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Abstract

Video-based person re-identification has received consider-
able attention in recent years due to its significant application
in video surveillance. Compared with image-based person re-
identification, video-based person re-identification is charac-
terized by a much richer context, which raises the significance
of identifying informative regions and fusing the temporal
information across frames. In this paper, we propose two
relation-guided modules to learn reinforced feature represen-
tations for effective re-identification. First, a relation-guided
spatial attention (RGSA) module is designed to explore the
discriminative regions globally. The weight at each position
is determined by its feature as well as the relation features
from other positions, revealing the dependence between lo-
cal and global contents. Based on the adaptively weighted
frame-level feature, then, a relation-guided temporal refine-
ment (RGTR) module is proposed to further refine the feature
representations across frames. The learned relation informa-
tion via the RGTR module enables the individual frames to
complement each other in an aggregation manner, leading to
robust video-level feature representations. Extensive experi-
ments on four prevalent benchmarks verify the state-of-the-
art performance of the proposed method.

1 Introduction

Person re-identification aims at matching the images of a
person captured by multiple cameras, and in most cases the
fields of view of these cameras are non-overlapping. It has
a significant application in video surveillance and public se-
curity. This task is very challenging due to the variations
of viewpoint, illumination and pedestrian’s pose, as well as
blur, occlusion and background clutter.

Depending on whether the data type is image or video,
person re-identification is further divided into two subtasks,
image-based person re-identification, and video-based per-
son re-identification. In recent years, image-based person re-
identification has achieved impressive progress (Sun et al.
2018; Fu et al. 2019b; Wang et al. 2018a; Hou et al. 2019a;
Zhang et al. 2019; Zheng et al. 2019). However, this subtask
is heavily influenced by the corrupted images where target
blur or occlusion occurs. Compared with a single image with
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limited context, a video sequence captures abundant context
information in a long span of time. In addition, it is more
likely to find clean and informative content in a video, al-
leviating the noise sensitivity issue in image-based person
re-identification. Therefore, how to explore this spatial and
temporal information is the key to the video-based person
re-identification.

To leverage such information, some state-of-the-art meth-
ods (Liu, Yan, and Ouyang 2017; Song et al. 2018; Fu et
al. 2019a) estimate the qualities of global or local regions
and use the qualities as weights to fuse features. Typically,
these methods merely consider the per-region quality indi-
vidually, which ignores the quality variance within a region
and the context information. Intuitively, in the spatial do-
main, the operations within a local neighborhood fail to in-
clude enough positional information, while the global com-
parison is qualified to identify the valuable foreground and
noisy background. Moreover, in the temporal domain, such
a relation modeling can be naturally extended to multiple
frames for frame-level complementation, which is benefi-
cial for enhancing the frame-level representations. However,
such global relation information is rarely explored by the ex-
isting video-based person re-identification methods.

In this paper, we propose two relation-guided modules to
exploit the global relation information in both the spatial and
the temporal domain. First, to capture the correspondence
between two features, a relation module (RM) is designed
to compute the relation vector. Then, to simultaneously lo-
calize the informative regions and depress the background
globally, a relation-guided spatial attention (RGSA) module
is developed. The attention at each position is determined
by its feature and the relation vectors with all the positions,
which is able to capture the local and global information.
Finally, to further refine and enhance frame-level features, a
relation-guided temporal refinement (RGTR) module is pro-
posed. The relation information within all frames enables
the individual frames to complement each other, contribut-
ing to reinforced frame-level representations, and so are the
video-level representations. These two relation-guided mod-
ules cooperate in the spatial and temporal domain, leading to
robust representations for person re-identification.

