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Abstract

Although there are many existing research works about the
salient object detection (SOD) in RGB images, there are
still many complex situations that regular RGB images can-
not provide enough cues for the accurate SOD, such as the
shadow effect, similar appearance between background and
foreground, strong or insufficient illumination, etc. Because
of the success of near-infrared spectrum in many computer vi-
sion tasks, we explore the multi-spectral SOD in the synchro-
nized RGB images and near-infrared (NIR) images for the
both simple and complex situations. We assume that the RGB
SOD in the existing RGB image datasets could provide refer-
ences for the multi-spectral SOD problem. In this paper, we
first collect and will publicize a large multi-spectral dataset
including 780 synchronized RGB and NIR image pairs for
the multi-spectral SOD problem in the simple and complex
situations. We model this research problem as an adversar-
ial domain adaptation from the existing RGB image dataset
(source domain) to the collected multi-spectral dataset (target
domain). Experimental results show the effectiveness and ac-
curacy of the proposed adversarial domain adaptation for the
multi-spectral SOD.

Introduction

In computer vision, salient object detection (SOD) that aims
at finding out the salient objects in a given image is help-
ful to discover the objects and well understand the image
scene, so the SOD techniques could benefit many applica-
tions, such as image scene understanding (Zhang, Du, and
Zhang 2014), image segmentation (Wang et al. 2018), object
tracking (Zhang et al. 2018), common object discovery (Yu
et al. 2018), etc. There are many existing research works
about the SOD in RGB images such as (Cheng et al. 2015;
Chen et al. 2018), which have achieved advanced perfor-
mance in regular simple situations. However, there are still
many complex situations that regular RGB images cannot
provide enough cues for the accurate SOD, such as the
shadow effect, similar appearance between background and
foreground, strong or insufficient illumination, as shown in
Fig. 1.
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Figure 1: Sample images from the collected multi-spectral
dataset in simple and complex situations: (a) simple/normal
situation, (b) shadow effect, (c) similar appearance between
background and foreground, (d) strong illumination, and (e)
insufficient illumination. From top to the bottom: RGB im-
age, synchronized NIR image, annotated ground truth for the
SOD.

Recently, the near-infrared spectrum has shown successes
in many computer vision tasks. Near-infrared (NIR) image
is one of the image modalities often used to help the RGB
image tasks such as the low-light image enhancement, image
restoration, image dehazing, robust scene category recogni-
tion (Brown and Süsstrunk 2011), face recognition robust to
illumination variations (He et al. 2018), image quality and
context improvement to the changeable weather (Jiang et
al. 2019), etc. For example, as shown in Fig. 1, the RGB
images might show low discriminative contrast in complex
situations, while the synchronized NIR images might dis-
play a better contrast to human beings. In many real-world
applications like robotics, autonomous vehicles, and video
surveillance, the multi-spectral images including RGB and
NIR images are available, so it is highly desired to system-
atically study the multi-spectral SOD problem. Therefore, in
this paper, we explore the multi-spectral SOD problem in the
synchronized RGB and NIR images for the both simple and
complex situations.

Different from many SOD methods extracting effective
feature representations for saliency detection, we assume
that the RGB SOD in the existing public RGB image
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datasets (such as the well-labelled MSRA-B (Liu et al.
2010), DUTS (Wang et al. 2017b), HKU-IS (Li and Yu
2015)) could provide references for the multi-spectral SOD
problem. Existing datasets using NIR images (Wang, Zhu,
and Yuan 2013; Wang et al. 2013) for SOD are very small
with only dozens of RGB-NIR image pairs. In this paper, we
first collect and will publicize a large multi-spectral dataset
including 780 synchronized RGB and NIR image pairs for
the multi-spectral SOD problem in the simple and complex
situations. We model this research problem as an adversar-
ial domain adaptation from the existing RGB image dataset
(source domain) to the collected multi-spectral dataset (tar-
get domain). The main contributions of this paper are as fol-
lows:

1. To the best of our knowledge, this is the first work to sys-
tematically study the research problem of multi-spectral
salient object detection using the synchronized RGB and
NIR images for the both simple and complex situations.

2. we first collect a large multi-spectral dataset of 780 syn-
chronized RGB and NIR image pairs including simple
and complex situations for the SOD problem. Each im-
age pair has been carefully annotated with the pixel-level
SOD ground truth. .

