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Abstract

Weakly supervised semantic segmentation is a challenging
task as it only takes image-level information as supervision
for training but produces pixel-level predictions for testing. To
address such a challenging task, most recent state-of-the-art
approaches propose to adopt two-step solutions, i.e. 1) learn
to generate pseudo pixel-level masks, and 2) engage FCNs
to train the semantic segmentation networks with the pseudo
masks. However, the two-step solutions usually employ many
bells and whistles in producing high-quality pseudo masks,
making this kind of methods complicated and inelegant. In
this work, we harness the image-level labels to produce re-
liable pixel-level annotations and design a fully end-to-end
network to learn to predict segmentation maps. Concretely, we
firstly leverage an image classification branch to generate class
activation maps for the annotated categories, which are fur-
ther pruned into confident yet tiny object/background regions.
Such reliable regions are then directly served as ground-truth
labels for the parallel segmentation branch, where a newly de-
signed dense energy loss function is adopted for optimization.
Despite its apparent simplicity, our one-step solution achieves
competitive mIoU scores (val: 62.6, test: 62.9) on Pascal VOC
compared with those two-step state-of-the-arts. By extending
our one-step method to two-step, we get a new state-of-the-art
performance on the Pascal VOC (val: 66.3, test: 66.5).

Introduction
Recently, weakly supervised semantic segmentation receives
great interest and is being extensively studied. Requiring
merely low degree (cheaper or simpler) annotations including
scribbles (Lin et al. 2016; Vernaza and Chandraker 2017;
Tang et al. 2018b), bounding boxes (Dai, He, and Sun 2015;
Khoreva et al. 2017), points (Maninis et al. 2018; Bearman et
al. 2016) and image-level labels (Ahn and Kwak 2018; Hou
et al. 2018; Wei et al. 2018) for training, weakly supervised
semantic segmentation offers a much easy way than its fully
supervised counterpart adopting pixel-level masks (Chen et
al. 2018a; 2017; Long, Shelhamer, and Darrell 2015). Among
these weakly supervised labels, the image-level annotation is
the simplest one to collect yet also the most challenging case
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since there is no direct mapping between semantic labels and
pixels.

To learn semantic segmentation models using image-level
labels as supervision, many existing approaches can be cat-
egorized as one-step approaches and two-step approaches.
One-step approaches (Papandreou et al. 2015) often establish
an end-to-end framework, which augments multi-instance
learning with other constrained strategies for optimization.
This family of methods is elegant and easy to implement.
However, one significant drawback of these approaches is that
the segmentation accuracy is far behind their fully supervised
counterparts. To achieve better segmentation performance,
many researchers alternatively propose to leverage two-step
approaches (Wei et al. 2017; Huang et al. 2018). This fam-
ily of approaches usually aim to take bottom-up (Hou et al.
2017) or top-down (Zhang et al. 2018a; Zhou et al. 2016)
strategies to firstly generate high-quality pseudo pixel-level
masks with image-level labels as supervision. These pseudo
masks then act as ground-truth and are fed into the off-the-
shelf fully convolutional networks such as FCN (Long, Shel-
hamer, and Darrell 2015) and Deeplab (Chen et al. 2014;
2018a) to train the semantic segmentation models. Current
state-of-the-arts are mainly two-step approaches, with seg-
mentation performance approaching that of their fully su-
pervised counterparts. However, to produce high-quality
pseudo masks, these approaches often employ many bells and
whistles, such as introducing additional object/background
cues from object proposals (Pinheiro and Collobert 2015) or
saliency maps (Jiang et al. 2013) in an off-line manner. There-
fore, the two-step approaches are usually very complicated
and hard to be re-implemented, limiting their application to
research areas such as object localization and video object
tracking.

In this paper, we present a simple yet effective one-step ap-
proach, which can be easily trained in an end-to-end manner.
It achieves competitive segmentation performance compared
with two-step approaches. Our approach named Reliable Re-
gion Mining (RRM) includes two branches: one to produce
pseudo pixel-level masks using image-level annotations, and
the other to produce the semantic segmentation results. In
contrast to the previous two-step state-of-the-arts (Ahn and
Kwak 2018; Lee et al. 2019) that prefer to mine dense and
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integral object regions, our RRM only chooses those confi-
dent object/background regions that are usually tiny but with
high response scores on the class activation maps. We find
these regions can be further pruned into more reliable ones
by augmenting an additional CRF operation, which are then
employed as supervision for the parallel semantic segmenta-
tion branch. With limited pixels as supervision, we designed
a regularized loss named dense energy loss, which cooperates
with the pixel-wise cross-entropy loss to optimize the training
process.