We conduct extensive experiments on four benchmarks,
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Figure 1: The overall architecture of our proposed method. The input video clip consists of T frames randomly sampled from
a video sequence. The feature maps of these frames are extracted by a CNN backbone, and the relation-guided spatial attention
(RGSA) module is deployed to generate frame-level features. All features of the clip are refined and fused using the relation-
guided temporal refinement (RGTR) module. In the training phase, frame-level cross entropy loss and clip-level cross entropy
loss are calculated on the corresponding features. Triplet loss is also computed on the clip-level features as metric learning.

and the experimental results demonstrate the state-of-the-art
performance of our proposed method. Especially, to the best
of our knowledge, our approach outperforms all state-of-the-
art methods under multiple evaluation metrics on the large-
scale MARS and DukeMTMC-VideoReID datasets.

2 Related Works

Video-based Person Re-Identification. Most works have
focused on modeling the spatial and temporal information
using recurrent neural networks, convolutional operations,
and attention mechanisms.

Recurrent neural network is a common tool for sequence
data processing. McLaughlin et al. introduce an RNN model
and use a temporal average pooling operation to generate the
video-level features in (McLaughlin, Martinez del Rincon,
and Miller 2016). A multi-rate gated recurrent unit (GRU) is
utilized in (Li et al. 2018b). Liu et al. use an RNN model to
recover missing activation occurred in different regions and
integrate both spatial and temporal clues in (Liu et al. 2019).
With a similar goal, Hou et al. deploy a generative adver-
sarial network to recover the occluded parts from adjacent
frames in (Hou et al. 2019b).

Convolutional operation is another widely used method
for video processing. In (Wu et al. 2018a), Wu et al. demon-
strate that the temporal convolution network focuses more
on the mid-level representation of motion, while optical flow
captures the low-level motion information. A multi-scale 3D
convolution network is used in (Li, Zhang, and Huang 2019)
to learn the temporal cues.

Meanwhile, many works learn the attention mechanism to
focus on more discriminative regions and frames. In (Xu et
al. 2017), Xu et al. introduce a parameter matrix to capture
attentive score in temporal dimension. Liu et al. estimate the
quality score of each frame by a CNN model, and the video-
level feature is the weighted sum of frame-level features in
(Liu, Yan, and Ouyang 2017). A similar strategy is used in
(Song et al. 2018; Fu et al. 2019a; Li et al. 2018a) to learn
the qualities of multiple body regions in a frame. Chen et al.
employ query and key-value projection to learn co-attentive
embedding within two snippets in (Chen et al. 2018).

Different from these methods, where local information is

captured, our approach utilizes the rarely explored global re-
lation information to guide the spatial attention and temporal
refinement.

Non-Local Mechanisms. Compared with local opera-
tions, the non-local mechanism explores global dependence,
and it is used in many areas like video recognition, natural
language processing, and object detection. In (Wang et al.
2018b), Wang et al. adopt non-local mean where the sim-
ilarities between features are normalized to work as atten-
tion, and each feature is updated by the weighted sum of all
features. In (Vaswani et al. 2017), the scaled dot product is
performed between the query and all the keys, then, softmax
is applied to obtain the weights on the values. Hu et al. con-
sider both the appearance weight and the geometry weight
to model the global relation between all objects in (Hu et
al. 2018). The geometry weight makes sure that an object
which satisfies specify geometry relation will have non-zero
weight. In (Hou et al. 2019a), both non-local spatial aggre-
gation and channel aggregation are deployed. Multi-context
appearance relation is used to localize the body regions more
precisely, and the location relation is inserted to constrain
and complement the appearance relation.

In all the above non-local mechanisms, features are up-
dated by a weighted sum operation, where similar features
have large weights. Such methods suffer the limitations to
capture context information effectively and identify the dis-
criminative regions of the updated features. Different from
these methods, our approach explores the global relation in-
formation to focus on the informative foreground and enable
the frames to complement each other in the context.

Relation Reasoning. The Relation Network in (Santoro
et al. 2017) considers the potential relations between all ob-
ject pairs to capture the core common properties of relational
reasoning. Temporal Relation Network accumulates multi-
scale temporal relations to capture temporal relations in the
video, where different temporal relation captures relation-
ships between ordered frames of different length in (Zhou et
al. 2018). Recurrent Relational Network performs multiple
steps of relational reasoning and in each step, each object
is affected by other objects, as well as its previous state in
(Palm, Paquet, and Winther 2018).
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3 Method

In this section, we first describe the overall architecture of
our method. Then, the main components of our method are
presented, including relation module, relation-guided spatial
attention module, and relation-guided temporal refinement
module. Finally, the loss function is discussed in detail.