3. We propose a new method for the multi-spectral SOD
based on the adversarial domain adaptation from the ex-
isting RGB image dataset (source domain) to the col-
lected multi-spectral dataset (target domain).

Related Work

RGB image SOD: Salient object detection is to find the vi-
sual salient object/region which mostly attracts human at-
tention in a given image. It is a fundamental task in com-
puter vision. The traditional methods like RC (Cheng et al.
2015), LRK (Shen and Wu 2012), CWS (Fu, Cao, and Tu
2013), FT (Achanta et al. 2009) usually concentrate on some
specific low-level features and certain prior information like
connectivity prior (Vicente, Kolmogorov, and Rother 2008),
background prior (Wei et al. 2012). Recently, by the pow-
erful representation of deep learning based methods, the
SOD task performance is improved a lot. In deep learn-
ing based methods (Li and Yu 2016; Chen et al. 2018;
Wu, Su, and Huang 2019), sufficient training data is im-
portant. There are many well-labelled datasets of RGB im-
ages such as MSRA-B (Liu et al. 2010), DUTS (Wang et
al. 2017b), HKU-IS (Li and Yu 2015), etc. In this paper, we
suppose that the RGB SOD datasets can provide references
and guides for the multi-spectral SOD problem.

Mutli-spectral SOD and related datasets: The most re-
lated datasets to our SOD problem is the existing multi-
spectral datasets including NIR images (Wang, Zhu, and
Yuan 2013; Wang et al. 2013). They collect several RGB-
NIR image pairs to explore the near-infrared clues in the
saliency detection. However, their datasets only have a small
number of image pairs. Some researches also concentrate
on other modalities of images to help the SOD with regu-
lar RGB images. The depth image is considered to explore
the RGB-Depth SOD (Qu et al. 2017). The thermal infrared

dataset is also collected for SOD (Tu et al. 2019). For the
SOD tasks, it is desirable to include more multi-spectral cues
and models to improve the SOD performance.

Adversarial Domain Adaptation: In the research of ad-
versarial domain adaptation, generative adversarial learn-
ing (Goodfellow et al. 2014) could be used to reduce the do-
main shifts across different domains. Typically, a generator
and a discriminator are trained against each other (Tzeng et
al. 2017; Vu et al. 2019). The generator is trained to confuse
the discriminator, while the discriminator is trained to clas-
sify the features coming from different domains. Following
this procedure, the domain bias could be reduced leading to
the improved performance (Tzeng et al. 2017; Vu et al. 2019;
Benjdira et al. 2019).

Multi-spectral SOD Dataset

We collect a new dataset consisting of 780 RGB-NIR image
pairs of the same scene in this paper. The image pairs mainly
contain some ordinary objects in the indoor scene (409 im-
age pairs) and outdoor scene (371 image pairs).

Dataset statistics. Since the research target of this paper
is to explore the multi-spectral SOD problem in both sim-
ple/normal and complex situations, we collect the RGB-NIR
image pairs in both simple/normal and complex situations.
For the normal situation, we consider the salient objects in
the normal indoor and outdoor environments. For the com-
plex situations, we collect the images of salient objects in
the challenging light illumination (213 image pairs), shadow
influence (165 image pairs), and similar appearance of back-
ground and foreground (169 image pairs). The data distribu-
tion of the collected multi-spectral SOD Dataset is shown in
Fig. 2 (a) and (b).

The collected RGB image and the corresponding NIR im-
age are synchronized and aligned towards the same salient
object(s), as shown in Fig. 1. The original NIR image is an
image of single channel, then we duplicate it to be a three-
channel image same as that of the RGB image.

Image capture and annotation. We capture the multi-
source image data by a multi-spectral camera developed
by ourselves with an estimate cost of 100 to 200 dollars.
The sensor simultaneously captures RGB and near-infrared
bands with two separate lens. In order to make the details in
near-infrared band clear, we equipped the near-infrared sup-
plemental lamp, where the wavelength of the near-infrared
band is 850 nm. The multi-spectral camera could capture the
synchronized and aligned RGB-NIR image pairs. Each im-
age size is 640× 480 pixels.