Despite its apparent simplicity, our one-step RRM achieves
62.6 and 62.9 of mIoU scores on the Pascal VOC val and
test sets, respectively. These results achieve state-of-the-art
performance and it is even competitive compared with those
two-step state-of-the-arts, which usually adopt complex bells
and whistles to produce pseudo masks. We believe that our
proposed RRM offers a new insight to the one-step solution
for weakly supervised semantic segmentation. Besides, in
order to show the effectiveness of our method, we also extend
our method to a two-step framework and get a new state-of-
the-art performance with 66.3 and 66.5 on the Pascal VOC
val and test sets. Code will be made publicly available.

Related Work
Semantic segmentation is an important task in computer vi-
sion (Wei et al. 2018; Xiao et al. 2019; Xie et al. 2018),
which requires to predict pixel-level classification. Long et
al. (Long, Shelhamer, and Darrell 2015) proposed the first
fully convolutional network for semantic segmentation. Chen
et al. (Chen et al. 2014) proposed a new deep neural net-
work structure named ”Deeplab” to conduct pixel-wise pre-
diction using atrous convolution, and a series of new net-
work structures was developed after that (Chen et al. 2018a;
2017; 2018b). However, fully supervised semantic segmen-
tation requires dense pixel-level annotations, which cost ex-
pensive human expense. Weakly supervised semantic seg-
mentation has been drawing much attention as less hu-
man intervention is needed. There are different categories
of weakly supervised semantic segmentation based on the
types of supervision: scribble (Tang et al. 2018a; Lin et
al. 2016), bounding box (Song et al. 2019; Hu et al. 2018;
Rajchl et al. 2017), point (Maninis et al. 2018; Bearman et
al. 2016) and image-level class label (Zhang et al. 2018b;
Vernaza and Chandraker 2017; Zhang et al. 2018c). In this
paper, we focus on image-level supervised semantic segmen-
tation.

Image-level weakly supervised semantic segmentation
only provides image-level annotation. Most recent ap-
proaches are based on class activation map (CAM) (Zhou
et al. 2016), which is to generate initial object seeds or re-
gions from image-level annotation. Such initial object seeds
or regions are converted to generate pseudo labels to train a
semantic segmentation model. Wei et al. (Wei et al. 2017)
proposed to erase iteratively the discriminative areas com-
puted by a classification network so that more seed regions
can be mined which are then combined with a saliency map
to generate the pseudo pixel-level label. Wei et al. (Wei et al.
2018) also proved that dilated convolution can increase the
receptive filed and improve the weakly segmentation network

performance. Besides, Wang et al. (Wang et al. 2018) trained
a region network and a pixel network to make prediction
from image level to region level and from region level to
pixel level gradually. Also, this method takes saliency map
as extra supervision. Ahn and Suha (Ahn and Kwak 2018)
designed an affinity network to compute the relationship be-
tween different image pixels and exploited this network to
get the pseudo object labels for segmentation model training.
Huang et al. (Huang et al. 2018) deployed a traditional al-
gorithm named seed growing to iteratively expand the seed
regions.

However, all the above methods produced high-quality
pseudo masks using a wide varieties of techniques, meaning
that we need at least one or two extra networks before training
FCNs for semantic segmentation prediction. In this work, we
try to design one single network for the whole task to simplify
the process. We believe this work offers a new perspective for
the image-level weakly supervised semantic segmentation
task.

Proposed Method
Overview
Our proposed RRM can be divided into two parallel branches
including a classification branch and a semantic segmentation
branch. Both branches share the same backbone network, and
during training both of them update the whole network at the
same time. The overall framework of our method is illustrated
in Figure 1. The algorithm flow is illustrated in Algorithm 1.

• The classification branch is used to generate reliable pixel-
level annotations. Original CAMs will be processed to
generate reliable yet tiny regions. The final remained reli-
able regions are regarded as labeled regions, while other
regions are viewed as unlabeled. These labels are used
as supervision information for the semantic segmentation
branch for training.

