such as BERT (Devlin et al. 2018) and GPT (Radford
et al. 2018; 2019), there is a growing interest in extending
these models to learning cross-modal representations like
image-text (Lu et al. 2019; Tan and Bansal 2019) and video-
text (Sun et al. 2019b; 2019a), for various vision-language
tasks such as Visual Question Answering (VQA) and video
captioning, where traditionally tedious task-specific feature
designs and fine-tuning are required.

Table 1 summarizes some of the recent works on vision-
language pre-training where all the models are unexception-
ally built upon Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al. 2018). These models
use a two-stage training scheme. The first stage, called pre-
training, learns the contextualized vision-language represen-
tations by predicting the masked words or image regions
based on their intra-modality or cross-modality relationships
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Figure 1: We propose a unified encoder-decoder model for
general vision-language pre-training. The pre-trained model
is then fine-tuned for image captioning and visual question
answering. Thanks to our vision-language pre-training, both
training speed and overall accuracy have been significantly
improved on the downstream tasks compared to random ini-
tialization or language-only pre-training. All the results are
evaluated on the validation set of the corresponding dataset.

on large amounts of image-text pairs. Then, in the second
stage, the pre-trained model is fine-tuned to adapt to a down-
stream task.

Although significant improvements have been reported
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Type Method Domain Architecture Downstream Tasks

Understanding-based only

LXMERT (Tan and Bansal 2019),
ViLBERT (Lu et al. 2019), UNITER (Chen et al. 2019),
VisualBERT (Li et al. 2019b), B2T2 (Alberti et al. 2019),
Unicoder-VL (Li et al. 2019a),VL-BERT (Su et al. 2019)

Image Single-stream or
two stream Transformer

Visual question answering
Visual commonsense reasoning
Image retrieval
Grounding referring expressions

Generation-based and
understanding-based

VideoBERT (Sun et al. 2019b) Video Single-stream Transformer+
Masked Transformer (Zhou et al. 2018)

Zero-shot action classification
Video captioning

CBT (Sun et al. 2019a) Video Two-stream Transformer encoder+
Transformer decoder

Action anticipation
Video captioning

Our VLP Image Single unified encoder-decoder Visual question answering
Image captioning

Table 1: Comparison between our method and other vision-language pre-training works.

on individual downstream tasks using different pre-trained
models, it remains challenging to pre-train a single, uni-
fied model that is universally applicable, via fine-tuning,
to a wide range of vision-language tasks as disparate as
vision-language generation (e.g., image captioning) and un-
derstanding (e.g., VQA). Most existing pre-trained models
are either developed only for understanding tasks, as de-
noted by “understanding-based only” in Tab. 1, or designed
as hybrid models that consist of multiple modality-specific
encoders and decoders which have to be trained separately in
order to support generation tasks. For example, VideoBERT
and CBT in Tab. 1 perform pre-training only for the encoder,
not for the decoder. This causes a discrepancy between the
cross-modal representations learned by the encoder and the
representation needed by the decoder for generation, which
could hurt the generality of the model. In this paper, we
strive to develop a new method of pre-training a unified
representation for both encoding and decoding, eliminat-
ing the aforementioned discrepancy. In addition, we expect
that such a unified representation would also allow more ef-
fective cross-task knowledge sharing, reducing the develop-
ment cost by eliminating the need of pre-training different
models for different types of tasks.

To this end, we propose a unified encoder-decoder model,
called the Vision-Language Pre-training (VLP) model,
which can be fine-tuned for both vision-language genera-
tion and understanding tasks. The VLP model uses a shared
multi-layer Transformer network (Vaswani et al. 2017) for
encoding and decoding, pre-trained on large amounts of
image-caption pairs (Sharma et al. 2018), and optimized for
two unsupervised vision-language prediction tasks: bidirec-
tional and sequence to sequence (seq2seq) masked language
prediction. The two tasks differ solely in what context the
prediction conditions on. This is controlled by utilizing spe-
cific self-attention masks for the shared Transformer net-
work. In the bidirectional prediction task, the context of the
masked caption word to be predicted consists of all the im-
age regions and all the words on its right and left in the cap-
tion. In the seq2seq task, the context consists of all the image
regions and the words on the left of the to-be-predicted word
in the caption.

