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Abstract

The encoder-decoder networks are commonly used in medi-
cal image segmentation due to their remarkable performance
in hierarchical feature fusion. However, the expanding path
for feature decoding and spatial recovery does not consider
the long-term dependency when fusing feature maps from
different layers, and the universal encoder-decoder network
does not make full use of the multi-modality information to
improve the network robustness especially for segmenting
medical MRI In this paper, we propose a novel feature fu-
sion unit called Recurrent Decoding Cell (RDC) which lever-
ages convolutional RNNs to memorize the long-term context
information from the previous layers in the decoding phase.
An encoder-decoder network, named Convolutional Recur-
rent Decoding Network (CRDN), is also proposed based on
RDC for segmenting multi-modality medical MRI. CRDN
adopts CNN backbone to encode image features and decode
them hierarchically through a chain of RDCs to obtain the
final high-resolution score map. The evaluation experiments
on BrainWeb, MRBrainS and HVSMR datasets demonstrate
that the introduction of RDC effectively improves the seg-
mentation accuracy as well as reduces the model size, and
the proposed CRDN owns its robustness to image noise and
intensity non-uniformity in medical MRI.

Introduction

Magnetic Resonance Imaging (MRI) plays a pivotal role in
the analysis of neuroscience and the diagnosis of disease.
The accurate segmentation of medical MRI enables doctors
and researchers to obtain the anatomical information about
different parts of biological tissues. However, the traditional
way of pixel-level annotations by experts is tedious and
time-consuming, thus methods for automatic MRI segmen-
tation gain interest. Clustering-based methods (Dunn 1973;
Gong et al. 2012) have shown satisfying segmentation for
certain entire and high-contrast images like MR brain slices.
In spite of this, these methods consume much time for itera-
tions and are not robust enough for inhomogeneous intensity
and image noise in MRI. These years deep learning based
methods have shown its superiority in feature extraction,
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among which fully convolutional network (FCN) (Long,
Shelhamer, and Darrell 2015) is first proposed for the task
of semantic segmentation. Since then, FCN-like networks
(Ronneberger, Fischer, and Brox 2015; Dolz et al. 2018;
Sinha and Dolz 2019) have successfully been applied to
medical image segmentation due to their remarkable seg-
mentation accuracy as well as the stability and robustness
to inhomogeneous intensity.

There still exist three main challenges for medical image
segmentation. Firstly, the importance of hierarchical feature
fusion. For medical images, the semantic information ex-
tracted from the deep layers is relatively simpler the spatial
information extracted from the shallow layers is more help-
ful compared with natural image segmentation. The biolog-
ical details and spatial information for labeling the region
of interest accurately count a lot, which in turn requires the
designed network to own a better decoding capability for hi-
erarchical feature fusion and spatial recovery. Secondly, the
use of multi-modality information. Medical images, espe-
cially MRI images, often have multi-modality scans (such
as T1, T2 and PD) obtained from different devices, and
different modalities respond differently to various tissues.
Hence, leveraging multi-modality information is beneficial
to deal with the insufficient tissue contrast problem and im-
prove segmentation accuracy (Tseng et al. 2017). Thirdly,
the robustness of networks. Sufficient training samples are
not easy to obtain for medical image segmentation, thus the
trained model may easily experience overfitting and be sen-
sitive to image noise and intensity non-uniformity fields, and
this requires the robustness of network design.

For hierarchical feature fusion, the encoder-decoder struc-
ture has exhibited its superiority and is widely medical im-
age segmentation. Models like U-Net (Ronneberger, Fischer,
and Brox 2015) and its variants (Milletari, Navab, and Ah-
madi 2016; Zhou et al. 2018) encode information from dif-
ferent resolution of feature maps. Feature maps from deeper
layers of a CNN backbone encode higher-level semantic in-
formation and context contained in the large receptive field,
and the shallow layers encode biological appearance and
spatial information in a relatively small receptive field. The
decoders of these networks utilize the encoded information
from all layers, and combine the lower-level features and



higher-level features step by step to gradually recover the
input spatial resolution. However, many decoders only use
concatenation or element-wise summation for the fusion of
feature information across layers. This may neglect the long-
term memory of the former layers, which is to say, although
feature maps with higher resolution are utilized in each de-
coding stage, the last fused feature map for prediction could
still lose the information from the early fusion stage since
the operations for hierarchical feature fusion are not capable
enough in memory.