3.1 Framework Overview

The framework of our proposed method is illustrated in Fig-
ure 1. Supposing the video clip is represented as {It}Tt=1,
which contains T frames. For each frame, the CNN back-
bone is used to extract the feature maps Xt ∈ RC×H×W ,
where C, H and W denote the channel, the height and
the width of the feature maps respectively. Then, the fea-
ture maps are fed into the relation-guided spatial attention
(RGSA) module to generate the frame-level feature ft ∈
RC . Finally, all features {ft}Tt=1 of the video clip are refined
through the relation-guided temporal refinement (RGTR)
module to generate the clip-level feature f̃ ∈ RC . Frame-
level cross entropy loss, clip-level cross entropy loss, and
triplet loss are used together to optimize the model.

3.2 Relation Module

To calculate the relation between two features, the simplest
way is to compute the inner product of these vectors. How-
ever, the inner product just indicates to what extent these fea-
tures are similar. Some detailed information like which parts
are similar and which parts are different can’t be inferred
from this relation. Another common relation is the element-
wise difference. But difference relation is not compact and
contains redundant information. It is also computation con-
suming for the following operations. Therefore, we develop
a relation module to generate the relation vector of two fea-
tures, which is both informative and compact compared with
inner product and difference.

As illustrated in Figure 2, given two features f1, f2, we
first compute the difference of the embedded features:

fdiff = θ(f1)− φ(f2), (1)

where θ and φ are two embedding functions implemented
by a fully connected layer followed by a batch normaliza-
tion (BN) and a rectified linear unit (ReLU), i.e., θ(f1) =
ReLU(BN(Wθf1)) and φ(f2) = ReLU(BN(Wφf2)). Fully
connected layers Wθ, Wφ ∈ R C

r1
×C reduce the vector di-

mension with factor r1. Then, we use a fully connected layer,
a batch normalization layer and a rectified linear unit to gen-
erate more compact relation vector:

r1,2 = RM(f1, f2) = ReLU(BN(Wfdiff )), (2)

where W ∈ R C
r2

× C
r1 , and the relation vector dimension is

one r2-th of the original vector.

3.3 Relation-Guided Spatial Attention

Deep stack of convolutional operations is often used to learn
attention to focus on the foreground object. However, ac-
cording to the study in (Luo et al. 2016), the effective recep-
tive field is much smaller than the theoretical receptive field,

Figure 2: The architecture of the relation module (RM) and
the global relation vector (GRV) module. The GRV module
computes the relation vectors with N features and concate-
nates them into a global relation vector.

i.e., the attention is local-aware. To handle this problem, we
develop a relation-guided spatial attention (RGSA) module.
Attention at each spatial position is determined by its feature
as well as the relation vectors from all positions, revealing
the dependence between local and global information.

As illustrated in Figure 3(a), supposing a image’s fea-
ture maps X ∈ RC×H×W are given, thus, there are N
(N = H × W ) different spatial positions, and the fea-
ture at each position is a C-dimensional vector. Therefore,
we first reshape the feature maps X to X̂ ∈ RN×C , and
X̂i ∈ RC(1 ≤ i ≤ N) denotes the feature vector at i-th
position. For each feature X̂i, we use the relation module to
compute its relation vectors with all features:

ri,j = RM(X̂i, X̂j), (1 ≤ j ≤ N). (3)