The proposed VLP has two main advantages in compari-
son with the BERT-based models in Tab. 1. First, VLP uni-
fies the encoder and decoder and learns a more universal
contextualized vision-language representation that can be
more easily fine-tuned for vision-language generation and

understanding tasks, as disparate as image captioning and
VQA. Second, the unified pre-training procedure leads to a
single model architecture for two distinct vision-language
prediction tasks, i.e., bidirectional and seq2seq, alleviating
the need for multiple pre-training models for different types
of tasks without any significant performance loss in task-
specific metrics.

We validate VLP in our experiments on both the image
captioning and VQA tasks using three challenging bench-
marks: COCO Captions (Chen et al. 2015), Flickr30k Cap-
tions (Young et al. 2014), and VQA 2.0 dataset (Goyal et al.
2017). We observe that compared to the two cases where we
do not use any pre-trained model or use only the pre-trained
language model (i.e., BERT), using VLP significantly speed-
ups the task-specific fine-tuning and leads to better task-
specific models, as shown in Fig. 1. More importantly, with-
out any bells and whistles, our models achieve state-of-the-
art results on both tasks across all three datasets.

Related Work

Language Pre-training. Among numerous BERT variants
in language pre-training, we review the two methods that
are most relevant to our approach, namely Unified LM
or UniLM (Dong et al. 2019) and Multi-Task DNN (MT-
DNN) (Liu et al. 2019a). UniLM employs a shared Trans-
former network which is pre-trained on three language mod-
eling objectives: unidirectional, bidirectional, and sequence-
to-sequence. Each objective specifies different binary values
in the self-attention mask to control what context is avail-
able to the language model. MT-DNN combines multi-task
training and pre-training by attaching task-specific projec-
tion heads to the BERT network. Our work is inspired by
these works and tailored for vision-language tasks in partic-
ular.
Vision-Language Pre-training. This has become a nascent
research area in the vision-language community. Related
works include ViLBERT (Lu et al. 2019) and LXMERT (Tan
and Bansal 2019), both of which tackle understanding-based
tasks only (e.g., VQA and Retrieval) and share the same
two-stream BERT framework with a vision-language co-
attention module to fuse the information from both modal-
ities. ViLBERT is tested on a variety of downstream tasks
including VQA, referring expression, and image-to-text re-
trieval. LXMERT only focuses on a particular problem space
(i.e., VQA and visual reasoning) and the generalization abil-
ity further compromises when the datasets from the down-
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stream tasks are also exploited in the pre-training stage. The
most similar work to ours is VideoBERT (Sun et al. 2019b),
which addresses generation-based tasks (e.g., video caption-
ing) and understanding-based tasks (e.g., action classifica-
tion). However, it separates the visual encoder and the lan-
guage decoder and performs pre-training only on the en-
coder, leaving decoder uninitialized. In contrast, we propose
a unified model for both encoding and decoding and fully
leverage the benefit of pre-training.
Image Captioning & VQA. Most of the recent works on
image captioning are built upon (Anderson et al. 2018),
where a language model gets clues for sentence generation
through dynamically attending on object regions in the im-
age extracted from pre-trained object detectors. Follow-up
works further capture the relationships among object regions
by using Graph Convolutional Networks (GCNs) (Yao et al.
2018), incorporating language inductive bias (Yang et al.
2019), or enforcing region grounding between image and
text (Lu et al. 2018; Zhou et al. 2019). VQA is another
prevalent research area in vision and language. Since its ini-
tial proposal (Antol et al. 2015), there has been a signifi-
cant amount of works proposing model architectures to fuse
question and image representations (Kim, Jun, and Zhang
2018; Anderson et al. 2018; Gao et al. 2019), new datasets
or models to reduce the dataset bias (Zhang et al. 2016;
Goyal et al. 2017; Agrawal et al. 2017) and ground the an-
swer in the question (Lewis and Fan 2019). We use our base
architecture to perform both image captioning and VQA
with minor model structure differences.

Vision-Language Pre-training

We denote the input image as I and the associated/target sen-
tence description (words) as S. We extract a fixed number N
of object regions from the image using an off-the-shelf ob-
ject detector, denoted as {r1, . . . , rN} and the correspond-
ing region features as R = [R1, . . . , RN ] ∈ R

d×N , region
object labels (probabilities) as C = [C1, . . . , CN ] ∈ R

l×N ,
and region geometric information as G = [G1, . . . , GN ] ∈
R

o×N , where d is the embedding size, l indicates the number
of the object classes of the object detector, and o = 5 con-
sists of four values for top left and bottom right corner co-
ordinates of the region bounding box (normalized between
0 and 1) and one value for its relative area (i.e., ratio of the
bounding box area to the image area, also between 0 and 1).
The words in S are represented as one-hot vectors which are
further encoded to word embeddings with embedding size e:
yt ∈ R

e where t ∈ {1, 2, . . . , T} and T indicates the length
of the sentence.

