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Abstract

Feature pyramid is the mainstream method for multi-scale ob-
ject detection. In most detectors with feature pyramid, each
proposal is predicted based on feature grids pooled from only
one feature level, which is assigned heuristically. Recent stud-
ies report that the feature representation extracted using this
method is sub-optimal, since they ignore the valid informa-
tion exists on other unselected layers of the feature pyramid.
To address this issue, researchers present to fuse valid infor-
mation across all feature levels. However, these methods can
be further improved: the feature fusion strategies, which use
common operation (element-wise max or sum) in most de-
tectors, should be replaced by a more flexible way. In this
work, a novel method called feature adaptive selection sub-
network (FAS-Net) is proposed to construct effective features
for detecting objects of different scales. Particularly, its adap-
tion consists of two level: global attention and local adap-
tive selection. First, we model the global context of each fea-
ture map with global attention based feature selection mod-
ule (GAFSM), which can strengthen the effective features
across each layer adaptively. Then we extract the features
of each region of interest (RoI) on the entire feature pyra-
mid to construct a RoI feature pyramid. Finally, the RoI fea-
ture pyramid is sent to the feature adaptive selection mod-
ule (FASM) to integrate the strengthened features according
to the input adaptively. Our FAS-Net can be easily extended
to other two-stage object detectors with feature pyramid, and
supports to analyze the importance of different feature lev-
els for multi-scale objects quantitatively. Besides, FAS-Net
can also be further applied to instance segmentation task and
get consistent improvements. Experiments on PASCAL07/12
and MSCOCO17 demonstrate the effectiveness and general-
ization of the proposed method.

Introduction

Large scale variation across objects is one of the main fac-
tors affecting the performance of the object detectors. To al-
leviate this problem, multiple solutions have been proposed.
A classical strategy to address this issue is to run the detector
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over a number of scaled input images, which is called fea-
turized image pyramids (Lin et al. 2017). But this method
increases the inference time and memory usage of the detec-
tor significantly. In contrast, considering the inherent hier-
archical structure of convolutional neural networks (CNN),
algorithms using multiple CNN layers have been proposed
in recent years (Liu et al. 2018a). As the low-level and high-
level information are complementary for object detection,
the feature pyramid structure is proposed (Lin et al. 2017;
Kong et al. 2017; Zhang et al. 2018) and becomes the
mainstream method to solve the multi-scale object detection
problem. Among them, FPN (Lin et al. 2017) is the most
representative method. It integrates features via lateral con-
nections in the sequential manner and each proposal is pre-
dicted based on feature grids pooled from one feature level,
which is assigned heuristically (Fig. 1(a)).

Although achieving encouraging results, FPN still has
some limitations. For example, Libra R-CNN (Pang et al.
2019) proves that feature integration via lateral connections
in the sequential manner will make the integrated features
focus more on adjacent resolution but less on others. This
means that some useful semantic information in highest-
level can not transfer to the lowest-level features effectively.
They propose the balanced feature pyramid (BFP) structure
to resolve the feature level imbalance (Fig. 1(b)). PANet (Liu
et al. 2018b) finds it is not optimal that each proposal is
predicted from a single heuristically assigned feature level.
In PANet, the adaptive feature pooling (AFP) is proposed
to use all levels feature maps for each proposal and fusing
them for following prediction (Fig. 1(c)). M2Det (Zhao et al.
2019) points out that objects of the same size with different
apparent complexity also need to extract valid information
from different levels of feature layers. Thus, each feature
map (used for detecting objects in a specific range of size in
FPN) in the pyramid mainly or only consists of single-level
features will result in suboptimal detection performance. In
order to solve the shortcomings of the general FPN structure,
they propose multi-level feature pyramid network (MLFPN)
to construct more effective feature pyramids for detecting
objects of different scales.
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Figure 1: (a)The structure of FPN (b) The structure of BFP in Libra RCNN (c) The structure of BPA and AFP in PANet (d)
The structure of FPN with FAS-Net