Then, all relation vectors related to X̂i are concatenated to
generate the global relation vector:

r̃i = Concat([ri,1, ri,2, · · · , ri,N ]), (4)

where r̃i ∈ RNC
r2 contains the global comparison informa-

tion. Combined with the original feature, it can well guide
the attention generation:

ai = Sigmoid(BN(WA[X̂
i, r̃i])), (5)

where WA ∈ RC×( N
r2

+1)C and ai ∈ RC has the same di-
mension with feature X̂i. Finally, the frame-level feature is
the weighted sum of the features of all positions as follows:

f =

∑N
i=1 aiX̂

i

∑N
i=1 ai

. (6)

3.4 Relation-Guided Temporal Refinement

Temporal feature fusion is the key point in video-based per-
son re-identification. Some works (Liu, Yan, and Ouyang
2017) estimate the qualities of different frames and fuse the
features by a weighted sum operation. But such a method
still suffers the limitation that multiple low-quality frames
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Figure 3: The architecture of the relation-guided spatial attention (RGSA) module and the relation-guided temporal refinement
(RGTR) module. The GRV represents the global relation vector module as shown in Figure 2.

can be more informative when compared mutually. Different
frames can complement each other and be refined and ag-
gregated to enhance the discriminative capacity. Therefore,
we develop a relation-guided temporal refinement (RGTR)
module to refine the frame-level features by its relation with
features of the other frames. Thus, each frame-level feature
can be more robust and so is the clip-level feature.

As shown in Figure 3(b), by deploying the CNN backbone
and the RGSA module, we can get frame features {ft}Tt=1
of a video clip. Pairwise relation vectors between frames are
computed using the relation module:

r(t, s) = RM(ft, fs). (7)
Then, all relation vectors related to ft are concatenated to
generate the global relation vector:

r̃t = Concat([r(t, 1), r(t, 2), · · · , r(t, T )]), (8)

where r̃t ∈ RTC
r2 .

Different from learning attention in the RGSA module,
which exploits the discriminative regions and depresses the
background, the global relation vector is used in the RGTR
module to enhance the discriminative capacity of all frame-
level features, leading to reinforced clip-level representa-
tions. The refined frame-level features are dependent on the
global relation vector and original features as formulated:

f̃t = BN(WR[ft, r̃t]), (9)

where WR ∈ RC×( T
r2

+1)C and f̃t ∈ RC . Finally, the clip-
level feature is obtained by temporal average pooling:

f̃ =
1

T

T∑

t=1

f̃t. (10)

3.5 Loss Function

In our method, we adopt triplet loss, which is commonly
used as metric learning, and cross entropy loss to train our
model.

Each batch contains P identities and K video clips for
each identity. And one video clip consists of T frames. Us-
ing the RGSA module and the RGTR module, we can ex-
tract frame-level features and clip-level features. Clip-level
cross entropy loss Lcce is calculated following the setting
of most methods. In addition, frame-level cross entropy loss
Lfce is also employed to enhance the discriminative capac-
ity of frame-level features, since, in most of the cases, the
identity of the person can be determined by a single frame.
Therefore, the total cross entropy loss Lce is:

Lce = Lcce + Lfce (11)

For each video clip f̃p,k in the batch, we find its positive
sets Pp,k = {i|yi = yp,k} and negative sets Np,k = {j|yj �=
yp,k}. Compared with batch hard triplet loss (Hermans,
Beyer, and Leibe 2017) which chooses the hardest positive
and negative samples, adaptive weighted triplet loss (Ristani
and Tomasi 2018) uses all samples while hard samples have
large weights and simple samples have small weights. The
positive weight wi and the negative weight wi are computed
as:

wi =
eD(f̃p,k, f̃i)

∑
x∈Pp,k

eD(f̃p,k, f̃x)
, (12)

wj =
e−D(f̃p,k, f̃j)

∑
x∈Np,k

e−D(f̃p,k, f̃x)
, (13)

and the triplet loss Ltri is formulated as:

Ltri =
1

PK

∑

p,k

softplus(
∑

i∈Pp,k

ωiD(f̃p,k, f̃i)

−
∑

j∈Np,k

ωjD(f̃p,k, f̃j)),
(14)

where softplus(x) = ln(1 + ex) and D(·, ·) means the dis-
tance of two clip features.
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Figure 4: The Grad-CAM visualization results of example
images from the MARS dataset. The images in the first row
show the visualization results of the baseline model, and the
images in the second row show the visualization results of
the model with the RGSA module.