Vision-Language Transformer Network

Our vision-language Transformer network, which unifies the
Transformer encoder and decoder into a single model, is de-
picted in Fig. 2 (left). The model input consists of the class-
aware region embedding, word embedding and three special
tokens. The region embedding is defined as:

ri = WrRi +Wp[LayerNorm(WcCi)|LayerNorm(WgGi)]
(1)

where [·|·] indicates the concatenation on the feature dimen-
sion, LayerNorm represents Layer Normalization. The sec-
ond term mimics the positional embedding in BERT, but
adding extra region class information, and Wr,Wp,Wc,Wg

are the embedding weights (the bias term and the nonlinear-
ity term are omitted). Note that here we overload the nota-
tion of ri ∈ R

d (i ∈ {1, 2, ..., N}) to also represent class-
aware region embeddings. In addition, we add segment em-
beddings to ri as in BERT where all the regions share the
same segment embedding where the values depend on the
objectives (i.e., seq2seq and bidirectional, see the following
section).

The word embeddings are similarly defined as in (Devlin
et al. 2018), adding up yt with positional embeddings and
segment embeddings, which is again overloaded as yt. We
define three special tokens [CLS], [SEP], [STOP], where
[CLS] indicates the start of the visual input, [SEP] marks
the boundary between the visual input and the sentence in-
put, and [STOP] determines the end of the sentence. The
[MASK] tokens indicate the masked words which will be
explained in the next section.

Pre-training Objectives

In the BERT masked language modeling objective, 15% of
the input text tokens are first replaced with either a spe-
cial [MASK] token, a random token or the original token,
at random with chances equal to 80%, 10%, and 10%, re-
spectively. Then, at the model output, the hidden state from
the last Transformer block is projected to word likelihoods
where the masked tokens are predicted in the form of a clas-
sification problem. Through this reconstruction, the model
learns the dependencies in the context and forms a language
model. We follow the same scheme and consider two spe-
cific objectives: the bidirectional objective (bidirectional) as
in BERT and the sequence to sequence objective (seq2seq),
inspired by (Dong et al. 2019).

As shown in Fig. 2 (right), the only difference be-
tween the two objectives lie in the self-attention mask.
The mask used for the bidirectional objective allows un-
restricted message passing between the visual modality
and the language modality while in seq2seq, the to-be-
predicted word cannot attend to the words in the fu-
ture, i.e., it satisfies the auto-regressive property. More for-
mally, we define the input to the first Transformer block
as H0 = [r[CLS], r1, . . . , rN , y[SEP], y1, . . . , yT , y[STOP]] ∈
R

d×U where U = N+T+3, and then the encoding at differ-
ent levels of Transformer as H l = Transformer(H l−1), l ∈
[1, L]. We further define a self-attention mask as M ∈
R

U×U), where

Mjk =

{
0, allow to attend
−∞, prevent from attending

j, k = 1, . . . , U.

(2)
For simplicity, we assume a single attention head in the self-
attention module. Then, the self-attention output on H l−1
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[SEP]
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Figure 2: Model architecture for pre-training. The input comprises of image input, sentence input, and three special tokens
([CLS], [SEP], [STOP]). The image is processed as N Region of Interests (RoIs) and region features are extracted according
to Eq. 1. The sentence is tokenized and masked with [MASK] tokens for the later masked language modeling task. Our Unified
Encoder-Decoder consists of 12 layers of Transformer blocks, each having a masked self-attention layer and feed-forward
module, where the self-attention mask controls what input context the prediction conditions on. We implemented two self-
attention masks depending on whether the objective is bidirectional or seq2seq. Better viewed in color.

can be formulated as:

Al =softmax(
Q�K√

d
+M)V �, (3)

V =W l
V H

l−1, Q = W l
QH

l−1, K = W l
KH l−1, (4)

where W l
V , W l

Q, and W l
K are the embedding weights (the

bias terms are omitted). The intermediate variables V , Q,
and K indicate values, queries and keys, respectively, as in
the self-attention module (Vaswani et al. 2017). Al is further
encoded by a feed-forward layer with a residual connection
to form the output H l. During the pre-training, we alter-
nate per-batch between the two objectives and the propor-
tions of seq2seq and bidirectional are determined by hyper-
parameters λ and 1− λ, respectively.