However, the above methods still have some problems.
For M2Det, the MLFPN introduce too many parameters and
ignore the valid information in the low-level features. For
Libra-RCNN and PANet, although they try to fuse valid in-
formation across all feature levels, the feature fusion opera-
tion in their structure (such as BFP in Libra RCNN or AFP
in PANet) can only occupy a limited part of the feature fu-
sion space, which can be further optimized by a more flex-
ible way. In this paper, we propose a novel feature adap-
tive selection subnetwork (FAS-Net, Fig. 1(d)) to construct
more effective feature representations for objects of different
scales, globally and locally. FAS-Net consists of: (1) a global
attention based feature selection module (GAFSM) and (2) a
group of feature adaptive selection modules (FASM). Firstly,
we use the GAFSM to strengthen effective feature channels
based on the global context. Then enhanced features are sent
to FASM to get a combined feature representation adaptively
over all feature maps for each RoI. Extensive experiments
demonstrate the effectiveness and generality of the proposed
method.

To sum up, the main contributions of this paper can be
summarized as follows: (1) FAS-Net is proposed. It helps to
construct effective feature representation for multi-scale ob-
jects, globally and locally. (2) quantitative analysis reveals
that each feature level in the feature pyramid has differ-
ent, as well as positive effects on objects of different scales.
(3) extensive implementations with various two-stage detec-
tors based on FPN structure prove the generality and robust-
ness of FAS-Net. Furthermore, FAS-Net is plugged into the
Mask RCNN (He et al. 2017) for instance segmentation and
achieves consistent performance improvement on objects of
all scales.

Related Works

There are two strategies to alleviate the problems arising
from objects with various scales. The featurized image pyra-
mid is used in the era of hand-engineered features. Although

it is optimized by training strategy such as SNIP (Singh and
Davis 2018) and SNIPER (Singh, Najibi, and Davis 2018),
such a method is still time-wise and memory-wise, which
forbid its application in most practical work. In contrast,
the feature pyramid structure, such as FPN, use a top-down
architecture with lateral connections to build high-level se-
mantic feature maps at all scales. It shows significant im-
provement as a generic feature extractor and can be eas-
ily integrated into the state-of-the-art CNN based detectors,
yielding an end-to-end solution.

However, some recent work indicates that there are still
some problems in the FPN structure. In FSAF (Zhu, He,
and Savvides 2019), researchers point out the problem of
heuristic-guided feature selection used in FPN. And they
propose the online feature selection to dynamically select
the most suitable level of feature for each instance during
training. M2Det (Zhao et al. 2019) find that each feature
map in the pyramid mainly or only consists of single-level
feature, which will result in suboptimal detection perfor-
mance. Multi-level feature pyramid network (MLFPN) is
proposed to construct a more effective feature pyramid. But
the MLFPN increase the complexity of the model signifi-
cantly. And in FSAF and M2Det, the feature representation
of each RoI is extract from a single feature level, which ig-
nore the valid information exists on other feature levels of
the pyramid. In contrast, Libra RCNN and PANet show that
all feature map layers contain valid information for object
detection regardless of the size of the object. They use the
common operation (element-wise max or sum) to fuse valid
information from all feature levels.

Furthermore, the update of network topology in recent
years has also significantly improved the performance of
detectors. The SENet (Hu, Shen, and Sun 2018) and GC-
Net (Cao et al. 2019) strengthen the original features by the
same features aggregated from all positions. They can ef-
fectively model channel-wise feature dependencies or long-
range dependencies. In the field of object classification,
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SKNet (Li et al. 2019a) is proposed to allow each neuron
in the CNN to adaptively adjust its receptive field size based
on multiple scales of input information. All these methods
show that features can be selected or recalibrated adaptively
by using modules of specific structures. And similar with
SKNet, TridentNet (Li et al. 2019b) points out that objects
of different scales should have some differences in effective
feature extraction.

Proposed Method
We design our structure following the principles below: (1)
extract valid feature representations from all feature map
layers (2) design a new module that can get a more flex-
ible fusion features based on the input content to replace
the rigid fusion method which is set manually (3) to make
objects of different scales get more effective feature rep-
resentations, we use different branches (same structure but
with different parameters) to fuse effective features in the
pyramid. As shown in Fig. 1(d), FAS-Net mainly consists
of two modules: a group of feature adaptive selection mod-
ules (FASM) and the global attention based feature selec-
tion module (GAFSM). Before we extract features for all
proposals, we use the GAFSM to enhance the feature maps
in feature pyramid according to the global attention. Then
we choose a specific FASM based on the size of the pro-
posals. The FASM can output the final RoI features which
fuse all valid information adaptively. More details about the
two core modules and network configurations of FAS-Net
are introduced in the following.