• The semantic segmentation branch is used to predict pixel-
level labels. This branch deploys a new joint loss function
combining the cross entropy loss with a newly designed
dense energy loss. The cross entropy loss mainly consid-
ers labeled pixels, while the dense energy loss takes into
account all pixels by making full use of RGB color and
pixel positions.

The overall loss function of our RRM is: L = Lclass +
Ljoint−seg, where Lclass represents a conventional classifi-
cation softmax loss, while Ljoint−seg is a newly introduced
joint loss for the segmentation branch.

Classification Branch: Generating Labels for
Reliable Regions
High-quality pixel-level annotation has a direct impact on
our final semantic segmentation performance as it is the only
ground-truth in the training processing. Original CAMs can
highlight the most discriminative regions of an object, but
they still contain some non-object areas, which are the mis-
labeled pixels. Therefore, after getting the original CAM
regions, post-processing such as dense CRF (Krähenbühl and
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Figure 1: The framework of our proposed RRM network. First of all, original regions are calculated through the classification
branch, then the pseudo pixel-level masks are generated. Finally, the pseudo labels are applied as supervision to train the semantic
segmentation branch. The whole RRM is jointly optimized end-to-end via a standard back-propagation algorithm during training.

Koltun 2013) is needed. We followed this basic idea and do
further process for generating the reliable labels.

We compute the initial CAMs of the training dataset fol-
lowing (Zhou et al. 2016). In our network, global average
pooling (GAP) is applied on the last convolution layer. The
output of GAP is classified with a fully-connected layer. Fi-
nally, the fully-connected layer weights are used on the last
convolution layer to obtain the heatmap for each class. Be-
sides, inspired by the fact that dilated convolution can in-
crease the respective field (Wei et al. 2018), we add dilated
convolution into the last three layers. Details of our network
settings are reported in our experiment Section.

Mathematically, given an image I, the CAM of class c is:

M c
ocam = RS(

D∑
ch=0

ωc
ch · Fch), (c ∈ Cfg), (1)

where Cfg = {c1, c2, ..., cN} includes all foreground classes,
M c

ocam is the CAM of class c for image I , ωc denotes the
weights of the fully-connected layer for class c, and F is the
feature maps from the last convolution layer of the backbone.
RS(·) is an operation to resize the input to the shape of I .

Using multi-scale of original images is beneficial for gen-
erating a stable CAM. Given I and it is scaled by a factor si,
si ∈ {s0, s1, ..., sn}, the multi-scale CAM for I is detonated
as:

M c
cam =

n∑
i=0

(M c
ocam(si)/(n+ 1)), (2)

where M c
ocam(si) is the CAM of class c for the scaled image

I with a factor si. Figure 2 shows that compared to original
CAM (scale=1), the multi-scale CAM provides more accurate
object localization.

The CAM scores are normalized, so that we can get the
classification probabilities for each pixel in I,

P c
fg = M c

cam/max(M c
cam), (c ∈ Cfg), (3)

where max(M c
cam) is the maximum value in the CAM of

class cj .

(a) original images Scale = 0.5

(b) CAM of different scale(c) multi-scale CAM

Scale = 1

Scale = 1.5 Scale = 2

Figure 2: An example of computing multi-scale CAM.

The background score is calculated using a similar way as
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in (Ahn and Kwak 2018):
Pbg(i) = (1− max

c∈Cfg

(pcfg(i))
γ , γ > 1. (4)

where i is the pixel position index, γ is the decay rate which
helps to suppress background labels. The overall probability
map, namely Pfg bg , is obtained by concatenating foreground
and background probabilities Pfg and Pbg .

After that, we use the dense CRF (Krähenbühl and Koltun
2013) as post-processing to remove some mislabeled pixels,
and the CRF pixel label map is:

Icrf = CRF (I, [Pfg, Pbg]). (5)
The selected reliable CAM label is:

Icam(i) =

{
argmax

c∈C
(P c

fg bg(i)), if max
c∈C

(P c
fg bg(i)) > α

255, else
, (6)

where C = {c0, c1, ..., cN} includes all classes and the back-
ground (c0). 255 means the class label is not decided yet.

The final pixel label input to the semantic segmentation
branch is:

Ifinal(i) =

{
Icam(i), if Icam(i) = Icrf (i)
255, else

(7)

In (6), max
c∈C

(P c
fg−bg(i)) > α selects the highly confident

regions. In (7), Icrf (i) = Icam(i) considers the CRF con-
strains. Taking this strategy, highly reliable regions as well as
their labels can be obtained. The regions which are detonated
as 255 in (7) are regarded as unreliable regions.