Inspired by the above analysis of segmenting medical
MR, in this paper, we propose a Recurrent Decoding Cell
(RDC) for better hierarchical feature fusion with its strong
ability to memorize long-term context information through
the decoding pathway. The RDC is a parameter-sharing unit
in each fusion stage which combines the current score map
of low resolution with the squeezed feature map of high res-
olution. The convolutional RNN is introduced in each RDC
unit for long-term spatial and semantic information fusion.
Three types of RDCs are implemented in our experiment
according to RNN and its variants, namely RDC with ba-
sic convolutional RNN (ConvRNN), RDC with ConvLSTM,
and RDC with ConvGRU. Moreover, for multi-modality
training and robustness to intensity-related artifacts, we
also propose a Convolutional Recurrent Decoding Network
(CRDN) based on RDC for segmenting multi-modality med-
ical MRI. The CRDN can receive multi-modality images
as input, and encodes the semantic and spatial information
through a CNN backbone to generate hierarchical feature
maps, then the RDC-based decoder improves an initialized
score map through the long-term memory path to generate
hierarchical score maps. The final score map with the same
resolution as the input image is considered as the final pred-
ication. We conduct experiments on two brain segmentation
datasets and one cardiovascular MRI dataset, the BrainWeb
(Cocosco et al. 1997), MRBrainS (Mendrik et al. 2015) and
HVSMR (Pace et al. 2015). Several experimental results re-
veal that our CRDN enjoys segmentation accuracy gains
compared with other excellent encoder-decoder networks,
and our model also owns its robustness to image noise and
intensity non-uniformity in MRI. Moreover, CRDN achieves
smaller model size due to the shared parameters in RDC.
Our contributions are as follows:

e We propose a new feature fusion unit called Recurrent De-
coding Cell (RDC), which leverages the ability of convo-
lutional RNN in memorizing long-term context informa-
tion. The parameters in RDC are shared in each hierar-
chical stage, therefore, it is a flexible module and can be
added into any encoder-decoder segmentation network to

help reduce model size.

We propose a Convolutional Recurrent Decoding Net-
work (CRDN) based on RDC for segmenting multi-
modality medical MRI. CRDN utilizes CNN backbone as
the feature encoder and RDC-based decoder to form an
end-to-end segmentation network. CRDN effectively in-
creases the segmentation accuracy and shows its robust-
ness in image noise and intensity non-uniformity.
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Figure 1: Abstract illustrations of the feature fusion unit in
FCN, SegNet and U-Net. The two yellow boxes represent
two multi-channel feature maps. The gray boxes within the
dashed rectangle are hidden maps in the feature fusion unit.
The blue boxes are fused maps. The solid lines with arrows
correspond to different operations for feature map squeezing
or upsampling.

Related Work

Encoder-Decoder Structure for Medical Image Segmen-
tation Hierarchical feature fusion is helpful for precious
boundary adherence in medical image segmentation. The
encoder-decoder structures fuse the two multi-channel fea-
ture maps with different spatial resolutions in each feature
fusion unit. Figure 1 shows an abstract illustration of three
popular encoder-decoder networks in feature fusion. Fea-
ture maps from different layers in FCN (Long, Shelhamer,
and Darrell 2015) are first squeezed by convolution to pro-
duce score maps of different resolutions, the score map
with lower resolution is upsampled and added to the score
map with higher resolution to form the fused map. SegNet
(Badrinarayanan, Kendall, and Cipolla 2017) adopts unpool-
ing and convolution to expand the feature map according
to the maxpooling indices obtained from the higher reso-
Iution map. U-Net (Ronneberger, Fischer, and Brox 2015)
adopts transposed convolution to squeeze the lower reso-
lution feature map as well as expands their spatial size the
same as the higher resolution feature map, and the two maps
are then concatenated to form the fused map. Many other
encoder-decoder methods are also proposed based on the
above three designs for segmenting medical images. Invert-
edNet (Novikov et al. 2018) is improved by U-Net, and it
utilizes delayed subsampling to learn higher resolution fea-
tures and has fewer parameters to prevent overfitting. CE-
Net (Gu et al. 2019) adds a context extractor block between
the encoder and the decoder to reduce the information loss
caused by pooling and convolution.