It is worth noting that in our experiments we find that
incorporating the region class probabilities (Ci) into re-
gion feature (ri) leads to better performance than having a
masked region classification pretext as in (Lu et al. 2019;
Tan and Bansal 2019). Therefore, differing from existing
works where masked region prediction tasks are used to re-
fine the visual representation, we indirectly refine the vi-
sual representation by utilizing it for masked language re-
construction. We also choose not to use the Next Sentence
Prediction task as in BERT, or in our context predicting the
correspondence between image and text, because the task
is not only weaker than seq2seq or bidirectional but also
computationally expensive. This coincidentally agrees with
a concurrent work of RoBERTa (Liu et al. 2019b).
Sequence-to-sequence inference. Similar to the way
seq2seq training is performed, we can directly apply VLP to
sequence-to-sequence inference, in the form of beam search.

More details follow next in the Image Captioning section.

Fine-Tuning for Downstream Tasks

Image Captioning

We fine-tune the pre-trained VLP model on the target dataset
using the seq2seq objective. During inference, we first en-
code the image regions along with the special [CLS] and
[SEP] tokens and then start the generation by feeding in a
[MASK] token and sampling a word from the word likeli-
hood output (e.g., greedy sampling). Then, the [MASK] to-
ken in the previous input sequence is replaced by the sam-
pled word and a new [MASK] token is appended to the input
sequence to trigger the next prediction. The generation ter-
minates when the [STOP] token is chosen. Other inference
approaches like beam search could apply as well.

Visual Question Answering

We frame VQA as a multi-label classification problem. In
this work we focus on open domain VQA where top k most
frequent answers are selected as answer vocabulary and used
as class labels. Following (Anderson et al. 2018) we set k to
3129.

During the fine-tuning, a multi-layer Perceptron (Lin-
ear+ReLU+Linear+Sigmoid) on top of the element-wise
product of the last hidden states of [CLS] and [SEP] is
learned, similar to (Lu et al. 2019). We optimize the model
output scores with respect to the soft answer labels using
cross-entropy loss. Note that unlike (Tan and Bansal 2019)
where the task-specific objective (i.e., VQA) is exploited
during pre-training by using the target datasets (from inten-
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COCO VQA 2.0 (Test-Standard) Flickr30k
Method B@4 M C S Overall Yes/No Number Other B@4 M C S

BUTD (Anderson et al. 2018) 36.2 27.0 113.5 20.3 65.7 - - - 27.3 21.7 56.6 16.0
NBT (with BBox) (Lu et al. 2018) 34.7 27.1 107.2 20.1 - - - - 27.1 21.7 57.5 15.6
GCN-LSTM (spa) (Yao et al. 2018) 36.5 27.8 115.6 20.8 - - - - - - - -
GCN-LSTM (sem) 36.8 27.9 116.3 20.9 - - - - - - - -
GVD (Zhou et al. 2019) - - - - - - - - 26.9 22.1 60.1 16.1
GVD (with BBox) - - - - - - - - 27.3 22.5 62.3 16.5
BAN (Kim, Jun, and Zhang 2018) - - - - 70.4 85.8 53.7 60.7 - - - -
DFAF (Gao et al. 2019) - - - - 70.3 - - - - - - -

AoANet* (Huang et al. 2019) 37.2 28.4 119.8 21.3 - - - - - - - -
ViLBERT* (Lu et al. 2019) - - - - 70.9 - - - - - - -
LXMERT* (Tan and Bansal 2019) - - - - 72.5 88.2 54.2 63.1 - - - -

Ours
w/o VLP pre-training (baseline) 35.5 28.2 114.3 21.0 70.0 86.3 52.2 59.9 27.6 20.9 56.8 15.3
seq2seq pre-training only 36.5 28.4 117.7 21.3 70.2 86.7 52.7 59.9 31.1 23.0 68.5 17.2
bidirectional pre-training only 36.1 28.3 116.5 21.2 71.3 87.6 53.5 61.2 30.5 22.6 63.3 16.9
Unified VLP 36.5 28.4 116.9 21.2 70.7 87.4 52.1 60.5 30.1 23.0 67.4 17.0

Table 2: Results on COCO Captions test set (with cross-entropy optimization only, all single models), VQA 2.0 Test-Standard
set and Flickr30k test set. * indicates unpublished works. B@4 represents for BLEU@4, M for METEOR, C for CIDEr, and
S for SPICE. Results on previous works are obtained from the original papers. Top two results on each metric are in bold.