GAFSM

Given the feature hierarchy, the aim of the GAFSM is to
enhance informative features and suppress less useful ones
globally for each specific scale. As shown in SENet (Hu,
Shen, and Sun 2018) and GCNet (Cao et al. 2019), the in-
troduction of global context information in the network can
further improve the discriminability of the features. But the
SE block and the GC block mainly used in the backbone net-
work, which neglect the output features of FPN. When the
feature levels of different depths are enhanced by the FPN
structure, there may be some change in the importance of
each feature channel. Therefore, it is necessary to further
re-construct the global attention information to process all
output layers of the FPN. We add GAFSM to strengthen the
informative features on each level of FPN.

In this paper, we apply the simplified non-local (SNL)
block (Cao et al. 2019) as the basic module. SNL can be
replaced by GC block to reduce the amount of parameters.
In order to remove the impact of additional normalized lay-
ers in GC block, we use the SNL modules here to ensure
that performance gains are primarily affected by global con-
text attention. SNL is a simplified implementation of the
NL (Wang et al. 2018) module. As the global contexts mod-
eled by non-local network are almost the same for different
query positions within an image, we can simplify the NL
module as follows:

zi = xi +Wv

Np∑

j=1

exp(Wkxj)∑Np

m=1 exp(Wkxm)
xj (1)

Figure 2: The structure of SNL, the context modeling of
structure is shown in blue dashed boxes

where i is the index of query positions and j enumerates all
possible positions in the input. Wk and Wv denote linear
transform matrices, we use 1× 1 in our module. We directly
model global context as a weighted average of the features at
all positions, and add the global context features to the fea-
tures at each query position. The Wv is used to recalibrate
the importance of channels.

The structure of SNL is shown in Fig. 2. The original SNL
module is developed to strengthen the output features of the
backbone network. In contrast, the SNL in our GAFSM is
used to construct a global attention map to process each fea-
ture layer of the feature pyramid, which is only used before
extracting RoI features by ROIAlign.

FASM

Inspired by the dynamic selection mechanism in SKNet,
we design our FASM to construct fused features adaptively
from all feature maps in feature pyramid. The structure of
FASM is illustrated in Fig. 3, which can be divided into
three parts: fuse, gated weight calculation and feature inte-
grated. As shown in Fig. 1(d), we map each proposal to dif-
ferent feature levels in feature pyramid, and following Mask
RCNN, RoIAlign is used to pool feature grids from each
level to get the RoI feature pyramid {P2

′
,P3

′
,P4

′
,P5

′}.
As default setting in FPN, the dimensions of RoI features is
n×C×7×7 in detection network, where n is the number of
RoIs send into the FASM and C is the number of channels,
which is set to 256 by default. Then the RoI feature pyra-
mid send into the FASM to adaptively select valid features
according to the input content.

Fuse: We first fuse information from all branches via an
element-wise summation to get the Feature Sum U:

U = P2
′
+P3

′
+P4

′
+P5

′
(2)

and we use global average pooling to generate channel-wise
statistics as s ∈ R

C . Specifically, the c-th element of s is
calculated by shrinking U through spatial dimensions 7×7:

sc = Fgp(U)

= 1
49

7∑
i=1

7∑
j=1

Uc(i, j)
(3)

then we transform the s with a simple fully connected (fc)
layer to enable the guidance for the precise and adaptive se-
lections. Similar to the SE block in SENet, we use a bottle-
neck form to reduce the number of parameters from C × C
to C×C/r, where r is the bottleneck ratio and C/r denotes
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Figure 3: The structure of FASM

the hidden representation dimension of the bottleneck. The
inter-feature z is calculated as follows:

z = Ffc(s) = δ(Ws) (4)

where z ∈ R
d×1, d = C/r, δ is the ReLU function (Nair

and Hinton 2010), W ∈ R
d×C . Compared with selective

kernel (SK) unit, we remove the batch normalization (Ioffe
and Szegedy 2015) in this operation because of the small
batch size during our training process (batch size is set to 1
for experiments on VOC and 2 for experiments on COCO).