We carefully annotate each image pair with the help of 5
computer vision researchers who have clearly learned how
to define the salient object(s) in a given RGB-NIR image
pair. The participants are asked to manually label the salient
object(s) by pixel-level annotations. The average ground-
truth distribution of proposed multi-spectral SOD dataset is
shown in Fig. 2 (c).
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Methodology

In this section, we will firstly introduce the proposed un-
supervised adversarial domain adaptation for the multi-
spectral SOD problem, i.e., training on the existing RGB
SOD dataset (source domain) and testing on the proposed
multi-spectral SOD dataset (target domain). In addition, we
further introduce the supervised domain adaptation for the
multi-spectral SOD problem.

Figure 2: Statistics for the proposed multi-spectral SOD
dataset: (a) distribution under simple/normal and complex
situations, (b) distribution under indoor and outdoor scenes,
(c) average ground-truth on the proposed dataset. (d) aver-
age ground-truth on MSRA-B dataset (Liu et al. 2010).

Figure 3: Examples of pseudo-NIR image generation. Top
row: RGB images and bottom row: generated pseudo-NIR
images. The CycleGAN model is trained between the RGB
images of the MSRA-B dataset and the NIR images of the
proposed multi-spectral SOD dataset.

In the unsupervised scenario, we assume the source-
domain RGB images Xrgb

S and their pixelwise SOD ground-
truth labels ys are drawn from the source domain distribution
S, and the target-domain image pairs Xrgb

T and Xnir
T with-

out the pixelwise SOD ground-truth label are drawn from
a target domain distribution T . The goal of the proposed
method is to learn the SOD model G(·) under the super-
vision of S and perform well on the test images of T . A
domain classifier D(·) is defined to reduce the domain shift
between S and T with the domain label l, where the do-
main label only indicates the images coming from S or T .
The whole framework of the proposed method is shown in
Fig. 4.

CycleGAN based pseudo-NIR image generation

One challenge in the domain adaptation problem discussed
in this paper is that all the existing RGB image datasets
for SOD only contain RGB color images and do not have
the corresponding NIR images. This challenge will affect
the performance due to the lack of NIR information in the
source domain S. In order to solve this problem, we em-
ploy an image-to-image translation to synthesize the pseudo
NIR images for the source domain S. Because we do not
have the paired RGB-NIR image data for the existing RGB
image datasets like MSRA-B (Wang et al. 2017a), this trans-
lation is an unpaired image-to-image transfer, which can be
achieved by the advanced CycleGAN (Zhu et al. 2017).

CycleGAN (Zhu et al. 2017) is a popular unpaired image-
to-image translation framework to learn the mapping be-
tween two domains with unpaired images, where the trans-
ferred images from S could be similar to the expected im-
age styles in the target domain T . Given the source-domain
RGB images Xrgb

S and target-domain NIR images Xnir
T of

the proposed multi-spectral SOD dataset, following the net-
work structure and setup in CycleGAN (Zhu et al. 2017),
we can learn a generator GST , which represents the map-
ping: Xrgb

S → Xnir
T . In our experiments, the trained GST is

used to generate pseudo-NIR images Xnir
S for each RGB

image of the source domain S. The examples of the Cy-
cleGAN based pseudo-NIR image generation are shown in
Fig. 3. With the help of CycleGAN based pseudo-NIR image
generation, the cross-domain data distribution discrepancy is
somewhat reduced. Experimental results also display the ef-
fectiveness of the pseudo-NIR image generation in domain
shift reduction.

Two-branch SOD network

With the help of the generated pseudo-NIR images, both the
source domain S and target domain T have synchronized
RGB-NIR image pairs. In order to fully use the NIR spec-
trum image to enhance the SOD task, we propose a two-
branch SOD network for the multi-spectral SOD. The two-
branch SOD network has paired images as the input, and
outputs the corresponding saliency map. We adopt an origi-
nal Fully Convolutional Networks (FCN) (Long, Shelhamer,
and Darrell 2015) with two branches to output the saliency
prediction. FCN is widely used in the saliency detection to
predict the probability of each pixel as the salient objects (Li
and Yu 2016).