Convolutional Recurrent Neural Networks The recur-
rent neural networks, especially LSTM (Hochreiter and
Schmidhuber 1997) and GRU (Cho et al. 2014), have nat-
ural advantages in memorizing long-term context informa-
tion. The convolutional version of RNN further extends this
ability to 2D image sequence. Shi et al. (Shi et al. 2015;
2017) first applied the convolution-based RNN to precipita-
tion nowcasting, which proves the powerful ability of Con-
vLSTM and ConvGRU for capturing spatiotemporal corre-
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Figure 2: Illustration of the proposed Convolutional Recurrent Decoding Network.

lations. Bo et al. (Pang et al. 2019) designed a representa-
tion bridge module based on convolutional RNNs for visual
sequential applications, and achieves state-of-the-art perfor-
mance in most visual sequential tasks. However, convolu-
tional RNN has not been applied to feature fusion in medical
image segmentation. Hence, we would like to make full use
of its advantage for the fusion of long-term spatial informa-
tion between the feature maps of different layers.

Method

We propose a medical MRI segmentation network called
Convolutional Recurrent Decoding Network (CRDN). In
this network, a novel feature fusion unit called Recur-
rent Decoding Cell (RDC) is also proposed. CRDN is an
encoder-decoder network which receives multi-modality im-
ages as input and generates segmentation inference through
a CNN backbone encoder and the RDC-based decoder. The
RDC is a flexible and parameter-sharing unit used in CRDN
for hierarchical feature fusion, in which a convolutional
RNN is used to combine the spatial and semantic informa-
tion between feature maps. The final segmentation result is
obtained from the last fused score map decoded by RDC. In
this section, we introduce our CRDN and the RDC unit in
more detail.

Convolutional Recurrent Decoding Network

The proposed CRDN is an end-to-end segmentation pipeline
which takes multi-modality images as input and produces
per-pixel segmentation inference for each tissue. CRDN
consists of two phases: the CNN backbone is utilized as
the encoder to extract feature maps for hierarchical feature
learning and the proposed recurrent decoding cell (RDC) is
designed as the decoder to gradually recover the spatial res-
olution, and its overall pipeline is shown in Figure 2.

Given a multi-modality medical image I, a collection
of hierarchical feature maps {F;}% | with different resolu-
tions is initially produced by a CNN backbone like VGG or
ResNet, where L is the number of layers of CNN hierarchy.

F; encodes the multi-scale context information in a coarse-
to-fine manner, and the resolution of each feature map halves
while the number of channels increase through the CNN en-
coding flow. Here we remark F; has the lowest resolution.
Next, feature maps {F1, ..., F 1} are further squeezed into C'
channels, where C' is the number of segmentation classes. It
is done through a distinct 5 x 5 convolution filter with zero
padding equals 2, following by a ReLU activation, which is
written as

X; = ReLU(F; @ ;) (D

where X, is a C-dimensional feature map, v; is the con-
volution kernel parameters in the ith layer. The reduction
of channels produces per-class feature maps from different
scales and effectively reduces model size in the decoding
phase.

The decoder consists of a L-stage recurrent decoding
chain. It gradually incorporates feature maps of different
scales with score maps to decode the final prediction. Specif-
ically, starting from the initial score map Sy, L RDC units
are followed to recover the final prediction score map. The
previous score map S;_; with low spatial resolution and the
current feature map X; with relatively high spatial resolu-
tion are fed into the current RDC, yielding the current score
map S; with the same resolution as X;. This can be written
as follows

S; = RDC(S;-1,X;;0) 2

where RDC is the proposed unit for hierarchical feature re-
finement, ¢ is the shared parameters, Sy is initialized as a
C-dimensional zero tensor as the initial score map. Along
the RDC chain, the decoding flow learns to assimilate and
memorize features of different scales and produces hierar-
chical score maps {Si,...,S.}. Among them, the current
score map is twice the size as the previous one, and contains
richer spatial information as well as maintaining semantic
information.
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Finally, S, is treated as the final score map. The loss func-
tion for a single map prediction is defined as the sum of
cross-entropy losses at individual pixels between the ground
truth and Sy, through epochs of back-propagation.

Recurrent Decoding Cell

The Recurrent Decoding Cell is a feature fusion unit that can
memorize the long-term context information to refine the
current score map. The intuition here is that the collection
of score maps can be treated as a coarse-to-fine sequence,
the adjacent score maps have temporal and spatial correla-
tions to each other, and the information helpful for the final
segmentation is propagated through a chain of RDCs.

