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Abstract

Single-target tracking of generic objects is a difficult task
since a trained tracker is given information present only in
the first frame of a video. In recent years, increasingly many
trackers have been based on deep neural networks that learn
generic features relevant for tracking. This paper argues that
deep architectures are often fit to learn implicit representa-
tions of optical flow. Optical flow is intuitively useful for
tracking, but most deep trackers must learn it implicitly. This
paper is among the first to study the role of optical flow in
deep visual tracking. The architecture of a typical tracker is
modified to reveal the presence of implicit representations of
optical flow and to assess the effect of using the flow infor-
mation more explicitly. The results show that the considered
network learns implicitly an effective representation of opti-
cal flow. The implicit representation can be replaced by an
explicit flow input without a notable effect on performance.
Using the implicit and explicit representations at the same
time does not improve tracking accuracy. The explicit flow
input could allow constructing lighter networks for tracking.

Introduction

The goal of single-target visual tracking is to find the loca-
tion of a specific object in subsequent video frames given
the location of the object in the beginning of the video. Vi-
sual tracking has several applications in computer vision and
automation. For instance, surveillance systems use track-
ing to automatically follow certain individuals whereas au-
tonomous vehicles need tracking to follow the road, traf-
fic signs and obstacles. Research often focuses on track-
ing either objects of a given class, e.g. people or vehicles,
or generic objects of any class. This paper concentrates on
single-target tracking of generic objects.

Despite extensive research, visual tracking remains an ac-
tive and challenging field of study. Real-world videos in-
volve many complicating factors such as occlusions, non-
rigid transformations, movements of the camera and changes
in illumination. Learning to track is difficult since the goal
is to track previously unseen objects in new environments;
a pretrained tracker is initialized using only the information
present in the beginning of the sequence.
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During the past years, visual tracking has been dominated
by correlation filters and deep trackers. Discriminative cor-
relation filters model the target object based on a single
frame and adapt the learned representation in online fash-
ion based on subsequent frames during the tracking process.
They are traditionally based on handcrafted or shallow fea-
tures but can also be built on deep features. Correlation fil-
ters are efficient but often not discriminative enough in com-
plex conditions. Deep models trained end-to-end for track-
ing can be more discriminative. Deep neural networks have
been used successfully in applications such as image recog-
nition (Krizhevsky, Sutskever, and Hinton 2012), object de-
tection (Girshick et al. 2014; Ren et al. 2015), semantic
segmentation (Long, Shelhamer, and Darrell 2015) and ac-
tion recognition (Simonyan and Zisserman 2014). Recently,
large datasets like the ILSVRC (Russakovsky et al. 2015)
dataset for object detection in video have enabled large-scale
offline training to learn generic features for tracking.

One approach to ease the learning process is to present
the data in a new way using traditional methods of com-
puter vision. For instance, (Simonyan and Zisserman 2014)
has shown that feeding the network with the optical flow be-
tween consecutive frames instead of raw frames can notably
improve the performance of deep networks in action recog-
nition. The improvement arguably results from the fact that
the network does not need to implicitly learn how to com-
pute optical flow or to understand that the flow information
is useful. In this paper, we argue that optical flow could sim-
ilarly be useful for deep visual tracking.

The tracking literature focuses heavily on the final perfor-
mance of the trackers, often providing little insight into why
the trackers perform well. Instead, this paper deliberately
concentrates on analyzing the learned representations. This
is highly important as it can increase the understanding of
how existing trackers work and reveal sources of good track-
ing performance. In this paper, the focus is on the role of op-
tical flow. The analysis is done by modifying the architecture
of the GOTURN tracker (Held, Thrun, and Savarese 2016),
one typical approach to deep visual tracking. The goal is to
find out if the tracker uses implicit representations of opti-
cal flow, how useful the representations are, and how using
optical flow more explicitly affects the tracking process. In
addition to being one of the few papers analyzing the rep-
resentations learned by deep trackers, this paper is among



the first to explicitly use optical flow as input for deep vi-
sual tracking. The results highlight the usefulness of optical
flow and the capability of neural networks to implicitly learn
effective representations of the flow information.