As shown in Fig. 5, the proposed SOD network G(·) has
two branches: the RGB FCN branch Grgb(·) taking RGB
image as the input and the NIR FCN branch Gnir(·) tak-
ing NIR image as the input. The two branches are with
shared weights that can be trained in an end-to-end way. For
each branch, we modify the original FCN to output a two-
channel map by applying the softmax function on each pixel,
i.e., obtaining the probability to be foreground or back-
ground for each pixel. G(·) = Grgb(·)

⊕
Gnir(·), where⊕

means pixel-wise addition. In our experiment, we adopt
VGG16 (Simonyan and Zisserman 2014) as our backbone
network for FCN, and other FCN models can also be ap-
plied to our proposed framework. The proposed two-branch
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Figure 4: Framework of the proposed adversarial domain adaptation method for the unsupervised multi-spectral SOD. It consists
of a two-branch SOD network (Generator) and a domain classifier (Discriminator). The source domain S is an existing RGB
SOD dataset like MSRA-B (Wang et al. 2017a) with the pixelwise ground-truth labels and the target domain T is the proposed
multi-spectral SOD dataset without the pixelwise ground-truth labels.

Figure 5: The proposed two-branch SOD network with the
RGB and NIR (or pseudo-NIR) image as the inputs.

SOD network is simple but efficient to capture the united
multi-spectral cues from RGB and NIR images.

Unsupervised adversarial domain adaptation

Directly applying the two-branch SOD network trained on
the source domain S to test the images on the target domain
T might only obtain low performance due to the domain dis-
tribution discrepancy. With the assumption that the source
domain S could provide references to the target domain T ,
we think the two domains S and T have some latent feature
spaces that are domain-invariant for the multi-spectral SOD
problem. It is hard to directly find the shared latent feature
space, thus we use adversarial learning for this task. In par-
ticular, we treat the proposed two-branch SOD network as
a Generator and then we apply a domain classifier as the
Discriminator as defined in Fig. 4. By adversarial learning,
the Generator learns to generate the SOD map to fool the
Discriminator, while the Discriminator will learn to classify
the image pair coming from S or T . In this adversarial way,
the Generator finally learn a network to generate the multi-
spectral SOD map that cannot be classified by the domain
classifier, which means that we find a network to extract the
domain-invariant features.

The domain classifier network D(·) used in the proposed

method is built as a discriminator network by following the
Discriminator in the DCGAN (Radford, Metz, and Chintala
2015) as a reference. D has five stacked strided convolu-
tional layers with 3× 3 kernel and numbers of channels as {
64, 128, 256, 512, 1}. The stride is setting up as stride = 2 ex-
cept the last convolutional layer. The model of the discrim-
inator network is much smaller than the generator network.
LeakyReLU activation layer is followed with convolutional
layers except for the last layer. As mentioned in (Radford,
Metz, and Chintala 2015), using strided convolution allows
the network to learn its own spatial down pooling and us-
ing leakyReLU activation works well for higher resolution
modeling. The Global Average Pooling (GAP) and Sigmoid
activation function are applied to output the domain label
prediction (1 for domain S and 0 for domain T ). In our
proposed framework, we take the two-branch SOD network
G(·) as a domain feature generator which is optimized by
minimizing a standard supervised pixel-wise cross entropy
loss LSeg:

LSeg = −
∑

XS

[ys log(G(XS))+ (1− ys) log(1−G(XS))],

(1)
where XS is a source-domain RGB-NIR image pair, G(XS)
is the predicted saliency map. yS is the two-class pixel-
wise ground-truth map of salient and non-salient classes.
Like (Goodfellow et al. 2014; Vu et al. 2019), the domain
classifier D is trained to discriminate G(X) coming from
the source or target domains, and at the same time, the two-
branch SOD model G(·) as the generator is trained to con-
fuse the discriminator D. Suppose LD denotes the cross en-
tropy domain classification loss and F = D(G(·)), and we
define the domain label ls = 1 for the image pair from the
source domain and lt = 0 for the image pair from the target
domain, and then the adversarial loss for the domain classi-
fier D is:

LAdv =
∑

XS

LD(F (XS), ls) +
∑

XT

LD(F (XT ), lt). (2)
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The loss for training G(·) is defined as combing Eq. (1) and
Eq. (2) as:

LG =
∑

XS

LSeg(XS , ys) + λ1

∑

XS

LD(F (XS), lt)

+ λ2

∑

XT

LD(F (XT ), ls), (3)

where λ1 and λ2 are the balance weights and we set them
as 1 in our experiments. The learning can be summarized as
the following optimization problem:

min
θG

LG, (4)

min
θD

LAdv. (5)

During the training procedure, we alternately optimize the
network parameters θG for G(·) by optimizing Eq. (4) and
the network parameters θD for D(·) by optimizing Eq. (5).