Figure 3 illustrates the structure of RDC. In each RDC
unit, the previous score map S;_1, which can be treated as
the hidden state of an RNN cell, is refined with the current
input X,;, generating the current new score map S; as the
input of the following RDC. Specifically, we first upsam-
ple the score map S;_; to the same spatial dimension as
X, and this can be done through either bilinear interpola-
tion or learnable transposed convolution. Then, the upsam-
pled score map and the current feature input are fed into a
convolutional RNN cell for feature decoding. According to
different types of RNNs, three types of RDCs are defined as
follows.

ConvRNN Decoding. Here we denote ‘ConvRNN’ as the
basic convolutional RNN utilized in our RDC unit, which
can be formulated as

Si=o(Wy@T(S;i_1) + W, ®X;) 3

where W are the weight matrices learned from the network
and the bias terms are omitted for notational simplicity. ®
is the convolution operation. 7'(.) denotes the above men-
tioned upsampling operation. o(.) is an activation function,
and we use ReLU in practice. From another perspective, we
can also consider the ConvRNN cell as a concatenate-conv-
ReLU operation used in U-Net, and it is a simple but effi-
cient way of feature fusion. We denote this unit as ‘RDC-
ConvRNN’ in this paper.

ConvLSTM Decoding. A ConvLSTM cell computes four
different gates G, Gf, G°, GY to specifically decide
whether and how much to propagate both semantic and spa-
tial information to the next RDC unit. This can be formu-
lated as

=0(Wei @ X; + Wei @ T(Si_1))
G/ =o(W,; @ X+ W @T(S;1))
G° = O'(Wg;o RX; + Wi @T(S;-1)) )
GY =Wy @ X+ Wy @ T(Si—1))

C;,=G/oT(CiL1))+G o GY
S; = G° 0 §(Cy)

where C; indicate the cell state of ConvLSTM. W are learn-
able weight matrix. ® denotes the point-wise product. 7°(.)
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Figure 3: The structure of RDC. The previous score map,
the current input feature map, the current score map and the
next input feature map are denoted as S;_1, X;, S;, X;41,
respectively. One of the convolutional RNNs in the dashed
box is used for feature fusion.

is the upsampling operation. o(.) and 6(.) are two activa-
tion functions, and we use RuLU and Tanh respectively. Ev-
ery time a new input arrives, the four gates G, G/, Go,
GY control whether to write to the cell, whether to erase
cell, how much to reveal cell and how much to write to
the cell, respectively. Here we denote this unit as ‘RDC-
ConvLSTM’.

ConvGRU Decoding. Similar to the ConvLSTM cell,
ConvGRU computes two gates, namely reset gate and up-
date gate, to decide whether to clear or update the visual
information from the previous score map to the next RDC
unit. This can be formulated as

G" = U(er & Xz + Wsr (29 T(Sifl))
G* = J(sz X+ W, ® T(Szfl))

~ . 5
Si=0(W,s 0X;, +G" O (Wes ®T(S;-1))) ©)

S;i=G*OT(Si_1)+ (1—-G*) oS,

where G”, G*,S; denote the reset gate, update gate and
new information, respectively. W are learnable weight ma-
trix. The reset gate controls whether to clear the previous
state S,_; and the update state controls how much the new
information will be written to the output Score map S;. Con-
vGRU is relatively easy to train compared with ConvLSTM
in practice (Ballas et al. 2015) and is effective to prevent
vanishing or exploding of gradient. This decoding unit is de-
noted as ‘RDC-ConvGRU’.

Along the RDC chain, since the number of channels of
score maps from each stage remain the same, the RDC can
share its parameters in the decoding phase, which makes it
possible to use RDC recurrently and effectively controls the
model size.

Experiments

In this section, we quantitatively evaluate the proposed
CRDN for medical image segmentation. We test on two



brain datasets and one cardiovascular MRI dataset: the
BrainWeb dataset (Cocosco et al. 1997), the MICCAI 2013
MRBrainS Challenge dataset (Mendrik et al. 2015) and the
HVSMR 2016 Challenge dataset (Pace et al. 2015). We first
introduce the three datasets and the implementation details.
Next, an ablation study is conducted to test the performance
on different combinations of CNN backbones and RDCs.
Then, we evaluate our CRDN in comparison with other
encoder-decoder networks, i.e., FCN, SegNet and U-Net. Fi-
nally, we evaluate the robustness of CRDN when images are
affected by noise and intensity non-uniformity.