Figure 3 shows an example of our approach. It is observed
that the original CAM labels ( Figure 3 (c)) contain most fore-
ground labels but introduce a number of background pixels
as foreground. The CRF label (Figure 3 (d)) can get accurate
boundary but at the same time, many foreground pixels are
regarded as background. In other words, the CAM label can
provide reliable background pixels and CRF label can pro-
vide reliable foreground pixels. Combing the CAM label and
CRF label map using our method, some wrong pixel-level la-
bels are removed while the reliable regions are still remained,
which is especially obvious at the object boundaries (see the
difference between Figure 3 (e) and (f)).

Semantic Segmentation Branch: Making
Predictions
After getting the reliable pixel-level annotations, they are
used as labels for our semantic segmentation branch. Dif-
ferent from the other methods which train their semantic
segmentation network with the integral pseudo labels inde-
pendently, our segmentation branch shares the same back-
bone network with the classification branch, needing only
reliable yet tiny pixel-level labels. Our loss function consists
of a cross entropy loss and a energy loss. Cross entropy loss
focuses on utilizing the labeled data while the energy loss
considers both labeled and unlabeled data. The joint loss is:

Ljoint−seg = Lce + Lenergy. (8)
In (8), Lce and Lenergy represent the cross entropy loss and
the dense energy loss, respectively. The cross entropy loss is:

Lce = −
∑

c∈C,i∈Φ

Bc(i)log(P
c
net(i)), (9)

(c) CAM label

(d) CRF label (e) reliable CAM label (f) reliable label

(a) original image (b) ground truth

Figure 3: An example of generating reliable pixel labels. (c)
is computed only considering the corresponding class label
of Pfg bg. (d) is the result of (5), (e) and (f) are generating
through (6) and (7), respectively. The white pixels in (e) and
(f) are the unreliable regions.

where Bc(i) is a binary indicator, which equals to 1 if the
label of pixel i is c and otherwise 0; Φ denotes the labeled
regions, Φ = {i|Ifinal(i) �= 255}; P c

net(i) is the output
probability of the trained network

So far, all labeled pixels has been used for training with
cross entropy loss, but there are a large number of unlabeled
pixels. In order to make predictions for those unlabeled re-
gions, we design a new shallow loss named dense energy loss
considering both RGB colors and spatial positions.

We firstly define the energy formulation between pixel i
and j based on (Joy et al. 2019):

E(i, j) =
∑

ca,cb∈C
ca �=cb

G(i, j)P ca
net(i)P

cb
net(j). (10)

In (10), both ca and cb are the class labels, P ca
net(i) and

P cb
net(j) are the softmax output of our segmentation branch

at pixel i and j, respectively. G(i, j) is a Gaussian kernel
bandwidth filter:

G(i, j) =
1

W
exp(−‖Di −Dj‖2

2σ2
d

− ‖Ii − Ij‖2
2σ2

r

), (11)

where 1
W is the normalized weights, D is the pixel spatial

position while I is the RGB color. σd and σr are hyper pa-
rameters which control the scale of Gaussian kernels. (10)
can be simplified using Potts model (Tang et al. 2018b):

E(i, j) =
∑

ca,cb∈C
ca �=cb

G(i, j)P ca
net(i)P

cb
net(j)

= G(i, j)
∑
c∈C

P c
net(i)(1− P c

net(j)).

(12)
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Finally, our dense energy loss can be written as:

Lenergy =

N∑
i=0

N∑
j=0
j �=i

S(i)E(i, j). (13)

In (13), considering the fact that cross entropy loss is de-
signed for supervised learning with label information 100%
accurate, but in this task, all pixel labels are not 100% reliable,
which means that using cross entropy loss might introduce
some errors. Thus, our dense energy loss is applied to miti-
gate this problem. Based on this idea, we design a soft filter
S(i) for pixel i:

S(i) =

{
1−max

c∈C
(P c

net(i)), i ∈ Φ

1, else
(14)

Algorithm 1 Algorithm flow of our proposed approach.
Input: Images I with their image-level class labels Cfg;
Output: The trained end-to-end network, Net;