Supervised domain adaptation via fine-tuning

Besides the unsupervised scenario, we also consider the su-
pervised domain adaptation for the multi-spectral SOD task
via fine-tuning. For the supervised scenario, we split the col-
lected multi-spectral SOD dataset into training, validation
and testing subsets as the ratio of 5:1:4 same as the split
principle in the MSRA-B dataset (Jiang et al. 2013). The im-
age pairs are randomly selected from the simple and differ-
ent complex situations following the split ratio. Given a pre-
trained model, it can be fine-tuned on the training and val-
idation subsets of the collected multi-spectral SOD dataset
for a supervised domain adaptation.

The two-branch SOD network G(·) is adopted for the su-
pervised task. We mainly consider this supervised learning
problem as a domain adaptation from the pre-trained mod-
els on some existing dataset to the collected multi-spectral
SOD dataset. We study the three fine-tuning strategies with
different initialized pre-trained models using the ImageNet
dataset, the existing RGB SOD dataset, and the proposed
unsupervised domain adaptation model.

Experiment

Source-domain dataset and the pseudo-NIR images

For unsupervised domain adaptation SOD task, we choose
the MSRA-B dataset (Jiang et al. 2013; Wang et al. 2017a)
as our source domain, and our multi-spectral SOD dataset
(780 RGB-NIR image pairs) is taken as the target domain.
MSRA-B dataset includes 5000 RGB images which con-
tains various image contents of natural scenes, animals,
planets, etc. The dataset is divided into three parts as the ra-
tio of 5:1:4 (training: 2500 images, validation: 500 images,
testing: 2000 images) (Jiang et al. 2013). For training the
CycleGAN model, we take all the 2500 training images in
MSRA-B and all the 780 NIR images in multi-spectral SOD
dataset as the two domains for image translation.

For training the CycleGAN model, we choose the cross-
entropy loss mode, image buffer is set as 50 inspired by (Zhu

et al. 2017) and other hyper-parameters like input image size
as 256, are following the default setup in their public code.
To balance the training time and image quality, we keep the
50th training epoch model as our generator to synthesize the
pseudo-NIR images for MSRA-B dataset. Some typical im-
ages of the original and synthetic image pairs are shown in
Fig. 3, and we can see that the generated pseudo-NIR images
are reasonable and similar as the real NIR images.

Evaluation Metrics

We evaluate the proposed multi-spectral SOD method per-
formance using Precision-Recall (PR) curve, maximum F-
measure (max-F), and Mean Absolute Error (MAE). We also
evaluate the average precision, recall and F-measure with
an adaptive threshold that is twice the mean value of the
saliency map (Yu et al. 2018). The value of F-measure is
defined as Fγ = (1+γ2)×Precision×Recall

γ2×Precision+Recall , where γ2 is set to
0.3 as suggested in (Li and Yu 2016). When given a thresh-
old θ(θ ∈ [0, 1]) to a saliency map, we can get a binary mask
of it. Then the precision and recall can be computed by com-
paring the generated binary saliency mask and the ground
truth. The PR curve is obtained by continuously varying θ.
The PR curve of a dataset is computed from the average pre-
cision and recall value over the whole dataset. The MAE
error (Perazzi et al. 2012) is calculated as the average ab-
solute pixel-wise difference between the predicted saliency
map and the binary ground truth.

Table 1: Performance comparisons to other methods on the
collected multi-spectral SOD dataset.

Method Subset Precision Recall Fmeasure MAE maxF

RC RGB 0.6612 0.6812 0.6310 0.1621 0.7032
RGBN 0.6743 0.7785 0.6641 0.1455 0.7333

LRK RGB 0.5865 0.6923 0.5640 0.1743 0.6588
RGBN 0.5892 0.7018 0.5658 0.1786 0.6640

CWS RGB 0.5916 0.5625 0.5471 0.2428 0.6137
RGBN 0.5723 0.5225 0.5059 0.2452 0.5784

FT RGB 0.3496 0.3954 0.3322 0.1974 0.3622
RGBN 0.3952 0.4320 0.3701 0.1934 0.4216

DCL RGB 0.7789 0.7636 0.7461 0.0738 0.7885
RGBN 0.7907 0.8436 0.7791 0.0768 0.8367

SOD16s+
RGB2 0.6946 0.7770 0.6806 0.0851 0.7502
RGBN 0.7209 0.8259 0.7137 0.0764 0.8093

SOD8s+ RGB2 0.7907 0.7666 0.7572 0.0692 0.7966
RGBN 0.8266 0.8207 0.8030 0.0611 0.8458

Unsupervised domain adaptation based SOD task

In the unsupervised adversarial domain adaptation task, we
aim at training a SOD model with the existing RGB im-
age dataset with annotation to perform well on our multi-
spectral SOD dataset without annotation. We implement our
networks using PyTorch running on a single Tesla P40 GPU.
The FCN8s network (Long, Shelhamer, and Darrell 2015)
using VGG16 is used as our backbone model, and we also
conduct experiments on the FCN16s network using VGG16.
During the training procedure, we set the batch size as 1.