The overall training objective is defined as:

Ltotal = Lce + Ltri. (15)

4 Experiments

In this section, we evaluate our method on four video-based
person re-identification benchmarks. The datasets informa-
tion and evaluation protocols, as well as experiment settings,
are introduced first. Then, an ablation study is performed on
the effectiveness of the components of our method. Finally,
we compare our approach with the state-of-the-art methods.

4.1 Datasets and Evaluation Protocol

MARS (Zheng et al. 2016) is one of the largest video-based
person re-identification benchmark with 1,261 identities and
around 20,000 video sequences captured by six cameras in
a university campus. The video sequences are detected and
tracked by DPM detector (Felzenszwalb et al. 2008) and
GMMCP tracker (Dehghan, Modiri Assari, and Shah 2015).

DukeMTMC-VideoReID (Wu et al. 2018b) is another
large video-based person re-identification benchmark. It
consists of 1,812 identities and 4,832 sequences captured by
eight cameras. Each sequence has 168 frames on average.
The bounding boxes are all manually annotated.

iLIDS-VID (Wang et al. 2014) and PRID-2011 (Hirzer
et al. 2011) are two small benchmarks. iLIDS-VID consists
of 300 persons and each person has two sequences from two
non-overlapping cameras, and the video sequences have an
average length of 73. This dataset is challenging due to blur
and occlusion. PRID-2011 contains 385 and 749 identities
from two cameras respectively. Only the first 200 people ap-
pear in both cameras. Compared with iLIDS-VID, PRID-
2011 has a relatively simple background and rare occlusion.

Evaluation Protocol. In our experiments, we use the Cu-
mulative Matching Characteristic (CMC) and the mean av-
erage precision (mAP) to evaluate the performance. For the
MARS and DukeMTMC-VideoReID datasets, we adopt the
widely used training/testing splits provided by (Zheng et al.

Table 1: Ablation study on the components of the pro-
posed method on the MARS and DukeMTMC-VideoReID
datasets. The CMC score (%) at rank 1 and mAP (%) are
reported.

Method MARS DukeMTMC
-VideoReID

R1 mAP R1 mAP

Baseline + Lce 87.2 80.9 95.3 94.2
Baseline + Ltotal 87.8 81.8 95.4 94.5
RGSA + Ltotal 88.6 83.2 96.0 95.0
RGTR + Ltotal 89.4 83.3 96.0 95.3
RGSA+RGTR + Lce 88.5 83.5 96.3 95.3
RGSA+RGTR (IP) + Ltotal 88.4 82.5 96.6 95.5
RGSA+RGTR + Ltotal 89.4 84.0 97.2 95.8

2016) and (Wu et al. 2018b). For the iLIDS-VID and PRID-
2011 datasets, we randomly split the identities equally into
the training set and testing set. Experiments are conducted
10 times for average performance. Since each identity has
just two sequences, only the CMC is used to evaluate the
performance on the iLIDS-VID and PRID-2011 datasets.

4.2 Implementation Details

In the training phase, we randomly select T frames from a
variable-length sequence to form a fixed-length input clip.
Each batch consists of P identities and K input clips for
each identity. In all our experiments, we select P = 18
and K = 4, therefore, the batch size is 72T . All images
are resized to 256 × 128, and randomly horizontal flipped.
Random erasing (Zhong et al. 2017) is also used as data
augmentation. We use the ResNet50 (He et al. 2016) pre-
trained on the ImageNet (Deng et al. 2009) dataset as back-
bone network. The last pooling layer and fully connected
layer are removed and the stride in the last down-sampling in
the conv5 x block is set to 1. The model is optimized using
Adam (Kingma and Ba 2014) with weight decay 5 × 10−4.
The initial learning rate is 3 × 10−4 and it is reduced to
3×10−5 and 3×10−6 after training 125 and 250 epochs. The
model is trained for 375 epochs in total. During the testing
phase, the sequence is split into several video clips of length
T with stride T/2. Clip-level features are extracted and L2-
normalized. All clip-level features of the same sequence are
averaged and L2-normalized to generate sequence-level fea-
tures. Cosine distance is used to calculate the distance be-
tween query sequences and gallery sequences. Our model is
implemented by Pytorch and optimized using four NVIDIA
Tesla V100 GPUs.