Related Work

Prior to deep trackers, visual tracking was dominated by ap-
proaches based on correlation filters. MOSSE (Bolme et al.
2010) builds trackers directly from pixel values, whereas
the kernelized correlation filter (Henriques et al. 2015)
uses HOG features. More developed methods include Sta-
ple (Bertinetto et al. 2016a), SAMF (Danelljan et al. 2014),
SRDCEF (Danelljan et al. 2015) and BACF (Galoogahi, Fagg,
and Lucey 2017). Correlation filters have also been learned
from features of convolutional neural networks (e.g. (Ma et
al. 2015)). This makes the tracker more discriminative, at
the cost of computational complexity. Even correlation fil-
ters built on deep features are in a way handcrafted since
there is typically no finetuning to the features or the filters.
Recently, (Valmadre et al. 2017) has formulated correlation
filter as a differentiable layer that allows learning deep fea-
tures coupled to the correlation filter.

Traditional tracking datasets such as the Object Tracking
Benchmark (Wu, Lim, and Yang 2015), the Visual Object
Tracking (VOT) challenge (see e.g. (Kristan et al. 2015)) and
the ALOV++ dataset (Smeulders et al. 2014) contain only
tens or hundreds of videos. In effect, many deep trackers use
online training, i.e. learning during the tracking process. For
instance, MDNet (Nam and Han 2016) takes samples around
the previous location and estimates how likely they represent
the target object. The network is finetuned online using pos-
itive and negative samples. FCNT (Wang et al. 2015) learns
two branches online to produce foreground heat maps from
convolutional features. DSiam (Guo et al. 2017) applies tar-
get appearance variation and background suppression trans-
formations on top of a Siamese network. CREST (Song et
al. 2017) reformulates the correlation filter as a layer on top
of a Siamese network and uses residual learning to reduce
model degradation during online updates. VITAL (Song et
al. 2018) uses adversarial learning to augment positive sam-
ples and to reduce the effect of easy negative samples.

Online training allows the network to track objects that it
has never seen before and to adapt to changing conditions.
However, the quality of online data for training is typically
low; there is the risk of learning useless or misleading fea-
tures. Moreover, the additional learning process required by
online learning typically reduces the tracking speed. Instead
of or in addition to online learning, many deep trackers are
based on offline training. This allows learning generic fea-
tures and could remove the need for costly online updates.

There are many ways to implement offline learning for
tracking. GOTURN (Held, Thrun, and Savarese 2016) pro-
cesses the current and previous frames with convolutional
layers and applies a branch of fully-connected layers to the
concatenated convolutional features to estimate the bound-
ing box of the target object. SiamFC (Bertinetto et al. 2016b)
computes the cross-correlation between the convolutional
features of the current frame and object template. The net-
work runs a single forward pass to estimate how similar each
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location of the current frame is to the template. Siamese-
RPN (Li et al. 2018) uses a region-proposal network con-
taining template and detection branches that can be trained
offline for tracking. UCT (Zhu et al. 2017) learns feature
extractors and a correlation filter using offline training and
updates the model using online training.

Optical flow measures the displacement of pixels from
one frame to another. It is intuitively useful for visual track-
ing; however, deep trackers seldom use the flow information
explicitly. The SINT tracker (Tao, Gavves, and Smeulders
2016) uses optical flow as a guide during tracking to limit the
size of the search region. Thus, the flow information serves
mainly to improve efficiency or robustness without modify-
ing the representations learned by the network.