Gated weight calculation: After the fuse stage, we cal-
culate weights for each feature in the RoI feature pyramid.
We use another fc layer to transform the inter-feature and
followed by a softmax operator, which is applied on the
channel-wise digits:

W P2
′
c =

eAcz

eAcz+eBcz+eDcz+eEcz

W P3
′
c =

eBcz

eAcz+eBcz+eDcz+eEcz

W P4
′
c =

eDcz

eAcz+eBcz+eDcz+eEcz

W P5
′
c =

eEcz

eAcz+eBcz+eDcz+eEcz

(5)

where A,B,D,E ∈ R
C×d denote linear transform matri-

ces that can map the inter-feature z to C channel. Each of
the channel is corresponding to the channel of the input fea-
ture (e.g. P2

′
). Then we can concatenate all transformed

features (total 4C dimensions) into a softmax layer to cal-
culate the weight values of each feature layer on a specific
channel c. W P2

′
, W P3

′
, W P4

′
, W P5

′
denote the

soft attention vector for each feature in RoI feature pyramid.
Feature integrated: Finally, we get an adaptive weighted

combination feature for each proposal. The final feature map
V is obtained through the attention weights on various fea-
tures:

Vc =

5∑

i=2

W Pi
′
c ·Pi

′
c,

5∑

i=2

W Pi
′
c = 1 (6)

where V = [V1,V2, · · · ,VC ],Vc ∈ R7×7.
The original SK unit is developed for explicitly select fea-

tures between all branches with different kernel sizes, and
shows great success in object classification. In contrast, we
apply our FASM to fuse valid information from hierarchy
features. FASM helps to boost feature discriminability and
select more useful information based on specific local input.
In addition, we have more than one FASM in our FAS-Net.
According to the size of the proposals, we divide them into
three parts and send them to different FASMs. Our definition
of large, medium and small proposals is consistent with the
COCO data set. When the area of the proposal mapped back
to the original image is less than 32 × 32, we define it as a
small one. All the features of small proposals should be sent
to FASM for small branch. When the area of the proposal
mapped back to the original image is larger than 96×96, we
define it as a large one. All the features of large proposals
should be sent to FASM for large branch. In the Ablation
Experiments, the impact of the number of FASMs will be
discussed in detail.

Network Configurations

The proposed FAS-Net can be integrated into various two-
stage detectors with FPN structure, like Faster RCNN (Ren
et al. 2015), Libra RCNN, DCN (Dai et al. 2017; Zhu et al.
2018) and GCNet. Before training the whole network, the
backbone network should be pre-trained on the ImageNet
2012 dataset (Russakovsky et al. 2015). All the default con-
figurations of FAS-Net contain 4 SNL in GAFSM and 3
FASM. As for input size, we follow the settings in mmde-
tection1, when training on the Pascal VOC dataset (Ever-
ingham et al. 2010), the input images resize to (1000,600),
when training on the COCO dataset (Lin et al. 2014), the in-
put images resize to (1333,800). The first number in paren-

1https://github.com/open-mmlab/mmdetection
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theses indicates the maximum value of the width or height
of the image after the scale change, and the second num-
ber indicates the minimum value. The image after the scale
change will be padded so that the width and height of the
input feature can be divisible by 32.

Experiments

We conduct experiments on three widely used datasets:
PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO
2017. All network backbones are pretrained on the Ima-
geNet1k classification set and fine-tuned on the detection
dataset. We use the pre-trained ResNet-50 that is publicly
available. Our experiments are based on re-implementation
of various modern detectors using PyTorch2 and mmdetec-
tion. All hyper-parameters follow the settings in mmdetec-
tion if not specifically noted. We first evaluate the proposed
methods with ablation experiments. Then we apply our mod-
ule for various modern detectors to verify its effectiveness
and generality. For evaluation measure, we use average pre-
cision (AP) per class which is a standard metric for ob-
ject detection. It is evaluated by computing the area un-
der the precision-recall curve. We also compute mean av-
erage precision (mAP) by averaging the APs over all object
classes. Furthermore, for experiments on the COCO dataset,
we report results follow standard COCO-style average pre-
cision metrics that include AP (averaged over IoU thresh-
olds), AP50 (AP for IoU threshold 0.5), AP75 (AP for IoU
threshold 0.75). We also include APS , APM , APL, which
correspond to the results on small, medium and large scales
respectively.