COCO (w/ CIDEr optimization)
Method B@4 M C S

BUTD 36.3 27.7 120.1 21.4
GCN-LSTM (spa) 38.2 28.5 127.6 22.0
SGAE (Yang et al. 2019) 38.4 28.4 127.8 22.1

AoANet* 38.9 29.2 129.8 22.4

Ours (Unified VLP) 39.5 29.3 129.3 23.2

Table 3: Results on COCO Captions test set (with CIDEr
optimization, all single models). * indicates unpublished
works. Top one result on each metric is in bold.

sive human annotations), our pre-training does not have this
requirement and is therefore more general.

Experiments and Results

Data preparation. We conduct pre-training on the Con-
ceptual Captions (CC) dataset (Sharma et al. 2018) which
has around 3 million web-accessible images with associ-
ated captions. The datasets for downstream tasks include
COCO Captions (Chen et al. 2015), VQA 2.0 (Goyal et
al. 2017) and Flickr30k (Young et al. 2014). For COCO
Captions and Flickr30k, we follow Karpathy’s split1, which
gives 113.2k/5k/5k and 29.8k/1k/1k images for train/val/test
splits respectively. For VQA 2.0, we split the dataset with the
official partition, i.e., 443.8k questions from 82.8k images
for training, 214.4k questions from 40.5k images for valida-
tion and report the results on Test-Standard set through the
official evaluation server. We trim long sentences and pad
short sentences to 20 words and all the words are tokenized
and numericalized as in BERT (Devlin et al. 2018).

1cs.stanford.edu/people/karpathy/deepimagesent/caption
datasets.zip

Implementation details. Our Transformer backbone is the
same as BERT-base (Devlin et al. 2018). The input of
the network consists of image (regions) and the asso-
ciated/target caption. We represent each input image as
100 object regions extracted from a variant of Faster R-
CNN (Ren et al. 2015) pre-trained on Visual Genome (Kr-
ishna et al. 2017; Anderson et al. 2018). We take the model
output from fc6 layer as the region feature (Ri) and the class
likelihood on the 1600 object categories as region object la-
bels (Ci). Note that if not specified, the weights in our BERT
model are initialized from UniLM (Dong et al. 2019) pre-
trained on text corpora only. For caption inference, we use
greedy search on the validation set and beam search with
beam size 5 on the test set. We perform light model hyper-
parameter search with the configurations presented in Ap-
pendix. λ is set to 0.75 for CC pre-training from light model
validation (out of {0.25, 0.5, 0.75}), and set to 1 for image
captioning (i.e., full seq2seq) and 0 for VQA (i.e., full bidi-
rectional).
Model variants and metrics. To demonstrate the effective-
ness of our vision-language pre-training, we first include a
baseline model without this pre-training. We then include
two extreme settings of our model with λ = 1 (seq2seq pre-
training only) and λ = 0 (bidirectional pre-training only) to
study how each objective individually works with different
downstream tasks. Our full model conducts joint training on
the two objectives. The fine-tuning procedure is performed
the same regardless of the pre-training configurations. Re-
garding evaluation metrics, we use standard language met-
rics for image captioning, including Bleu@4, METEOR,
CIDEr, and SPICE and the official measurement on accu-
racy for VQA, over different answer types including Yes/No,
Number, and Other.
Comparisons against SotAs. Results comparing our meth-
ods and SotA methods on the test set are in Tab. 2. We in-
clude state-of-the-art published works (upper part of Tab. 2),
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COCO VQA 2.0 (Test-Dev) Flickr30k
Method B@4 M C S Overall Yes/No Number Other B@4 M C S

From scratch 35.2 27.9 112.5 20.6 67.7 83.5 50.7 58.1 28.4 20.8 53.5 15.2
Init from BERT 34.8 28.1 112.6 20.7 68.6 85.2 50.9 58.3 29.1 21.7 60.4 15.9
Init from UniLM 35.5 28.2 114.3 21.0 69.6 86.1 52.4 59.4 27.6 20.9 56.8 15.3
Unified VLP 36.5 28.4 116.9 21.2 70.5 87.2 52.1 60.3 30.1 23.0 67.4 17.0

Table 4: Impact of different levels of pre-training on downstream tasks. All results are on the test set (Test-Dev for VQA 2.0).
Top one result on each metric is in bold.