Although typical deep trackers do not explicitly use opti-
cal flow, they can learn implicit representations of the flow.
Many trackers loosely resemble the FlowNet architectures
(Dosovitskiy et al. 2015) that are used for estimating the op-
tical flow with convolutional neural networks. For instance,
the fact that GOTURN (Held, Thrun, and Savarese 2016)
concatenates convolutional outputs prior to estimating the
location of the object makes the operation fairly similar to
FlowNetSimple (Dosovitskiy et al. 2015), albeit for different
structure after concatenation. The way SiamFC (Bertinetto
et al. 2016b) uses cross-correlation to measure the similar-
ity between the current frame and object template loosely
reminds the operation of FlowNetCorr (Dosovitskiy et al.
2015). These examples suggest that at least some represen-
tation of optical flow is useful for deep visual tracking.

To our knowledge, this paper is among the first to explic-
itly use optical flow as input for deep visual tracking. Re-
cently, (Zhu et al. 2018) uses optical flow to warp and ag-
gregate historical feature maps with current ones to learn
correlation filters for tracking. The framework allows joint
learning of deep optical flow and tracking. Our paper differs
from (Zhu et al. 2018) in several ways. First, we use tra-
ditional optical flow instead of FlowNet (Dosovitskiy et al.
2015). Second, to make the tracking process more efficient
and to simplify our analysis, our network does not involve
any online learning. Third, our method uses a traditional
deep architecture instead of correlation filters. Finally, our
architecture does not specify in any way how the network
should utilize the flow information.

Methods
Basic Principle

This paper builds directly on the GOTURN tracker (Held,
Thrun, and Savarese 2016). GOTURN processes the cur-
rent and previous frames using identical branches of con-
volutional layers. The convolutional outputs are fed into a
branch of fully-connected layers that outputs the bounding
box of the object in the current frame. As shown in Fig-
ure 1, this paper uses an additional convolutional branch that
processes the optical flow between the two frames. Modify-
ing the architecture by ignoring some of the input branches
(more details shortly) allows identifying implicit represen-
tations of optical flow and analyzing the effect of using flow
information more explicitly.



GOTURN: Current Frame & Previous Frame

Flowls: Optical Flow

Flow2s: Optical Flow & Current Frame

Flow3s: Optical Flow & Current Frame & Previous Frame
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Figure 1: The tracking architectures. Depending on the inputs of the network, three different trackers based on optical flow are
proposed. All architectures estimate the location (bounding box) of the target object in the current frame based on different sets
of inputs. The simplest architecture (Flow1s) bases tracking only on the optical flow between the current and previous frames.
The second architecture (Flow2s) accompanies the optical flow input with the current frame. The third architecture (Flow3s)
uses all three inputs (optical flow, current frame, previous frame). The frames are cropped and centered around the previous
location of the object prior to computing the optical flow. The benchmark model GOTURN (Held, Thrun, and Savarese 2016)
bases tracking on the current and previous frames (does not use optical flow explicitly).

The original GOTURN architecture ignores the explicit
optical flow input. Given two consecutive frames, GOTURN
can use single-frame features and implicitly learned motion
features (e.g. optical flow). This paper considers three new
architectures: Flowls, Flow2s and Flow3s, where Xs refers
to the number of input streams. The Flow1s architecture has
a single convolutional branch that processes optical flow; it
does not get the current and previous frames. Flow1s allows
studying whether explicit optical flow is enough for accurate
tracking. The Flow2s architecture has branches for optical
flow and the current frame. The Flow 1s and Flow2s architec-
tures mostly prevent implicit models of optical flow since the
network does not process the previous frame. Thus, they al-
low replacing the implicit motion representations learned by
GOTURN with more explicit flow information. The Flow3s
architecture processes the optical flow input and both image
frames; thus, it allows building a tracker that uses both im-
plicit and explicit representations of optical flow.

The proposed architectures build on GOTURN for two
reasons. First, GOTURN is very simple and intuitive and
easily extended in the number of inputs. It provides a good
base for incorporating optical flow into a deep tracker. Sec-
ond, the close similarity allows using GOTURN as a natural
benchmark to assess the role of optical flow while changing
the input branches. There are also some drawbacks. More
recent deep trackers outperform GOTURN; the similarity
to GOTURN limits the performance of our trackers. There
might be more natural or effective ways to use optical flow.
However, the main goal of this paper is to analyze the role of
optical flow in deep visual tracking instead of creating best-
performing trackers. Thus, a simple architecture is sufficient.
Finding the best architecture and improving the tracking per-
formance is left for future research.