Ablation Experiments

To show the effectiveness of the FASM and the GAFSM,
we perform several ablation studies. For this evaluation, we
train detectors on the VOC2007 and VOC2012 trainval set
and test them on the VOC2007 test set. All experiments
on VOC dataset are trained with a single RTX 2080 GPU,
CUDA 10 and cuDNN 7, without parallel and distributed
training. We initialize the learning rate as 1×10−3, and then
decrease it to 1 × 10−4 at 9 epochs, and stop at 12 epochs.
The batch size is set to 1 to remove the impact of Batch Nor-
malization on network performance. We use ResNet50 FPN
Faster-RCNN as the baseline.

Effects of proposed methods: In Table 1, we first show
mAPs of the baseline detector without the FASM and
GAFSM. Then we improve the detector by using each of
them or the overall FAS-Net. In order to analyze the im-
pact of the proposed structure on multi-scale object detec-
tion problems, we list the detection performance of the net-
work on objects of different scales, just like the APS , APM ,
APL in COCO dataset. Firstly, we extend the baseline detec-
tor with our FASM and the AP improves from 80.48 to 81.66
as illustrated in the third row of Table 1. It demonstrates that
our FASM can adaptively select effective information from
each feature map of the feature pyramid. And for objects
of different scales, using FASM can effectively enhance the
discriminativeness of the feature representation. Then we

2https://pytorch.org/

Table 1: Ablation study on PASCAL VOC: effects of the
proposed FASM and the GAFSM.

detectors APS APM APL mAP
baseline (Lin et al. 2017) 43.88 66.27 84.29 80.48
baseline+FASM 47.11 68.82 84.88 81.66
baseline+GAFSM 45.91 69.85 84.53 81.47
baseline+FAS-Net 47.46 69.39 85.17 82.18

Table 2: Effects of the number of FASM.
Number of FASM APS APM APL mAP

0 43.88 66.27 84.29 80.48
1 45.02 67.28 84.47 80.70
3 47.11 68.82 84.88 81.66
4 44.24 68.68 84.94 81.53

extend the baseline detector with GAFSM and the AP im-
proves from 80.48 to 81.47 as illustrated in the fourth row.
The global attention makes the network enhance the features
with suitable semantics and helps detect objects with scale
variation. Finally, we extend the baseline detector with FAS-
Net, and the AP improves from 80.48 to 82.18, which indi-
cates the complementarity between the proposed two mod-
ules.

The number of the FASM: As we can use different
FASM branches in the network to handle objects in differ-
ent scales, we investigate on the number of FASM we should
use in our network. In theory, using a single FASM can learn
the feature weight distribution for all objects. However, we
find that it is very difficult to learn the feature weight dis-
tribution for objects in all scales simultaneously with only
one FASM, especially when the training time is limited. In-
spired by TridentNet (Li et al. 2019b), which construct a par-
allel multi-branch architecture and specialize each branch
by sampling object instances of proper scales for training.
We use more than one FASM in our FAS-Net and specialize
each FASM branch by sampling object instances of proper
scales for training. As shown in Table 2, we extend the base-
line detector with different number of FASM, where 0 cor-
responds to the baseline network. The number of FASM is
set to 3 by default, the scale division point is set to 322 and
962. When the number of FASM is 4, we set the scale divi-
sion point to 322, 962 and 1602. The detection performance
is related to the number of FASMs and we get the best re-
sults when the number of the FASM is set to 3. When using
more FASMs (more than 3), in order to learn the weight dis-
tribution of additional branches, it may have a large impact
on the features extracted by the backbone framework, thus
affecting the effective detection of targets in other scales. As
shown in the last row of Table 2, subdividing large objects
will affect the detection performance of small objects.

Quantitative analysis of the weight: In order to analyze
the importance of different feature levels for multi-scale ob-
jects quantitatively, we calculate the weights on each feature
map in RoI feature pyramid learned by the FASM. When the
test image is sent to the network, the weight assigned to each
channel of the specific feature map is learned by a FASM

12577



Table 3: Changes in weight distribution learned by FASM.
Number of FASM branch weight for P2’ weight for P3’ weight for P4’ weight for P5’

small proposals 0.2070 0.2343 0.2421 0.3166
1 middle proposals 0.1949 0.2267 0.2422 0.3362

large proposals 0.1835 0.2156 0.2372 0.3637
FASM for small 0.2683 0.2785 0.2387 0.2144

3 FASM for middle 0.2209 0.2533 0.2622 0.2636
FASM for large 0.1903 0.2122 0.2212 0.3763

branch. Then the mean value of the learnd weights is shown
in Table 3. For example, the weight for Pi

′
is calculated as

follows:

weight for pi
′
=

1

N

N∑

n=1

C∑

c=1

W Pi
′
n,c (7)

where N denotes the number of objects in a specific size
range.