1: while iteration is true do
2: Use the classification Network branch to get the origi-

nal CAMs;
3: Get the multi-scale CAMs with (2) for each class;
4: Use (3) and (4) to get foreground probability Pfg and

background probability Pbg;
5: Get the overall CAM probability map Pfg bg by com-

bining Pbg and Pfg;
6: Calculate reliable CAM label Icam and CRF label

Icrf ;
7: Get the reliable regions and label Ifinal from Icam

and Icrf using (6)(7);
8: Produce predictions and update the whole network

using loss function L = Lclass + Lce + Lenergy;
9: end while

Experiments
Dataset and Implementation Details
Dataset. Our RRM is trained and validated on PASCAL VOC
2012 (Everingham et al. 2010) as well as its augmented
data, including 10, 582 images for training, 1, 449 images for
validating and 1, 456 images for testing. Mean intersection
over union (mIoU) is considered as the evaluation criterion.
Implementation Details. The backbone network is a ResNet
model with 38 convolution layers (Wu, Shen, and Van
Den Hengel 2019). We remove all the fully connected layers
of the original network and engage dilated convolution for
the last three resnet blocks (a resnet block is a set of residual
units with the same output size), the dilated rate is 2 for the
last third layer, and 4 for the last 2 layers. For the semantic
segmentation branch, we add two dilation convolution lay-
ers of the same configuration after the backbone (Wu, Shen,
and Van Den Hengel 2019), with kernel size 3, dilated rate
12, and padding size 12. Cross entropy loss is computed for
background and foreground individually. σd and σr in our
dense energy loss are set as 15 and 100, respectively.

The training learning rate is 0.001 with weight decay being
5e-4. The training images are resized with a ratio randomly
sampled from (0.7, 1.3), and they are randomly flipped. Fi-
nally, they are normalized and randomly cropped to size
321*321.

To generate reliable regions, the scale ratio in (2) is set
to {0.5, 1, 1.5, 2}, γ in (5) is set to 4 for Pfg bg. The CRF
parameters in (5) follow the setting in (Ahn and Kwak 2018).
In (6), an α value is chosen with 40% pixels selected as
labeled pixels for each class. During validating and testing,
dense CRF is applied as a post-processing method, and the
parameters are set as the default values given in (Huang et
al. 2018). During training, both two branches update the
backbone network. During testing, only the segmentation
branch is used to produce the predictions.
Reproducibility: PyTorch (Paszke et al. 2017) was used. All
the experiments were performed on NVIDIA RTX 2080 Ti.
Code now is available at: https://github.com/zbf1991/RRM.

Analysis of Our Approach
Our RRM has two important aspects: using the reliable yet
tiny pseudo masks for supervision and a new joint loss func-
tion for end-to-end training. Ablation studies are conducted to
illustrate their individual and joint effectiveness, with results
reported in Table 1 and Table 2.

Ratio 0.1 0.2 0.3 0.4 0.6 0.8 1.0
CE loss 0.486 0.487 0.484 0.485 0.483 0.495 0.557
Joint loss 0.428 0.623 0.626 0.626 0.609 0.594 0.582

Table 1: Performance on PASCAL VOC 2012 val set based
on different mined region. Ratio means the proportion of
reliable regions which is mined by our method to the whole
pixels. ”CE loss” means only cross entropy loss was used for
our segmentation branch and ”Joint loss” means our dense
energy loss was combined with cross entropy loss was used
for the segmentation branch.

We firstly validate the influence of different pseudo mask
size. We do this by changing α. Table 1 reports the results.
A smaller pseudo mask size means that more reliable re-
gions are selected for the segmentation branch, while a larger
size means that fewer reliable pixels are labeled. Table 1
demonstrates that 20%-60% labeled pixels lead to the best
performance. On one hand, too few labeled pixels cannot get
satisfied performance since the segmentation network cannot
get enough labels for learning. On the other hand, too many
labeled pixels means more incorrect labels are used, which
are noise for the training processing.

CE loss Joint loss
CAM 0.461 0.557
Ours-RRM 0.485 0.626

Table 2: Analysis of our method. CAM means class activate
maps directly as pseudo masks. Ours-RRM means that we
used our method to produce pseudo masks. Both CAM and
ours-RRM use top 40% pixels according to Table 1.