Figure 4: (a)-(c) Sample images from BrainWeb, MRBrainS
and HVSMR, respectively.

BrainWeb Dataset. BrainWeb is a simulated database
which contains one MRI volume for normal brain with three
modalities: T1, T2 and PD. It contains 399 slices, among
which we choose 239 slices for training and validation, and
160 for testing. The aim is to segment three tissues: cere-
brospinal fluid (CSF), gray matter (GM), and white matter
(WM). Images have the size of 217 x 181, 181 x 181 and
181 x 217 in three orthogonal views (see Figure 4(a)). Skull
stripping is conducted as the pre-processing technique be-
fore network training.

MRBrainS Dataset. MRBrainS contains T1, T1 inversion
recovery and FLAIR sequences of real MR brain scans,
among which 104 slices and 70 slices are utilized for train-
ing and testing from transversal view in our experiment.
Each image is of size 240 x 240 with pixel-wise annotation
(see Figure 4(b)). Skull stripping is also conducted before
network training.

HVSMR Dataset. HVSMR aims to segment blood pool
and myocardium in cardiovascular MR images. We choose
10 MRI volumes and their ground truth annotation for net-
work training and evaluation, among which 1868 slices and
1473 slices are utilized for training and testing (see Figure
4(c)). There is no pre-processing before network training.

Implementation Details. We concatenate the multiple
modalities of MR slices as the input of our network for
BrainWeb and MRBrainS. For HVSMR, since only one
modality is provided, thus we utilize the single channel gray
scale image as the input. As for evaluation metrics, we adopt
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Dice coefficient and Pixel Accuracy (PA) to quantitatively
evaluate the segmentation performance. We use PyTorch
as the implementation framework. An NVIDIA GeForce
RTX 2080 is used for both training and testing. For training
settings, we adopt batch normalization (Ioffe and Szegedy
2015) after each convolutional layer. All the CNN back-
bones used in the following experiments share the same
network structures proposed in (Simonyan and Zisserman
2014; He et al. 2016; Ronneberger, Fischer, and Brox 2015).
We adopt a weight decay of 10~* and use Adam (Kingma
and Ba 2014) for optimization, the learning rate starts from
6 x 10~* and gradually decays when training our CRDN.

Table 1: Ablation study on BrainWeb, MRBrainS and
HVSMR, evaluated by dice coefficient.

Decoder Backbone | BrainWeb | MRBrainS | HVSMR
RDC- VGGI16 0.9927 0.9088 0.8813
ConvRNN ResNet§0 0.9920 0.9050 0.8641

U-Net-like 0.9934 0.9068 0.8800
RDC- VGGI16 0.9916 0.9126 0.8641
ConvL.STM ResNet§0 0.9896 0.9012 0.8606

U-Net-like 0.9919 09112 0.8777
RDC- VGG16 0.9926 0.9061 0.8776
ConvGRU ResNetﬁO 0.9912 0.9021 0.8696

U-Net-like 0.9925 0.9028 0.8796

Ablation Study

In order to validate the effectiveness of RDC, as well as the
performance of different combinations of CNN backbone
encoders and RDC-based decoders for medical image seg-
mentation, we first conduct an ablation study on above men-
tioned three datasets. We choose VGG16, ResNet50 and U-
Net-like backbones as the feature encoder and use our three
types of RDCs in the decoding phase. Note that VGG16 and
ResNet50 are the ones reported in (Simonyan and Zisserman
2014; He et al. 2016) with batch normalization, and the U-
Net-like backbone is the one reported in (Ronneberger, Fis-
cher, and Brox 2015), in which we compress the model scale
by utilizing the channel number {16, 32,64, 128,256} for
each layer. All these model combinations are trained from
scratch and tested on the whole dataset.