The feature layer with larger weight means that more valid
information is extracted from this layer. As shown in the last
row of Table 3, for large objects, an average of 37.63% of
the valid information comes from the highest feature level
P5

′
. Consistent with our previous experience, as the size of

proposals increases, more effective information comes from
high-level features. For small objects, more effective infor-
mation comes from low-level features. In addition, all the
feature layers contains valid information for detection re-
gardless of the size of the objects. Comparing the weights
learned when using different number of FASMs, we can see
that although a single FASM can be used to learn the correct
trend (the weight for P2

′
increase from 18.35% to 20.7%

when the input objects become smaller), the final weight as-
signment value is not effective enough compared with using
multiple FASMs. As shown in the fifth row, for small ob-
jects, the weight for P2

′
should be larger than the weight

for P5
′
, which is hard to achieve for a single FASM as the

number of small objects in the data set is much smaller than
the number objects in other scale.

The reduction ratio in the FASM: Reduction ratio r in-
troduced in FASM is a hyperparameter which allows us to
vary the capacity and computation cost of the FASM. To
investigate the trade-off between performance and compu-
tational cost modified by this hyperparameter, we conduct
experiments with ResNet50 FPN Faster-RCNN extend by
our FASM for a range of different r values. The compari-
son in Table 4 shows that performance improve monotoni-
cally with increased complexity. We found that setting r=8

Table 4: The effect of reduction ratio in FASM
Reduction Ratio APS APM APL mAP

4 48.13 69.43 84.95 81.84
8 47.11 68.82 84.88 81.66

16 44.52 68.67 84.98 81.27

achieve a good balance between accuracy and complexity.
We set r=8 for all experiments reported in this work.

Effectiveness and generality on PASCAL VOC

To prove the effectiveness and generality of FAS-Net, we
test extensive implementations of FAS-Net with various
two-stage detectors based on FPN structure. ResNet50 is
used as backbone feature extractor in all implementations.
As shown in Table 5, besides the basic FPN, detectors in-
cluding GCNet, DCN and Libra RCNN all achieve perfor-
mance improvement with FAS-Net. The AP, APS , APM ,
APL all improve consistently, especially the APS improves
by 3.9% on average. It is noteworthy that, although GC-
Net uses global context information to enhance the effec-
tive features in the backbone network, the combination of
our FAS-Net can further improve the network detection per-
formance. This shows that our modules are complementary
to algorithms that modeling and using global context infor-
mation to enhance features in backbone network. For Libra
RCNN, considering that not all modules are related to our
proposed structure, we only use their BFP module for com-
parison experiments. As shown in the last two rows of Table
5, although the global attention information is used and the
semantic information of each layer is balanced by using BFP
in Libra RCNN, we can get more efficient feature represen-
tation by using our FAS-Net structure.

Similar to our methods, PANet also try to fuse valid in-
formation from all the feature maps by using the bottom-
up path augmentation (BPA) and the adaptive feature pool-
ing (AFP) they proposed. For fair comparison, we use the
same environment and parameter settings, and extend the
FPN ResNet50 Faster RCNN detector using BPA and AFP
or our FAS-Net. As shown in the second and the last row
of Table 5, our method achieves a better performance with
a lower complexity, which demonstrate the effectiveness of
our FAS-Net. It can be shown that our performance improve-
ment is not due to the increase of the complexity of the
model as we achieve a better performance with a smaller
model size.