Inputs

Minimal processing is applied to the raw images. The frames
are cropped and centered around the previous estimated lo-
cation of the object. Additional margin is added around the
bounding box to include some context in the input. Thus,
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Layer Parameters  Notes
Conv 1 3(2)x11x11 96 outputs, stride 4, ReLU
Max Pooling - kernel 3x3, stride 2
Local Norm. -
Conv 2 96x5x5 256 outputs, stride 1, ReLU
Max Pooling - kernel 3x3, stride 2
Local Norm. -
Conv 3 256x3x3 384 outputs, stride 1, ReLU
Conv 4 384x3x3 384 outputs, stride 1, ReLU
Conv 5 384x3x3 256 outputs, stride 1, ReLU
Max Pooling - kernel 3x3, stride 2

Table 1: The structure of the convolutional branches.

like in GOTURN (Held, Thrun, and Savarese 2016), the ob-
ject is expected to stay close to its previous location. Mar-
gins extending outside the frames are padded with the av-
erage color of the dataset. The cropped frames are resized
to a fixed size of 227 x 227 pixels. The average color of
the dataset is subtracted from the resized frames to make the
average value of the images approximately zero.

The optical flow input is computed between the resized
frames (prior to subtracting the mean) using the Farneback
method (Farnebidck 2003). It is represented as a two-channel
image showing the horizontal and vertical displacement for
each pixel. Using a simple and traditional method like the
Farneback method is sufficient since the explicit flow input
is used mainly to identify and replace implicit representa-
tions of optical flow. Aiming for great tracking performance
using the best modern methods is left for future research.

Architecture

The networks use the GOTURN architecture (Held, Thrun,
and Savarese 2016), except for the adjustments needed for
the inputs. Each input present in a given network is pro-



cessed with a branch of five convolutional layers. The con-
volutional layers are adapted from CaffeNet (Jia et al. 2014),
which is analogous to AlexNet (Krizhevsky, Sutskever, and
Hinton 2012). The convolutional branch used for processing
the flow input has the same architecture, except that the fil-
ters of the first layer process inputs with two (flow) channels
instead of three (color) channels. For details of the convolu-
tional branches, see Table 1 and (Jia et al. 2014).

In each network, the final convolutional features are con-
catenated and fed into a branch of four fully-connected lay-
ers. The first three layers each have 4096 outputs. The fi-
nal layer gives four outputs: the top-left and bottom-right
corners of the estimated bounding box. Since the proposed
architectures have 1-3 inputs, the number of parameters in
the first fully-connected layer varies. Flow2s with two in-
puts has as many parameters as GOTURN; Flow1s has 50%
fewer and Flow3s 50% more.

Some tests are run also using lighter architectures. Optical
flow provides a richer representation of the inputs than raw
images. It could make the learning process easier and allow
using networks of smaller learning capacity. The lighter ar-
chitectures are equal to the full architectures just presented,
except for the structure of the fully-connected branch. In
the lighter architectures, the first fully-connected layer is
removed. Also, the number of parameters of the original
second and third fully-connected layers is decreased to one
fourth (1024 outputs instead of 4096). This reduces the num-
ber of learned parameters notably and might also make the
trackers faster, depending on implementation.

Training

The architectures are fully separate; the parameters are
learned offline one network at a time using random pairs
of frames. For each input pair, the network being trained es-
timates the bounding box of the object in the newer frame.
The parameters are updated based on the L1 loss between
the top-left and bottom-right corners of the estimated and
ground-truth bounding boxes.