4.3 Ablation Study

Effectiveness of Components. In Table 1, we investigate
the effectiveness of the components of our method. In the
Baseline model, the spatial and temporal average pooling
operations are used to generate the frame-level and clip-
level features. Lce means that the training objective is both
the frame-level entropy loss and clip-level cross entropy
loss. Ltotal denotes that triplet loss and cross entropy loss

11438



Table 2: Performance comparison with difference factors on
the MARS and DukeMTMC-VideoReID datasets. The CMC
scores (%) at rank 1 and mAP (%) are reported.

r1 r2
MARS DukeMTMC

-VideoReID

R1 mAP R1 mAP

16 128 89.6 84.0 96.7 95.5
16 256 89.3 84.1 96.6 95.6
32 128 89.4 84.0 96.2 95.1
32 256 89.4 84.0 97.2 95.8

Table 3: Performance comparison with difference clip length
on the MARS and DukeMTMC-VideoReID datasets. The
CMC score (%) at rank 1 and mAP (%) are reported.

Clip Length MARS DukeMTMC
-VideoReID

R1 mAP R1 mAP

T = 2 88.5 82.5 95.9 94.9
T = 4 88.6 83.4 96.0 95.1
T = 6 89.0 83.5 96.2 95.1
T = 8 89.4 84.0 97.2 95.8

are used together to optimize the model. The RGSA and
RGTR represent that the corresponding average pooling in
the Baseline model is replaced with the proposed module.
The IP represents that in the RGSA and RGTR modules, the
relation module is replaced by the inner product to calculate
the relation of two features.

Compared with Baseline + Ltotal, the RGSA module im-
proves rank-1 and mAP by 0.8% and 1.4% on MARS, as
well as 0.6% and 0.5% on DukeMTMC-VideoReID. In Fig-
ure 4, we deploy the Grad-CAM (Selvaraju et al. 2017) to vi-
sualize the results for analyzing the effect of the RGSA mod-
ule. The first row shows the results of the baseline model,
and the second row shows the results of our RGSA module.
We find that the RGSA module can help the model focus
on the discriminative regions, and help cover the informa-
tive regions. In addition, the activations at these regions are
stronger than the baseline method in Figure 4(a)(b)(c). In
images that the bounding boxes are not well annotated like
Figure 4(d)(e)(f), the pedestrian appears only in a small re-
gion of the image, the RGSA module also helps localize the
pedestrian correctly which can be contributed to the exploit-
ing of global comparison information in the module. These
results show that our RGSA module is effective at localizing
discriminative regions and depressing the background noise.

The employment of our RGTR module also boosts the
performance compared with Baseline + Ltotal, rank-1 and
mAP improved by 1.6% and 1.5% on MARS, as well
as 0.6% and 0.8% on DukeMTMC-VideoReID, since our
RGTR module considers the influence of other frames. The
comparison within all frames helps guide the modification
and enhancement of each frame-level feature, thus improves

Table 4: Performance comparison with the state-of-the-art
methods on the MARS dataset. The CMC scores (%) at rank
1, 5, 20 and mAP (%) are reported.