12769



End-to-End Method bkg plane bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mIOU
EM-Adapt (Papandreou et al. 2015) 67.2 29.2 17.6 28.6 22.2 29.6 47.0 44.0 44.2 14.6 35.1 24.9 41.0 34.8 41.6 32.1 24.8 37.4 24.0 38.1 31.6 33.8
Ours-RRM (one-step) 87.9 75.9 31.7 78.3 54.6 62.2 80.5 73.7 71.2 30.5 67.4 40.9 71.8 66.2 70.3 72.6 49.0 70.7 38.4 62.7 58.4 62.6

Table 3: Performance on the PASCAL VOC 2012 val set, compared with other end-to-end weakly supervised approaches.

End-to-End Method bkg plane bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mIOU
EM-Adapt (Papandreou et al. 2015) 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6
Ours-RRM (one-step) 87.8 77.5 30.8 71.7 36.0 64.2 75.3 70.4 81.7 29.3 70.4 52.0 78.6 73.8 74.4 72.1 54.2 75.2 50.6 42.0 52.5 62.9

Table 4: Performance on the PASCAL VOC 2012 test set, compared with other end-to-end weakly supervised approaches.

Method Baseline Sup. Extra Data End-to-end val (mIoU) test (mIoU)
Deeplab (ICLR’15) (Chen et al. 2014) VGG-16 F - - 67.6 70.3
Deeplab-v2 (Chen et al. 2018a) ResNet-101 F - - 76.8 79.7
WSSL (ICCV’15) (Papandreou et al. 2015) VGG-16 B - - 60.6 62.2
BoxSup (ICCV’15) (Dai, He, and Sun 2015) VGG-16 B - - 62.0 64.6
ScribbleSup (CVPR’16) (Lin et al. 2016) VGG-16 S - - 63.1 -
Kernel Cut (ECCV’18) (Tang et al. 2018b) ResNet-101 S - - 75.0 -
CrawlSeg (CVPR’17) (Hong et al. 2017) VGG-16 L YouTube Videos × 58.1 58.7
DSRG (CVPR’18) (Huang et al. 2018) VGG-16 L MSRA-B × 59.0 60.4
DSRG (CVPR’18) (Huang et al. 2018) ResNet-101 L MSRA-B × 61.4 63.2
FickleNet (CVPR’19) (Lee et al. 2019) ResNet-101 L MSRA-B × 64.9 65.3
EM-Adapt (ICCV’15)(Papandreou et al. 2015) VGG-16 L - � 38.2 39.6
SEC (ECCV’16) (Kolesnikov and Lampert 2016) VGG-16 L - × 50.7 51.7
AugFeed (ECCV’16) (Qi et al. 2016) VGG-16 L - × 54.3 55.5
AdvErasing (CVPR’17) (Wei et al. 2017) VGG-16 L - × 55.0 55.7
AffinityNet (CVPR’18) (Ahn and Kwak 2018) VGG-16 L - × 58.4 60.5
AffinityNet (CVPR’18) (Ahn and Kwak 2018) ResNet-38 L - × 61.7 63.7
Ours-RRM-VGG (two-step) VGG16 L - × 60.7 61.0
Ours-RRM-ResNet (two-step) ResNet-101 L - × 66.3 66.5
Ours-RRM (one-step) ResNet-38 L - � 62.6 62.9

Table 5: Comparison with the state-of-the-art approaches on PASCAL VOC 2012 val and test dataset. Sup.-supervision
information, GT-ground truth, F-full supervision, L-image-level class label, B-bounding box label, S-scribble label.

Table 2 shows the effectiveness of our introduced two
main parts: reliable region mining and the joint loss. The
results obtained using original CAM regions and the mined
reliable regions with RRM are compared. It is observed that
the pseudo label generated by RRM outperforms CAM labels.
If we remove the joint loss from our segmentation branch, it
also shows that the reliable pseudo labels generated by RRM
improves the segmentation performance.

In addition, the comparison between Ours-RRM with CE
loss and Ours-RRM with Joint loss in Table 2 illustrates the
effectiveness of the introduced joint loss. Without the joint
loss, the mIoU obtained with RRM with CE loss gets lower.
This is because the mined reliable regions with RRM cannot
provide sufficient labels for segmentation model training
when only considering cross entropy loss. After adopting the
joint loss, segmentation performance improves with a big
margin from 48.5 to 62.6, which is a 14.1 increase. Similar
comparison result is obtained between CAM with CE loss
and CAM with Joint loss.