Training is done using the Stochastic Gradient Descent
(SGD) with momentum, mostly like in the original GO-
TURN paper (Held, Thrun, and Savarese 2016). Pairs of
frames are chosen randomly from the annotated sequences.
Additional ten synthetic training examples are created from
each sampled pair by randomly shifting and scaling the
ground-truth bounding box in the newer frame. Training is
done for 450,000 iterations using batches of 50 examples.

The original GOTURN tracker (Held, Thrun, and
Savarese 2016) was trained using about 300 videos from
ALOV++ (Smeulders et al. 2014) and a large set of still im-
ages annotated for object detection. The ALOV videos are
partly from the same domain as the test videos of the VOT
challenge. In this paper, training and validation is done us-
ing the ILSVRC (Russakovsky et al. 2015) dataset for ob-
ject detection in video (ImageNet Video) in order to evaluate
the trackers using VOT. There are 3862 videos for training
and 555 for validation. The number of tracking sequences
is somewhat larger since each video can contain multiple
annotated objects. While sampling pairs of frames for train-
ing, the distance between the frames is fixed at five frames to
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modify the boxes using the same settings as in (Held, Thrun,
and Savarese 2016). Even though the video dataset is rela-
tively large, we find that it is useful to use also still images
during training. The still images are sampled from the same
dataset as the real pairs of frames.

The fully-connected layers are initialized with random
Gaussian weight parameters and constant bias terms. The
convolutional branches of the image inputs are initialized
using CaffeNet pretrained for the ILSVRC (Russakovsky et
al. 2015) Recognition Challenge. The convolutional branch
of the optical flow input requires separate parameters since
optical flow is conceptually different from color images. In
this paper, the flow branch is initialized either 1) with ran-
dom Gaussian weights and constant bias terms, or 2) by pre-
training for action recognition based on optical flow. The
latter option is done by learning the temporal (flow) stream
of the two-stream network of (Simonyan and Zisserman
2014). The temporal stream classifies the actions performed
in videos based on short sequences of optical flow. To adapt
the temporal stream for our purposes, the network of (Si-
monyan and Zisserman 2014) is replaced by our layers and
a single optical flow sample is used as input per example.
See (Simonyan and Zisserman 2014) for further details.

Training is repeated multiple times to find the best way to
initialize and finetune the convolutional parameters applied
to the flow input. After choosing one of the two initialization
options, the base learning rate of the parameters applied to
the flow input is set to 0, 1e-5 or 1e-6 (fix or finetune). Fully-
connected layers are always updated using a base learning
rate of le-5. The convolutional layers connected to the im-
age inputs have a learning rate of 0; that is, their parameters
are fixed. Learning rates of all layers are divided by 10 after
every 100,000 iterations.

Implementation

The proposed trackers are implemented using the Caffe deep
learning framework (Jia et al. 2014). To make the trackers
directly comparable to the GOTURN tracker (Held, Thrun,
and Savarese 2016), the implementation builds on the origi-
nal code of GOTURN. Changes are made to allow using the
larger ImageNet Video dataset and to feed the networks with
the optical flow input. We also train the original GOTURN
within our framework to make the results more comparable.

The inputs of the networks are prepared using CPU, other
computations are done on GPU. Optical flow is considered
a preprocessing task and run on the CPU. Trackers could be
made more efficient by implementing optical flow on GPU.
To minimize the time spent on preparing the inputs of the
networks, all inputs are sampled and preprocessed once and
saved to Lightning Memory-Mapped Databases (LMDBs).
The LMDBs are written using JPEG compression to limit
the size of the databases. The two-channel flow inputs are
saved one channel at a time rescaling each channel linearly
to a [0, 255] range (the original ranges are restored during
training). In addition, the inputs are prepared only for the
first 100,000 iterations and the same LMDBs are used 4.5
times during the training process. Preparing the inputs once
before training speeds up training notably and allows using
the same random inputs for all networks.



Experiments

The VOT toolkit (Kristan et al. 2015) is used to validate and
test the trackers. Following the best practices of VOT, the
test videos are used to test only the final selected networks.
However, the toolkit can be used to evaluate trackers using a
separate set of validation videos. The proposed three archi-
tectures are trained with different initialization and finetun-
ing settings using the training videos of ImageNet Video.
Validation is done with the VOT toolkit using sequences
generated from the validation videos of ImageNet Video to
choose the best settings for each architecture.