Method MARS

R1 R5 R20 mAP

CNN+XQDA (Zheng et al. 2016) 68.3 82.6 89.4 49.3
SeeForest (Zhou et al. 2017) 70.6 90.0 97.6 50.7
RQEN (Song et al. 2018) 73.7 84.9 91.6 51.7
DuATM (Si et al. 2018) 78.7 90.9 95.8 62.3
ETAP (Wu et al. 2018b) 80.8 92.1 96.1 67.4
DRSTA (Li et al. 2018a) 82.3 - - 65.8
Snippet (Chen et al. 2018) 86.3 94.7 98.2 76.1
RRU (Liu et al. 2019) 84.4 93.2 96.3 72.7
M3D (Li, Zhang, and Huang 2019) 84.4 93.8 97.7 74.1
STA (Fu et al. 2019a) 86.3 95.7 98.1 80.8
VRSTC (Hou et al. 2019b) 88.5 96.5 97.4 82.3

Ours 89.4 96.9 98.3 84.0

the discriminative capacity of clip-level features. Compared
with RGSA + Ltotal and RGTR + Ltotal, the deployment of
both the RGSA and RGTR modules can further improve the
performance, rank-1 and mAP achieving 89.4% and 84.0%
on MARS, as well as 97.2% and 95.8% on DukeMTMC-
VideoReID. This result demonstrates that these modules can
work cooperatively with each other in the spatial and tem-
poral domain and contribute to superior feature representa-
tions.

Triplet loss is an effective tool for metric learning, which
improves the performance of the Baseline model. Under the
setting of without triplet loss, the use of the two relation-
guided modules improves rank-1 and mAP by 1.3% and
2.6% on MARS, as well as 1.0% and 1.1% on DukeMTMC-
VideoReID, compared with the Baseline + Lce model. Such
results also prove the effectiveness of these modules.

In RGSA+RGTR (IP) + Ltotal, inner product is used
to calculate the relation of two features, and such method
outperforms the Baseline + Ltotal model. However, as dis-
cussed before, inner product can’t provide detailed informa-
tion and have limitation in guiding the spatial attention and
temporal refinement. Compared with that, in RGSA+RGTR
+ Ltotal, the deployment of our relation module improves
the rank-1 and mAP by 1.0% and 1.5% on MARS, as well
as 0.6% and 0.3% on DukeMTMC-VideoReID.

Influence of factors. In Table 2, we show the perfor-
mance of the model with different settings of factors r1
and r2. All the experiments are trained with clip length of
8. We find that the rank-1 and mAP are very consistent
with different settings, achieving about 89.5% and 84.0%
on the MARS dataset, as well as 96.7% and 95.5% on the
DukeMTMC-VideoReID dataset. These results show that
relation module works effectively without the sensitivity of
different choice of r1 and r2. In our final model, we adopt
the setting with r1 = 32 and r2 = 256.

Influence of Clip Length. In Table 3, we investigate
the influence of clip length. In the training phase, we ran-
domly select T frames from a sequence to form an input
video clip. As we can see, the performance improves grad-
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Table 5: Performance comparison with the state-of-the-art methods on the iLIDS-VID and PRID-2011 datasets. The CMC
scores (%) at rank 1, 5, 20 are reported.

Method Ref iLIDS-VID PRID-2011

R1 R5 R20 R1 R5 R20

TDL (You et al. 2016) CVPR 56.3 87.6 98.3 56.7 80.0 93.6
RNN (McLaughlin, Martinez del Rincon, and Miller 2016) CVPR 58.0 84.0 96.0 70.0 90.0 97.0
CNN+XQDA (Zheng et al. 2016) ECCV 53.0 81.4 95.1 77.3 93.5 99.3
SeeForest (Zhou et al. 2017) CVPR 55.2 86.5 97.0 79.4 94.4 99.3
QAN (Liu, Yan, and Ouyang 2017) CVPR 68.0 86.8 97.4 90.3 98.2 100.0
TSSCNN (Chung, Tahboub, and Delp 2017) ICCV 60.0 86.0 97.0 78.0 94.0 99.0
ASTPN (Xu et al. 2017) ICCV 62.0 86.0 98.0 77.0 95.0 99.0
SPW (Huang et al. 2018) AAAI 69.3 89.6 98.2 83.5 96.3 100.0
RQEN (Song et al. 2018) AAAI 76.1 92.9 99.3 92.4 98.8 100.0
TCN (Wu et al. 2018a) AAAI 60.6 83.8 95.8 81.1 95.0 98.7
MGRU (Li et al. 2018b) AAAI 60.8 89.2 99.5 78.4 94.8 99.4
DRSTA (Li et al. 2018a) CVPR 80.2 - - 93.2 - -
Snippet (Chen et al. 2018) CVPR 85.4 96.7 99.5 93.0 99.3 100.0
M3D (Li, Zhang, and Huang 2019) AAAI 74.0 94.3 - 94.4 100.0 -
RRU (Liu et al. 2019) AAAI 84.3 96.8 99.5 92.7 98.8 99.8
VRSTC (Hou et al. 2019b) CVPR 83.4 95.5 99.5 - - -