The results of dice coefficient on three datasets are shown
in Table 1. For brain datasets, we can see that RDC-
ConvRNN with U-Net-like backbone performs the best
on BrainWeb, while RDC-ConvLSTM with VGG16 back-
bone performs the best on MRBrainS. For HVSMR dataset,
the RDC-ConvRNN with VGG16 backbone obtains the
best performance, achieving 88.13% dice coefficient value.
The three types of RDCs all achieve relative high perfor-
mance on brain datasets. Since BrainWeb is a simulated
dataset and the intensity non-uniformity level is much lower
than real brains, thus the relatively simple RDC-ConvRNN
based decoder performs the best, but for more challenging
dataset like MRBrainS, the RDC-ConvLSTM based decoder
achieves much better segmentation results. For different use
of CNN backbones, the results are similar, VGG16 and U-
Net-like backbone achieve slightly better performance than
ResNet50 in most cases and converge faster with residual
block in our implementation. The results from three datasets



Table 2: Comparisons on BrainWeb, MRBrainS and HVSMR.

Model . BrainWeb . . MRBrainS . . HVSMR . # Params
Pixel Acc Dice Pixel Acc Dice Pixel Acc Dice (240x240x%3)
FCN with VGG16 0.9575 0.9142 0.9570 0.8637 0.9165 0.8368 50.42M
SegNet with VGG16 0.9834 0.9679 0.9484 0.8294 0.8928 0.7718 29.45M
U-Net with VGG16 0.9962 0.9923 0.9696 0.8991 0.9109 0.8201 25.86M
CRDN with VGG16 0.9964 0.9927 0.9736 0.9126 0.9413 0.8813 14.87M
FCN with ResNet50 0.9554 0.9115 0.9488 0.8374 0.9095 0.8266 115.83M
U-Net with ResNet50 0.9954 0.9909 0.9710 0.9039 0.9192 0.8371 71.86M
CRDN with ResNet50 0.9960 0.9920 0.9713 0.9050 0.9344 0.8696 23.65M
FCN with U-Net backbone 0.9579 0.9176 0.9564 0.8618 0.9179 0.8295 1.19M
SegNet with U-Net backbone 0.9715 0.9455 0.9506 0.8448 0.9027 0.8099 2.36M
U-Net 0.9945 0.9892 0.9705 0.9021 0.9279 0.8593 1.94M
CRDN with U-Net-backbone 0.9967 0.9934 0.9732 0.9112 0.9388 0.8800 1.23M

indicate that encoders with deeper backbones are not often
necessary for the task of medical image segmentation, yet
our RDC-based decoder helps for hierarchical feature fu-
sion.

Figure 5: Some visualization results of the proposed CRDN
and other encoding-decoding methods, i.e., FCN, SegNet
and U-Net. All these methods utilize the U-Net-like back-
bone with different decoders. The top three rows are sam-
ples from HVSMR for segmenting two tissues (Blood Pool
in gray, Myocardium in white), the fourth and the last rows
are samples from MRBrainS and BrainWeb, respectively, for
segmenting three tissues (WM in yellow, GM in green, and
CSF in white). The blue rectangles highlight the noteworthy
areas for comparisons.

Comparison with Encoder-Decoder Networks

We further evaluate our method compared with the lead-
ing encoder-decoder models for medical image segmenta-
tion. We implement FCN, SegNet, U-Net and our CRDN
with VGG16, ResNet50 and U-Net-like backbones as fea-
ture encoders. The FCN used in the experiment combines

score maps from every layer of different spatial resolutions,
and can also denote as ‘FCN-2s’, which obtains finer details
than FCN-8s. We pick the best result of three RDC types
to represent our CRDN model. The VGG16, ResNet50 and
U-Net-like backbones contain 5-stage feature maps and are
gradually combined with the 5 decoders. Note that SegNet
with ResNet50 backbone is not implemented in our exper-
iment because maxpooling is not used in each layer when
downsampling the feature map.

Table 2 shows the segmentation results on three datasets.
We can find that CRDN achieves competitive results com-
pared with other methods on all datasets. It is obvious that
as the image data goes more complicated, the more superi-
ority our model shows. The last column reveals the model
size of different methods, and in the experiment, we choose
a 240 x 240 x 3 image as the input and compute the num-
ber of parameters used through each model. Since the pa-
rameters are shared through our CRDN, the trained mod-
els are much smaller while obtaining better segmentation
performance compared with other encoder-decoder models.
CRDN with U-Net backbone achieves competitive improve-
ments on dice coefficient compared with U-Net — 0.4%
relative improvements on BrainWeb, and 0.91% on MR-
BrainS, 2.07% on HVSMR. The number of parameters is
only 1.23M which takes only about 0.01s for a single im-
age with size 240 x 240 x 3 in the testing phase. Figure
5 illustrates some visualization results of the four models
with U-Net-like backbone on three datasets. We can see that
CRDN obtains finer details thanks to the memory mecha-
nism in RNN for sequence processing.