Final tests are done once for each architecture using the
actual VOT test videos. We consider relatively old versions
of the dataset (VOT2015 and VOT2016) to make the re-
sults comparable to the original GOTURN (Held, Thrun,
and Savarese 2016) and to the FlowTrack tracker (Zhu et
al. 2018) that also uses optical flow for tracking. This is im-
portant since our focus is on understanding the learned rep-
resentations instead of developing state-of-the-art trackers.

Results

Training and Validation

Table 2 shows the validation results for the architectures.
The first two columns show the initialization method and
base learning rate for the parameters of the convolutional
branch of the flow input. The benchmark GOTURN (Held,
Thrun, and Savarese 2016) is trained only once since it does
not have a branch for the optical flow. Overlap measures
the overlap between estimated and real bounding boxes. The
VOT toolkit resets the tracker after each failure (zero over-
lap). Failures measures the frequency of failed tracking.
Looking at Table 2, the best results for Flow2s (optical
flow and current frame as inputs) and Flow3s (optical flow,

Py vy Method  Overlap Failures
GOTURN 0.61 0.26
pretrained 0 Flowls 0.4 1.21
pretrained 0 Flow2s 0.64 0.38
pretrained 0 Flow3s 0.6 0.26

Flowls 0.46 0.66
Flow2s 0.53 0.43
Flow3s 0.51 0.48
Flowls 0.46 0.73
Flow2s 0.57 0.36
Flow3s 0.56 0.37
Flowls 0.45 0.66
Flow2s 0.56 0.43
Flow3s 0.57 0.43
Flow1s 0.44 0.84
Flow2s 0.59 0.3
Flow3s 0.58 0.33

pretrained  le-5
pretrained  le-5
pretrained le-5
pretrained le-6
pretrained le-6
pretrained le-6
random le-5
random  le-5
random le-5
random  le-6
random le-6
random le-6

Table 2: Validation results for the proposed architectures
(Flowls, Flow2s, Flows3) and the benchmark (GOTURN).
Py and ~ refer to the initialization method and base learning
rate, respectively, of the convolutional parameters applied to
the flow input. See Figure 1 for details of the architectures.

current frame and previous frame as inputs) are obtained
when the flow branch uses fixed convolutional parameters
pretrained for flow-based action recognition. We find that
finetuning Flow2s and Flow3s further decreases the value
of the loss function during training. However, Table 2 sug-
gests that this results in overfitting as the validation perfor-
mance of the trackers becomes worse. Thus, for the rest of
this paper, the flow branches of the proposed architectures
are initialized using parameters pretrained for action recog-
nition and they are not finetuned. Only the fully-connected
layers of the networks are learned and finetuned specifically
for tracking. Although the performance of Flow1s improves
when the flow branch is finetuned, we use the same training
settings for all architectures for simplicity and clarity.

Table 2 allows making some remarks about the relative
validation performance of the trackers. The Flowls archi-
tecture is the worst tracker regardless of the training settings.
Flow2s reaches slightly higher Overlap than GOTURN but
also provides somewhat more Failures. Flow3s performs
very similarly to GOTURN. Overall, the performance dif-
ferences between Flow2s, Flow3s and GOTURN are small.

Final Test

This section presents the VOT2015 test results for the ar-
chitectures using the settings chosen during validation. Ta-
ble 3 shows the results for the full architectures, Table 4 for
the lighter architectures that have fewer parameters in the
fully-connected branch. In addition to average Overlap and
Failures, the VOT toolkit computes Expected Overlap that
estimates the short-term overlap between the predicted and
real bounding boxes as if the tracker was not initialized af-
ter failures. The results using the VOT2016 test videos are
fairly similar and thus not documented.