In the unsupervised situation, our proposed method is de-
noted as “SOD*+”, where “SOD” means the proposed two-
branch FCN network (Generator), and “*” means the FCN
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Figure 6: Sample results of unsupervised multi-spectral salient object detection: (a) ground-truth, (b) RGB image, (c) NIR
image, (d) RGBN results on SOD8s+ (the proposed method with unsupervised domain adaptation), (e-f) RGBN and RGB
results on FCN8s, (g) DCL, (h) LRK, (i) RC, (j) FT, and (k) CWS.

Figure 7: PR curves of different unsupervised SOD methods
on the proposed multi-spectral dataset.

backbone for one branch, and “+” indicates the proposed ad-
versarial domain adaptation method. “SOD*” is the models
trained with the two-branch SOD network without the pro-
posed adversarial domain adaptation method. “FCN*” spec-
ifies training the models with the original single branch FCN
network and then testing it for RGB and NIR images in-
dependently and then merging the results. In unsupervised
SOD task, both of the basic FCN model and the two-branch
FCN model are initialized by the pre-trained VGG16 model
on ImageNet (Russakovsky et al. 2015). In our experiments,
names “*8s” or “*16s” indicate the backbone network as
FCN8s or FCN16s using VGG16, respectively.

We use the training and validation set of MSRA-B dataset

for training and validation. The image pairs in the col-
lected multi-spectral SOD dataset are treated as the testing
set. Firstly, we train an original single branch FCN model
on source domain S as our baseline model, indicated as
“FCN*”. All the images in our proposed dataset is tested
on the well-trained FCN model. Then the two-branch SOD
network “SOD*” is trained using both of the original RGB
and the pseudo-NIR images of the MSRA-B dataset. The
stochastic gradient descent optimizer is adopted for train-
ing. We set the momentum as 0.99, weight decay as 0.0005.
As for learning rate, we follow the setup in (Wada 2017),
i.e., lr = 10−10 for those layers with bias = False, and 2× lr
for the layers with bias = True. Finally, the proposed domain
adaptation based model “SOD*+” is trained with the initial
parameters of the trained two-branch FCN model “SOD*”.
During training procedure of domain classifier (Discrimina-
tor), an ADAM optimizer is adopted, and the initial learning
rate is 1× 10−4.

During testing, except for the “SOD*” models that can
provide results of paired multi-spectral images simultane-
ously, other comparison methods can only provide saliency
prediction for RGB images. For this kind of methods, we
just treat both the RGB and NIR image as separate inputs.
Pixelwise average results of the corresponding RGB and
NIR saliency maps are used to merge the image pair’s re-
sults. The results merged the RGB and NIR information are
specified as ”RGBN” in the tables of this paper. “RGB” in-
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Table 2: Performance on the unsupervised domain adapta-
tion for the multi-spectral SOD on the collected dataset.

Method Subset Precision Recall Fmeasure MAE maxF

FCN16s RGB 0.7096 0.7262 0.6773 0.0948 0.7106
RGBN 0.7201 0.7986 0.7079 0.0984 0.7632

SOD16s RGB2 0.6007 0.7700 0.5998 0.1135 0.7032
RGBN 0.6380 0.8367 0.6444 0.0996 0.7773

SOD16s+
RGB2 0.6946 0.7770 0.6806 0.0851 0.7502
RGBN 0.7209 0.8259 0.7137 0.0764 0.8093

FCN8s RGB 0.7737 0.7380 0.7321 0.0801 0.7650
RGBN 0.7875 0.8175 0.7695 0.0829 0.8194

SOD8s RGB2 0.7613 0.7575 0.7320 0.0766 0.7688
RGBN 0.8170 0.8117 0.7911 0.0700 0.8200

SOD8s+ RGB2 0.7907 0.7666 0.7572 0.0692 0.7966
RGBN 0.8266 0.8207 0.8030 0.0611 0.8458

dicates the results by only testing on the RGB images. For
the two-branch models, “RGB2” indicates the input of each
branch in the proposed two-branch SOD network is the same
RGB image during testing. The experimental results about
the unsupervised domain adaptation are summarized in Ta-
ble 1 and Table 2.