Method B@4 M C S

From scratch 5.5 9.4 63.8 14.9
Init from BERT 5.7 9.7 66.7 15.3
Init from UniLM 5.8 9.7 67.0 15.5

Table 5: Impact of model weight initializations on pre-
training. Results are on Conceptual Captions val set on cap-
tion generation.

unpublished works that are currently in submission (middle
part), and our methods (lower part). All the image captioning
methods are single models, with cross-entropy optimization
only for a fair comparison. Our full model (Unified VLP)
outperforms SotA methods on three out of four metrics on
COCO, overall accuracy on VQA 2.0, and all four metrics
on Flickr30k. The improvements are particularly sound on
Flickr30k, where we get 5.1% absolute gain on CIDEr met-
ric and 2.8% on BLEU@4.

We further perform CIDEr optimization on COCO Cap-
tions through Self-Critical Sequence Training (SCST) (Ren-
nie et al. 2017), as in most of the recent image captioning
literatures. The results are in Tab. 3 where our full model
sets new SotA on all the metrics.
Boost from pre-training. Our full model leads our base-
line model by a large margin on most of the metrics thanks
to our pre-training. Some noticeable improvements include
over 10% absolute gain on CIDEr metric on Flickr30k, and
over 2% gain on CIDEr on COCO and B@4, METEOR on
Flickr30k. Small datasets (i.e., Flickr30k) benefit the most
as vision-language pre-training alleviates overfitting issues.
Our model variants under the two extreme settings work
well as expected on their “favorable” tasks, i.e., seq2seq pre-
training alone improves downstream captioning tasks signif-
icantly and bidirectional pre-training benefits understanding
tasks (i.e., VQA), but not the opposite. They set new SotAs
on all metrics except the “Number” accuracy on VQA 2.0.
The joint training organically combines the representations
learned from the two rather different objectives and yields
slightly compromised but decent accuracy on all the down-
stream tasks. That said, from an engineering perspective, if
we can afford having separate pre-training models for gen-
eration task or understanding task, we will get the optimal
model performance. If we value model architecture and pa-
rameter sharing, the joint model is a good trade-off.
Impact of pre-training types. Depending on how the base

Method B@4 M C S

Region label as pretext 5.4 9.4 62.2 14.5
Region label probability as input 5.8 9.7 67.0 15.5

Table 6: Comparison between having region class predic-
tion pretext and feeding in class probabilities as a part of the
model input. Results are on Conceptual Captions val set.

model Transformer is initialized, we define four “degrees”
of pre-training from weakest to strongest as i) without any
pre-training, i.e., base model is trained from scratch, ii) bidi-
rectional language pre-training, i.e., base model is initialized
from BERT weights (Devlin et al. 2018), iii) seq2seq and
bidirectional language pre-training, i.e., base model is ini-
tialized from UniLM weights (Dong et al. 2019) which is
our baseline setting, and iv) our full Vision-Language Pre-
training. The corresponding fine-tuning results on down-
stream tasks are presented in Fig. 1 on the val set (full results
see Appendix) and Tab. 4 on the test set. As shown from the
figure, our vision-language pre-training significantly accel-
erates the learning process of downstream tasks and con-
tributes to better overall accuracy. It is worth noting that the
learning process of VQA is greatly shortened despite that
the hidden states associated with tokens [CLS] and [SEP]
are not learned during the pre-training. This indicates that
the contextualized vision-language representations can gen-
eralize to unseen domains and work reasonable well as a
warm-start for new tasks.

We also study how the pre-training types 1-3 influence
our vision-language pre-training in terms of caption gener-
ation. The results on Conceptual Captions val set at epoch
20 are shown in Tab. 5. All the models are trained based on
the unified VLP objective (λ = 0.75) for a fair compari-
son. We observe that initializing base model with weights
transferred from pure language pre-training benefits vision-
language pre-training. The training objectives of UniLM are
closer to our seq2seq and bidirectional objectives than the
ones in BERT and hence we hypothesize that this counts
for the slightly larger improvement. Note that our intention
here is to demonstrate how different weight initializations
can influence pre-training performance rather than pursuing
possibly high quantitative scores (with full seq2seq training,
CIDEr could climb to 77.2 after training for 30 epochs).
Region object labels as pretext. Existing works (Zhou et al.
2019; Lu et al. 2018) regard region object labels (probabil-
ities) (Ci) as an important auxiliary to enrich image region
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GT sentences: 
People in matching shirts standing under 
umbrellas in the sun
People in the same colorful shirts have umbrellas.
A large group of people with an umbrella outside.
A group of men standing next to a lot of 
umbrellas
A group of people that are under one umbrella

Unified VLP (159.8): A group of people 
standing under umbrellas in the rain.