Beginning with the full architectures (Table 3), the Flow1s
architecture (only optical flow input) is clearly the worst
tracker. Considering Flow2s, Flow3s and GOTURN, Over-
lap and Failures are on average very similar regardless of the
architecture. According to Expected Overlap, the final per-
formance measure of VOT, GOTURN is slightly the best and
Flow3s somewhat better than Flow2s. However, the differ-
ences are very small. Comparing the full and light architec-
tures (Tables 3 and 4), decreasing the number of parameters

Expected Overlap Overlap Failures

GOTURN 0.1691 0.41 2.69
Flowls 0.0818 0.29 5.85
Flow2s 0.1557 0.41 247
Flow3s 0.1646 0.40 2.68

Table 3: Test results for VOT2015 using full architectures.

Expected Overlap Overlap Failures

GOTURN 0.1216 0.40 3.85
Flowls 0.0829 0.29 5.29
Flow2s 0.1348 0.40 3.10
Flow3s 0.1322 0.39 3.37

Table 4: Test results for VOT2015 using light architectures.
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Figure 2: Examples of tracking results. Three selected frames from VOT2015 sequences racing and sheep. The rows show
results for GOTURN, Flow s, Flow2s and Flow3s, respectively. Videos play forwards from left to right. White rectangles show
the ground-truth bounding boxes (slightly distorted by converting rotated boxes to axis-aligned boxes for visualization). Red
rectangles show the bounding boxes estimated by the different architectures. (Best viewed in color. Color version online.)

in the fully-connected branch has practically no effect on
Overlap but increases Failures. Expected Overlap decreases
notably due to the increased likelihood of tracking failures.
Figure 2 shows examples of the test sequences. They were
chosen randomly, mainly to visualize the dataset and typ-
ical tracking errors. In these cases, Flowls loses track of
the target quickly and is unable to recover. Since tracking
is based on frames cropped around the previous location, all
presented trackers face the risk of permanently losing track.
The accuracy of the bounding boxes varies from frame to
frame differently for each tracker, but GOTURN, Flow2s
and Flow3s are often able to recover unless the location esti-
mate is too inaccurate. In the sheep sequence, Flow3s starts
to follow a wrong sheep that was near the original target in
the beginning of the video. This shows a typical error of the
trackers; they easily start to follow incorrect objects.

Discussion

Comparing the structure and performance of the architec-
tures allows making many remarks about the role of op-
tical flow in deep visual tracking. The original GOTURN
tracker performs moderately even with a single image frame,
but its performance improves when it uses both the cur-
rent and previous frame (for details, see (Held, Thrun, and
Savarese 2016)). This suggests that the performance of GO-
TURN relies on static features available in a single image
and on motion features available by processing two consec-
utive frames. Any state information over consecutive frames
can allow a network to learn motion features implicitly. The
Flowls and Flow2s architectures mostly remove this abil-
ity since the only state information they use is the cropping
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window centered on the previous location estimate.

Replacing GOTURN by Flow2s, i.e. using the current
frame but replacing the previous frame explicitly by opti-
cal flow, does not seem to affect the tracking performance.
Thus, the explicit flow input is effective in the sense that it
can replace the implicit motion representations. Moreover,
since Flow2s performs about equally well as GOTURN, the
flow input seems to capture most of the benefits of implicit
motion representations. This suggests that GOTURN learns
implicitly some representation of optical flow. Since GO-
TURN benefits from its motion representations, optical flow
is useful for tracking.

Replacing GOTURN or Flow2s by Flowls, i.e. using ex-
plicit optical flow as the sole input, allows assessing the
importance of static features GOTURN learns from single
images. Flow1s does not provide satisfactory performance.
Thus, the studied combination of explicit representation of
optical flow (Farneback method) and tracking approach (ar-
chitecture, bounding box output) is not sufficient for vi-
sual tracking. The raw images contain additional informa-
tion that GOTURN and Flow2s learn to utilize. Flow1s per-
forms worse since it cannot use static single-frame features.