Table 1 shows the SOD results compared with other
methods. We compare our unsupervised method with some
salient object detection methods as RC (Cheng et al. 2015),
LRK (Shen and Wu 2012), CWS (Fu, Cao, and Tu 2013),
FT (Achanta et al. 2009), and DCL (Li and Yu 2016). The
first four methods are feature-based traditional methods and
the last one is deep learning based method. Figure 6 shows
sample results of different SOD methods and the PR curve
of the related results are also shown in Fig. 7. From the re-
sults, we can find that the proposed method performs better
than the other SOD methods on Precision, F-measure, MAE,
and maxF metrics. Table 2 shows the performance change
of each component of the proposed method. Taking FCN8s
as an example, adding the synthetic pseudo-NIR images for
training by “SOD8s” will get better results than FCN8s, and
then further adding the proposed adversarial domain adap-
tation by “SOD8s+” will obtain improved results. The same
change trend happens to the proposed method using FCN16s
as a baseline. In addition, both Table 1 and Table 2 show that
using RGB-NIR image pairs together could achieve better
results than only using RGB images for the saliency detec-
tion, especially in images under complex situation.

Supervised domain adaptation based SOD task

We also evaluate the supervised domain adaptation on the
collected multi-spectral SOD dataset. We mainly consider
the following three initializations for fine-tuning:

1. “VGG”: initializing the network G(·) with a pre-trained
VGG16 model on the ImageNet dataset.

2. “SOD*”: initializing the network with the parameter
of the pre-trained model “SOD*” (trained on MSRA-B
dataset without the proposed adversarial domain adapta-
tion).

3. “SOD*+”: initializing the network with the parameter of
the trained model “SOD*+”(trained on MSRA-B dataset
with the proposed adversarial domain adaption).

Table 3: Performance on the supervised domain adaptation
for the multi-spectral SOD on the collected dataset.

Method Subset Precision Recall Fmeasure MAE maxF

VGG16s RGB2 0.6976 0.8413 0.7016 0.0799 0.7705
RGBN 0.7689 0.8783 0.7728 0.0653 0.8303

SOD16s RGB2 0.7101 0.8654 0.7196 0.0716 0.8024
RGBN 0.7742 0.8970 0.7829 0.0570 0.8618

SOD16s+ RGB2 0.6807 0.8855 0.6991 0.0714 0.8075
RGBN 0.7385 0.9137 0.7559 0.0579 0.8661

VGG8s RGB2 0.7466 0.9083 0.7630 0.0586 0.8309
RGBN 0.7945 0.9270 0.8089 0.0464 0.8793

SOD8s RGB2 0.7588 0.9022 0.7702 0.0548 0.8433
RGBN 0.8117 0.9238 0.8276 0.0421 0.8904

SOD8s+ RGB2 0.7955 0.8904 0.8010 0.0498 0.8543
RGBN 0.8502 0.9156 0.8533 0.0389 0.9031

Table 3 shows the results of different initializations for
fine-tuning. We see that the network initialized with a higher
performance on the unsupervised task can help to learn a
supervised model with a better performance. For example,
using the pre-trained model by “SOD8s+” gets the best per-
formance, i.e., maxF=0.9031, using RGB and NIR image
pairs together. We can see that using MSRA-B dataset for
training by “SOD8s” could provide a better results than di-
rectly using the pre-trained model on ImageNet. The domain
adaption can also be realized by fine-tuning the pre-trained
model.

Conclusion

In this paper, we systematically studied the multi-spectral
salient object detection problem. We first proposed a new
large dataset including 780 synchronized image pairs in both
simple and complex situations and their pixelwise ground
truth for this research problem. Different with traditional
saliency detection methods, in this paper, we proposed a new
adversarial domain adaptation method for the multi-spectral
salient object detection by making better usage of the exist-
ing RGB saliency detection dataset.

The experimental results including unsupervised and su-
pervised settings show that the multi-spectral images could
better detect the salient objects than single RGB images. The
proposed domain adaptation method is also helpful to im-
prove the saliency detection accuracy.
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