Init from UniLM (59.0): A group of people 
standing around each other.

Init from BERT (59.0): A group of people 
standing around each other.

Question: Are they dressed the same?
Correct answer: Yes

Unified VLP: Yes

Init from UniLM: No

Init from BERT: No

GT sentences:
A man standing in front of a blue wall
A man talks on a phone in a room with blue 
wallpaper
A man holding a cell phone standing in front of 
blue wallpaper with designs and a large wall vent
A man on a cell phone by a bright blue wall
A man holding a phone to his ear

Unified VLP (180.6): A man talking on a cell 
phone in front of a blue wall.

Init from UniLM (126.9): A man talking on a 
cell phone while standing next to a blue wall.

Init from BERT (59.6): A man talking on a 
cell phone while wearing a gray shirt.

Question: Is the man taking his own picture? 
Correct answer: No

Unified VLP: No

Init from UniLM: Yes

Init from BERT: Yes

GT sentences:
A man standing by a large air gondola that is 
docked in a station
A train is parked as a man at the top of the stairs 
waits along side it.
Small tram bus parked between two stair cases
A man standing next to cable car and a flight of 
stairs
A man getting ready to board the trolley car

Unified VLP (28.0): A red train is parked in a 
station.

Init from UniLM (36.9): A red train with a 
man standing on the top of it.

Init from BERT (21.3): A red train car sitting 
inside of a train station.

Question: How many people are here? 
Correct answer: 1

Unified VLP: 2

Init from UniLM: 2

Init from BERT: 2

GT sentences:
Two boaters are white water rafting through 
rough currents.
Two people in a small boat in a body of water
There are people on a boat tube in the water
Two people riding a raft through some waves
Two people in a canoe in some rapids

Unified VLP (7.5): A man riding a surfboard 
on top of a wave.

Init from UniLM (7.6): A man and a boy are 
riding a surfboard on a wave.

Init from BERT (5.4): A man riding a paddle 
board on top of a wave.

Question: What is the person doing?
Correct answer: kayaking/boating

Unified VLP: surfing

Init from UniLM: surfing

Init from BERT: surfing

Figure 3: Qualitative examples on COCO Captions and VQA 2.0. The first column indicates images from the COCO validation
set. The second column shows the five human-annotated ground-truth (GT) captions. The third column indicates captions
generated by three of our methods and the corresponding CIDEr scores, where only Unified VLP has vision-language pre-
training. The last column shows VQA questions and correct answers associated with the image and answers generated by our
models. The top two are successful cases and the bottom two are failed cases. See text for details.

features and here we follow a similar design. We can also in-
stead use these labels for a masked region classification pre-
text as in (Tan and Bansal 2019). Here we have a comparison
over the two design choices. “region label probability as in-
put” is equivalent to our full model Unified VLP and “region
label as pretext” is the implementation from (Tan and Bansal
2019). As shown in the results, predicting class labels as a
pretext has a negative impact on the pre-training, in terms of
captioning performance. We hypothesize that this is because
the class labels from the off-the-shelf object detector might
be noisy which compromises the learned feature represen-
tation. In contrast, our model refines the visual representa-
tion through a more reliable masked language modeling and
could correct the errors exist in the class labels.
Qualitative results and analyses. Qualitative examples on
COCO Captions and VQA 2.0 are shown in Fig. 3. In the
first two examples, our full model with vision-language pre-
training captures more details in the image, such as “um-
brellas” and “a blue wall” than the baseline methods. It also
answers questions correctly. In the third example, all the
methods dis-identify the gondola as a train due to their vi-
sual similarity. When it comes to the question answering,
our methods all give correct answers while the GT answer is

incorrect (note that there is a person in the gondola). In the
fourth example, all the models mistakenly classify the activ-
ity as surfing while the correct one is kayaking/boating. This
is consistent across both the caption model and the VQA
model, which implies that the feature representations are in-
deed shared across tasks.