Replacing GOTURN by Flow3s, i.e. complementing the
current and previous frames with optical flow, does not seem
to affect the tracking performance. Allowing the network to
learn implicit representations of optical flow (giving it both
input images) while using also the explicit flow input does
not improve the performance. Thus, using either one of the
representations, implicit or explicit, is enough in terms of
the accuracy of the tracker. Potential benefits of using more
information might be canceled out by a higher risk of over-
fitting or getting contradicting input information.



The notes so far show that GOTURN learns implicitly ef-
fective representations of optical flow and that the implicit
representations can be replaced by explicit ones. However,
the implicit representations are enough and incorporating
optical flow more explicitly into the network does not im-
prove the tracking accuracy. Comparing the performance of
the full and light architectures (Tables 3 and 4) could re-
veal some benefits from explicit optical flow. The light ar-
chitectures have a lower learning capacity due to having
fewer parameters. The flow input seems more useful in the
light architectures since relying more on optical flow leads
to lower decrease in performance. Moving from full to light
architectures, the decrease in Expected Overlap is 28% for
GOTURN, 20% for Flow3s and only 13% for Flow2s. The
performance of Flow1s actually improves using the light ar-
chitecture. This can suggest that richer flow input simplifies
learning. Although the accuracy of the tested light architec-
tures is low, using optical flow could allow learning lighter
and more efficient networks for tracking. This aspect should
be studied in more detail in future research.

The main goal of this paper is to analyze the role of
optical flow in deep visual tracking, not necessarily to de-
velop highly successful trackers. Nevertheless, it is impor-
tant to compare the performance to state-of-the-art trackers.
The proposed architectures build on the GOTURN tracker
(Held, Thrun, and Savarese 2016), and except for Flowls
they perform very similarly to GOTURN, yielding Expected
Overlap of around 0.16-0.17. In terms of the VOT results,
GOTURN is only an average tracker. This highlights the
need for improving the proposed trackers. For instance, re-
cent publication (Zhu et al. 2018) that also uses optical flow
for tracking reaches Expected Overlap of 0.34 for VOT2015
videos, which makes it one of the best trackers. This shows
that optical flow can be used to build very good trackers.

There are many ways to potentially improve the proposed
trackers or to highlight the benefits of using optical flow
explicitly. Several simplifications were made while adapt-
ing GOTURN to a different training dataset to properly use
the VOT videos for testing. Compared to the original pa-
per (Held, Thrun, and Savarese 2016), GOTURN performs
worse when trained in our framework (Expected Overlap
falls from about 0.20 to 0.17), which likely affects also the
proposed architectures. It is important to find ways to fully
utilize the larger dataset for training. Another option is to an-
alyze the robustness to appearance changes (e.g. occlusion,
illumination) provided in some tracking datasets. This could
emphasize the effectiveness of explicit flow in some cases.
Finally, this paper considers only one traditional method
to estimate optical flow (Farneback method). Using more
modern methods could improve performance, especially for
Flow1s that relies solely on the explicit flow input.

This paper focuses on just one approach to deep visual
tracking, the GOTURN architecture. Deep trackers are often
notably different from each other. Methods to identify and
remove the implicit representations of optical flow and to
replace them with explicit representations are different for
each tracking approach. We deliberately concentrate on one
intuitive tracker to make the analysis and presentation rel-
atively comprehensive and clear. Studying the role of opti-
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cal flow in other deep trackers is necessary to generalize the
results. It is also important to search for more natural and
effective ways of using optical flow in visual tracking.

Conclusions

This paper examines the role of optical flow in deep visual
tracking. The results show that the considered tracker learns
implicit representations of optical flow. The representations
are useful, but effective tracking requires also other informa-
tion present in static image frames. The implicit representa-
tions can be replaced by giving the optical flow explicitly as
an input to the network. Although the network learns suffi-
cient representations of optical flow implicitly, incorporating
explicit flow information into the network could allow con-
structing lighter and more efficient models for deep visual
tracking.
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