Effectiveness on MS COCO 2017

To further validate the proposed framework on a larger and
more challenging dataset, we conduct experiments on MS
COCO 2017. we train all detectors with COCO 2017 train
set and test them on the COCO 2017 val set as done in
mmdetection. All experiments using COCO dataset are
trained with two RTX 2080 GPUs with distributed train-
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Table 5: Comparative experimental results on VOC datasets.
Detector Model Size(KB) APS APM APL AP FPS

FPN Faster RCNN (Lin et al. 2017) 161617 43.88 66.27 84.29 80.48 22.5
FPN + FAS-Net 163132 47.46 69.39 85.17 82.18 17.8

GCNet (Cao et al. 2019) 171484 49.27 68.24 84.66 81.74 21.1
GCNet+FAS-Net 173000 52.68 69.97 85.58 82.21 16.6

DCN (Zhu et al. 2018) 165024 41.08 68.71 86.17 82.85 20.8
DCN+FAS-Net 166539 47.32 70.47 86.51 83.46 16.9

Libra RCNN 162646 49.91 68.29 84.81 81.62 21.9
Libra RCNN+FAS-Net 164162 52.38 69.88 85.10 82.10 17.0

PANet (Liu et al. 2018b) 175449 45.70 68.26 84.73 81.39 17.1

Table 6: Detection results on COCO datasets
Module bbox, Avg. Precision, IoU bbox, Avg. Precision, Aera
Name AP@0.5:0.95 AP@0.5 AP@0.75 APS APM APL

FPN Faster RCNN (Lin et al. 2017) 35.75 57.12 38.52 20.54 39.31 45.67
FPN+FAS-Net 36.75 59.14 39.22 22.19 40.69 46.12

Mask RCNN (He et al. 2017) 36.63 57.84 39.53 21.35 40.02 47.30
Mask RCNN+FAS-Net 37.39 59.52 40.09 22.17 41.49 47.69

Table 7: Segmentation results on COCO datasets
Module segm, Avg. Precision, IoU segm, Avg. Precision, Aera
Name AP@0.5:0.95 AP@0.5 AP@0.75 APS APM APL

Mask RCNN (He et al. 2017) 33.62 54.53 35.72 17.70 36.58 45.82
Mask RCNN+FAS-Net 34.69 56.27 36.82 18.34 38.41 47.13

ing. we initialize the learning rate as 5× 10−3, and then de-
crease it at 8 and 11 epochs by a factor of 0.1, and stop at 12
epochs. The batch size is set to 2 (one image on each GPU).
As shown in Table 6, our module can effectively improves
the performance of object detection task. Our FAS-Net can
achieve consistent improvement on all evaluation metrics,
especially on the AP@0.5, we get a 1.8% improvement on
average.

Generality to Instance Segmentation

We find that our FASM can also be embedded into the
mask branch of the Mask RCNN. Thus, we extend the Mask
RCNN framework with our FAS-Net to learn instance seg-
mentation task. As shown in Table 7, our module can ef-
fectively improves the performance of instance segmenta-
tion task. We achieve an average 1% increase on all evalu-
ation metrics. We believe that the proposed method can be
applied to similar network structures to further solve other
computer vision problems that require effective feature rep-
resentation. With the introduction of some low-level features
by our FASM module for large objects, we get better seg-
mentation results at the details of large objects (Fig. 4).

Discussion

In this paper, the scale range of proposals corresponding to
different FASMs is set manually. We think we can further

improve the final performance of the network by selecting a
better scale division strategy based on the specific data set.

Furthermore, it should be noted that our FASM module
is effective under the condition that the features of the same

Figure 4: The segmentation results on COCO
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spatial location on different feature levels represent the same
content. When the feature representation of the same spatial
location on different feature maps are inconsistent, we can-
not obtain effective combined features by using FASM. For
example, we can not use our FAS-Net on GA-RPN (Wang et
al. 2019) based detectors because of the anchor-guided fea-
ture adaptation module, which will cause inconsistencies in
the representation of the same location on different feature
maps.

Conclusion

In this work, a novel method called feature adaptive selec-
tion subnetwork (FAS-Net) is proposed to construct effec-
tive features for detecting objects of different scales. FAS-
Net consists of two novel modules: GAFSM and FASM.
GAFSM can strengthen the effective features in each layer
according to the global attention. The FASM can integrate
the effective features according to the input adaptively and
can quantify the weight, which effectively proves the com-
plementarity of the effective information on each feature
map of the feature pyramid. A two-stage object detector with
FPN structure can be easily extend by our FAS-Net and get
an efficient performance improvement. The structure can be
further applied to other visual fields, such as instance seg-
mentation. Adequate experiments demonstrate the effective-
ness and the generality of the proposed architecture and the
novel modules.
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