Conclusion
This paper presents a unified Vision-Language Pre-training
(VLP) model that can be fine-tuned for both vision-language
generation and understanding tasks. The model is pre-
trained on large amounts of image-text pairs based on two
objectives: bidirectional and seq2seq vision-language pre-
diction. The two disparate objectives are fulfilled under the
same architecture with parameter sharing, avoiding the ne-
cessity of having separate pre-trained models for differ-
ent types of downstream tasks (i.e., generation-based or
understanding-based). In our comprehensive experiments on
image captioning and VQA tasks, we demonstrate that the
large-scale unsupervised pre-training can significantly speed
up the learning on downstream tasks and improve model
accuracy. Besides, compared to having separate pre-trained
models, our unified model combines the representations
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COCO VQA 2.0 Flickr30k
Method B@4 M C S Overall Yes/No Number Other B@4 M C S

From scratch 34.5 28.1 114.2 21.1 63.4 80.2 46.4 55.2 26.9 20.8 52.1 14.4
Init from BERT 34.6 28.4 114.8 21.4 65.1 82.9 48.0 56.1 27.5 21.9 58.4 15.5

Init from UniLM
w/o VLP pre-training (baseline) 34.5 28.1 113.9 21.3 66.1 83.8 49.7 56.9 27.5 21.5 58.3 15.3
seq2seq pre-training only 35.3 28.4 116.7 21.5 66.4 84.6 50.1 56.9 28.9 23.6 67.0 17.2
bidirectional pre-training only 35.3 28.3 116.1 21.4 68.2 85.6 51.9 59.3 29.6 23.2 67.2 16.8
Unified VLP 35.5 28.5 118.0 21.6 67.4 85.4 50.1 58.3 29.7 23.8 69.1 17.6

Table 7: Results on COCO Captions, VQA 2.0, and Flickr30k validation set. B@4 represents for BLEU@4, M for METEOR,
C for CIDEr, and S for SPICE. Top two results on each metric are in bold.

Dataset Batch Size Learning Rate # of Epochs GPUs Time per Epoch

CC 64(x8) 1e-4(x8) 30 8x V100 5hr

COCO 64(x8) 3e-5(x8) 30 8x V100 12min
VQA 2.0 64(x2) 2e-5(x2) 20 2x V100 32min
Flickr30k 64(x8) 3e-5(x8) 30 8x V100 3min

COCO (w/o pre-training) 64(x8) 3e-4(x8) 30 8x V100 12min
COCO (SCST training) 16(x4) 1e-6(x4) 30 4x Titan Xp 3hr

Table 8: Model hyper-parameters and training specifications.

learned from different objectives and yields slightly com-
promised but decent (SotA) accuracy on all the downstream
tasks. In our future work, we would like to apply VLP to
more downstream tasks, such as text-image grounding and
visual dialogue. Methodology-wise, we would want to see
how multi-task fine-tuning can be applied to our framework
to alleviate interference between different objectives.
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Appendix

Results on Downstream Tasks

We include the validation results on fine-tuning tasks in
Tab. 7. Note that for VQA 2.0, all the methods here are only
trained on the training set while for the results reported on
the test set (Tab. 3 and Tab. 4 in the main paper), all the
models are trained on both training set and validation set
following the practice from early works.

Implementation Details

Region proposal and feature. We use a variant of Faster
RCNN model (Ren et al. 2015) with ResNeXt-101 FPN
backbone (Xie et al. 2017) for region proposal and feature
extraction. The Faster RCNN model is pre-trained on the
Visual Genome dataset (Krishna et al. 2017), following the

same procedure in (Anderson et al. 2018) for joint object
detection (1600 classes) and attribute classification. We set
the number of regions per image to exact 100 as suggested
in (Jiang et al. 2018). We take the output of the fc6 layer as
the feature representation for each region, and fine-tune the
fc7 layer.
Model hyper-parameters. The model hyper-parameters on
pre-training and fine-tuning are in Tab. 8. The SCST train-
ing on COCO is performed after the VLP pre-training and
COCO fine-tuning.
Training details. We use the same training optimizer as
in BERT (Devlin et al. 2018) and other training hyper-
parameters are in Tab. 8. Our VQA models are trained on
2x V100 GPUs, COCO Captions SCST training on 4x Titan
Xp GPUs, and all others are on 8x V100 GPUs.
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