Ours 86.0 98.0 99.4 93.7 99.0 100.0

Table 6: Performance comparison with the state-of-the-art
methods on the DukeMTMC-VideoReID dataset. The CMC
scores (%) at rank 1, 5, 20 and mAP (%) are reported.

Method DukeMTMC-VideoReID

R1 R5 R20 mAP

ETAP (Wu et al. 2018b) 83.6 94.6 97.6 78.3
VRSTC (Hou et al. 2019b) 95.0 99.1 99.4 93.5
STA (Fu et al. 2019a) 96.2 99.3 99.6 94.9

Ours 97.2 99.4 99.9 95.8

ually as the clip length increases, rank-1 and mAP increas-
ing from 88.5% and 82.5% to 89.4% and 84.0% on MARS,
as well as from 95.9% and 94.9% to 97.2% and 95.8% on
DukeMTMC-VideoReID. And the setting with a length of
8 achieves the best performance. Such improvement is at-
tributed to the fact that the RGTR module uses the global
comparison information to refine every features. When the
clip gets longer, more comparison information will be avail-
able for the RGTR module to modify and enhance the fea-
tures effectively. We believe that as the clip length increases,
our model will achieve better results. However, more frames
mean more computation and more GPU memory. Consider-
ing the limited computation resources, we adopt the setting
with 8 frames in our final model, which also achieves com-
petitive performance.

4.4 Comparison with State-of-the-Art Methods

The comparison of our proposed method with the state-of-
the-art methods is shown in Table 4, Table 5, and Table 6.
Our method outperforms the best existing methods on two
large datasets, MARS and DukeMTMC-VideoReID in Ta-
ble 4 and Table 6. Compared with VRSTC, our method

achieves 0.9% and 1.7% improvement for rank-1 accu-
racy and mAP, respectively on the MARS dataset. On the
DukeMTMC-VideoReID dataset, our method outperforms
STA by 1.0% and 0.9% for rank-1 accuracy and mAP. Con-
sidering the high performance, these improvements are also
appreciable. On two small datasets, iLIDS-VID and PRID-
2011, our method also achieves comparable results. On the
iLIDS-VID dataset, our method beats Snippet on rank-1 and
rank-5 accuracy by 0.6% and 1.3%. Note that Snippet uti-
lizes optical flow as an extra input, which is proved effec-
tive (McLaughlin, Martinez del Rincon, and Miller 2016;
Xu et al. 2017) but not used in our method. On the PRID-
2011 dataset, our approach performs slightly worse than
M3D. As discussed above, PRID-2011 is too small and less
challenging to explore the capacity of our model.

5 Conclusions

In this paper, we devote our efforts to video-based per-
son re-identification and propose a novel framework with
a relation-guided spatial attention (RGSA) module and a
relation-guided temporal refinement (RGTR) module. In the
RGSA module, the global comparison information helps
localize the discriminative regions. In the RGTR module,
the relation within frames is used to refine and enhance
each frame’s feature. These modules together contribute to
superior feature representations for video-based person re-
identification. Notably, our approach outperforms all ex-
isting state-of-the-art methods on large-scale MARS and
DukeMTMC-VideoReID datasets.
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