Comparisons with Previous Approaches
In Table 3 and Table 4, we make detailed comparisons with
other end-to-end network for image-level-only supervised
semantic segmentation. Although there are various different
networks for this task, only EM-Adapt (Papandreou et al.
2015) adopts an end-to-end structure, and it can be seen that

Ours-RRM (one-step) outperforms it with a big margin. First
of all, compared with EM-Adapt (Papandreou et al. 2015),
which uses an expectation–maximization (EM) algorithm to
update the network parameters, our method adopts a more
direct and explicit learning procedure to update the whole
network, using our designed joint loss function. Secondly,
EM-Adapt (Papandreou et al. 2015) can only give a rough
segmentation result as only the image-level information is
considered, while Ours-RRM (one-step) designs a pilot mech-
anism to provide reliable pixel-level labels, which leads to
more accurate segmentation predictions.

In order to show the effectiveness and scalability of our
idea, we also extend our method to a two-step framework.
The difference is that for our one-step method (Ours-RRM
(one-step)), we produce the predictions through our segmen-
tation branch directly. Whereas for our two-step method,
we firstly used our Ours-RRM (one-step) network to pro-
duce the pseudo masks for the training dataset. Following
that, we train and evaluate Deeplab (Chen et al. 2014) with
those generated pixel labels, which is named as Our-RRM-
VGG (two-step). Using the same setting, we also evaluate
the performance when Deeplab-v2 (Chen et al. 2018a) with
ResNet-101 backbone was used, called Our-RRM-ResNet
(two-step). The final results can be found in Table 5. It is ob-
served that among existing methods solely using image-level
label without extra data, AffinityNet (Ahn and Kwak 2018)
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is the most performing one. However, both Ours-RRM-VGG
(two-step) and Ours-RRM-ResNet (two-step) perform much
better than it when the same backbone was used. One more
thing should be noticed is that AffinityNet (Ahn and Kwak
2018) used ResNet-38 (Wu, Shen, and Van Den Hengel 2019)
as baseline, which is more powerful than ResNet-101 (Lee et
al. 2019), and even in this case ours-RRM-ResNet (two-step)
still outperforms it with a big margin. Note that AffinityNet
(Ahn and Kwak 2018) applies three different DNNs with
many bells and whistles, while we get equivalent results with
only one end-to-end network (Ours-RRM (one-step)).

To the best of our knowledge, the previous state-of-the-art,
FickleNet (Lee et al. 2019), achieves the mIoU score of 64.9
and 65.3 on PASCAL VOC val and test set, but it uses class
agnostic saliency map (Liu et al. 2010) as extra supplement
information and uses two individual networks separately.
Ours-RRM-ResNet (two-step) gives a better performance with
mIoU scores of 66.3 and 66.5 on PASCAL VOC val and
test set, which represents 1.4 and 1.2 improvement. Note
that we do not use extra data or information in our case.
Therefore, Ours-RRM-ResNet (two-step) is the new state-
of-the-art for two-step image-level label weakly supervised
semantic segmentation.

In Figure 4, we report some subjective semantic segmen-
tation results of ours methods, which are compared with
EM-Adapt (Papandreou et al. 2015), the state-of-the-art end-
to-end network. Ours-RRM (one-step) obtains much better
segmentation results on both large and small objects, with
much accurate boundaries. We also show some results of
our two-step approaches, and it can be seen that among our
three methods, ours-RRM-ResNet (two-step) obtains the best
performance duo to the powerful network architecture.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: Qualitative segmentation results on PASCAL VOC
2012 val set. (a) Original images. (b) Ground-truth. (c) EM-
Adapt results. (d) Ours-RRM (one-step) results. (e) Ours-
RRM-VGG (two-step) results. (f) Ours-RRM-ResNet (two-
step) results.

Conclusion
In this paper, we proposed the RRM, an end-to-end network
for image-level weakly supervised semantic segmentation.
We revisited drawbacks of the state-of-the-arts, which adopt
the two-step approach. We proposed a one-step approach
through mining reliable yet tiny regions and used them as
ground-truth labels directly for segmentation model train-
ing. With limited pixels as supervision, we designed a new
loss named dense energy loss, which takes shallow features
(RGB colors and spatial information) and cooperates with the
pixel-wise cross-entropy loss to optimize the training process.
Based on our one-step RRM, we extend a two-step method.
Both our one-step and two-step approaches achieve state-of-
the-art performance. More importantly, our RRM offers a
different perspective from the traditional two-step solutions.
We believe that the proposed one-step approach could further
boost research in this direction.
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