Moreover, we analyze the segmentation performance over
each tissue. Figure 6(a)(b) shows the dice value in terms of
CSF, GM and WM tissues on BrainWeb and MRBrainS. The
proposed method scores the highest median results for all of
the tissues. The GM and WM obtain higher dice values than
CSF on BrainWeb while the dice value of CSF improves a
lot on MRBrainS. It also indicates that our method is su-
perior to the other methods for segmenting WM, which ac-
counts for a large proportion in human brains and, accord-
ingly, achieves on average better segmentation results. Fig-
ure 6(c) shows the dice value in terms of blood pool and my-
ocardium on HVSMR, the performance of the four methods
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Figure 6: Boxplots of Dice coefficient for segmented tissues on BrainWeb, MRBrainS and HVSMR. Note that the three boxplots

use different scales in the Y axes.

for the myocardium segmentation is comparably the same
— around 90%, yet our CRDN achieves better median re-
sults for segmenting blood pool.
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Figure 7: (a) Experimental results on images corrupted by
noise. Note that the noise percentage represents the percent
ratio of the standard deviation of the white Gaussian noise
versus the signal for a reference tissue. (b) Experimental re-
sults on images affected intensity non-uniformity. Note that
for a 20% level, the multiplicative INU field has a range of
values of 0.90,...,1.10 over the brain area. For other INU
levels, the field is linearly scaled accordingly (Cocosco et al.
1997).

Experiments on Network Robustness

Medical images, especially for MRI scans, are prone to im-
age intensity-related artifacts such as noise and intensity
non-uniformity (INU), which may be difficult for accurate
visual inspection. Images are commonly affected by the
white Gaussian noise due to the influence of magnetic field
strength, and INU is mostly caused by RF excitation field
inhomogeneity (Sled and Pike 1998). To verify the model
robustness to noise and INU, we compare CRDN with FCN,
SegNet and U-Net on BrainWeb. BrainWeb provides MRI
scans in 6 levels of noise and 3 levels of INU. All models
are implemented based on the U-Net-like backbone training
from scratch.

Images Corrupted with Noise Figure 7(a) illustrates the
decay of the segmentation results along with the increase
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of noise level. Note that the noise percentage represents the
percent ratio of the standard deviation of the white Gaussian
noise versus the signal for a reference tissue. From 1% to 9%
of noise level, the dice coefficient reduces by 1.11%, 3.82%,
2.85%, and 1.69% for FCN, SegNet, U-Net, and CRDN,
respectively. Although FCN possesses the lowest decay of
the four methods, the segmentation accuracy of FCN is far
lower compared with other methods. Our CRDN does not
drop much when facing strong noise and still performs the
best among all other encoder-decoder networks.

Images with Intensity Non-uniformity Figure 7(b) il-
lustrates the decay of the segmentation results along with
the increase of INU level. The dice value of SegNet drops
a lot when INU level becomes higher. The results of the
four methods reduced by 0.13%, 3.41%, 0.28%, and 0.23%
from 0% to 40% of INU level. Our CRDN still keeps the
dice coefficient over 99% and is scarcely affected by non-
uniformity intensities, which suggests that the proposed
CRDN owns its robustness to intensity inhomogeneity for
medical scans.

Conclusion

In this paper, we propose the Recurrent Decoding Cell
(RDC) for hierarchical feature fusion in encoder-decoder
segmentation networks. The RDC combines the current
score map of low resolution with the squeezed feature map
of high resolution by leveraging the long-term memory ca-
pacity of convolutional RNNs. We also propose a Convolu-
tional Recurrent Decoding Network (CDRN) based on RDC
for multi-modality medical MRI segmentation. It utilizes a
CNN backbone for feature extraction and the extracted fea-
ture maps from different layers are fed into a chain of RDC
units to gradually recover the segmentation score maps. The
experimental results demonstrate that RDC helps to achieve
better boundary adherence compared with other segmenta-
tion decoders and reduces the model size. CRDN achieves
promising segmentation results for medical image segmen-
tation and shows its robustness to image noise and intensity
non-uniformity in MRL
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