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Abstract

This paper considers a novel problem, named One-View
Learning (OVL), in human retrieval a.k.a. person re-
identification (re-ID). Unlike fully-supervised learning, OVL
only requires pretty cheap annotation cost: labeled training
images are only provided from one camera view (source
view/domain), while the annotations of training images from
other camera views (target views/domains) are not available.
OVL is a problem of multi-target open set domain adapta-
tion that is difficult for existing domain adaptation methods
to handle. This is because 1) unlabeled samples are drawn
from multiple target views in different distributions, and 2)
the target views may contain samples of “unknown identity”
that are not shared by the source view. To address this prob-
lem, this work introduces a novel one-view learning frame-
work for person re-ID. This is achieved by adversarial multi-
view learning (AMVL) and adversarial unknown rejection
learning (AURL). The former learns a multi-view discrimi-
nator by adversarial learning to align the feature distributions
between all views. The later is designed to reject unknown
samples from target views through adversarial learning with
two unknown identity classifiers. Extensive experiments on
three large-scale datasets demonstrate the advantage of the
proposed method over state-of-the-art domain adaptation and
semi-supervised methods.

1 Introduction

Person re-identification (re-ID) aims to look for the matched
person images of the database when given an interested
query person. The modern re-ID methods (Li, Zhu, and
Gong 2018b; Sun et al. 2018) have achieved impressive im-
provement in accuracy, relying on rich-labeled data. How-
ever, it is time-consuming and difficult to label the identities
of persons across disjoint camera views, especially in scenes
with a large number of cameras. To mitigate the heavy cost
of annotation, many methods for unsupervised domain adap-
tation (Deng et al. 2018; Wang et al. 2018) are proposed re-
cently. These methods aim at transferring knowledge from
a labeled source domain to an unlabeled target domain. De-
spite their success, these methods still require a large number
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Figure 1: Examples of one-view learning (OVL). Labeled
samples are only available from one camera view (source
view), while samples of other camera views (target views)
are unlabeled. Besides samples of known identities shared
by the source view, the target views may contain samples of
unknown identity that are absent from the source view.

of labeled auxiliary samples and the utilization of knowledge
from the target domain is limited.

In the actual labeling process of person re-ID, the main
difficulty is matching persons across disjoint camera views.
By contrast, it is more easily to label persons under one cam-
era view. This is because: 1) labeling process can be profited
from automatic person detection and tracking in raw video
of the same camera, and 2) we could avoid the huge effort of
finding samples of the same identity across camera views. In
light of these advantages, this work considers a novel setting,
called one-view learning (OVL), to make trade-off between
labeling cost and accuracy for person re-ID. OVL is first in-
troduced by Zhong et al. (Zhong et al. 2019), where labeled
training samples from one camera view and unlabeled train-
ing samples from other camera views are available (Fig. 1).
The goal of VOL is to learn a discriminative model that can
perform well on testing samples from all views.

OVL can be regarded as a problem of multi-target open
set domain adaptation. It has two unique properties that are
different from traditional domain adaptation: 1) The unla-
beled samples are obtained from multiple unlabeled views
(target views/domains) with different distributions. 2) The
target views may include samples of identities that are not
shared by the labeled view (source view/domain). We call
such identities as “unknown identity”. These two properties
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Figure 2: Comparison of traditional domain adaptation method and the proposed method in one-view learning. (a): Traditional
domain adaptation method mainly attempts to directly align the feature distributions between the source view and the global
target view. However, this method may encounter two problems: 1) the gap between target views would still remain, and 2) the
samples of unknown identity will be aligned with the source view. (b): Our method tries to jointly reduce the gap between all
views and reject samples of unknown identity from the target views. Best viewed in color.

make most existing domain adaptation methods (Bousmalis
et al. 2017; Ganin and Lempitsky 2015; Tzeng et al. 2017)
difficult to solve the problem of OVL. First, most works
focus on the context of single-source-single-target-domain.
Yet unlabeled samples belong to multiple target views in
OVL. If we regard target views as one global target view and
only focus on reducing the feature distributions between the
source view and the global target view, the model may suffer
from the variations caused by different target views in test-
ing (Fig. 2(a)). Second, most works assume that the source
and target views share exactly the same identities/classes.
In OVL, however, there may contain samples of unknown
identity in the target views. These unknown samples should
not be aligned with the source view (Fig. 2(a)). In addition,
we do not have any prior knowledge to distinguish unknown
samples from the target views. Thus, it is difficult to recog-
nize and reject unknown samples during domain adaptation.

To solve the above difficulties, this work proposes a novel
framework for OVL in person re-ID. With respect to the
first difficulty, we propose adversarial multi-view learning
(AMVL) to align the feature distributions between all views
(Fig. 2(b)). AMVL utilizes a multi-view classifier to cor-
rectly predict the camera view labels of input samples while
encouraging the feature generator to cheat the classifier. This
allows the generator to produce view-invariant features for
overcoming the variations caused by different views. With
respect to the second difficulty, we introduce adversarial un-
known rejection learning (AURL) to detect and reject un-
known identity samples from the target views (Fig. 2(b)).
AURL exploits two unknown identity classifiers to build a
decision boundary of unknown identity by enforcing the tar-
get samples near to the boundary. On the contrary, the gen-
erator attempts to cheat the unknown identity classifiers and
push target samples far from the boundary. The generator
would choose to 1) align the target samples with the source
view or 2) reject them as unknown identity, depending on
the output of the unknown identity classifiers.

In summarize, this work makes three contributions. 1) We
comprehensively analyze the properties and difficulties of
one-view learning (OVL). This helps us to better understand
and solve this problem. Moreover, to our knowledge, we are
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the first to introduce multi-target open set domain adapta-
tion, which is an important problem in real-world applica-
tions. 2) We propose a novel and effective method to over-
come the difficulties in OVL. Our method jointly considers
the divergences between all views and the samples of un-
known identity in the target views. Experiment demonstrates
the proposed AMVL and AURL are indispensable towards
an effective OVL system. 3) Experiment conducted on three
large-scale person re-ID datasets shows that our approach
achieves state of the art compared with recent unsupervised
domain adaptation and semi-supervised methods.

2 Related Work

Unsupervised Domain Adaptation. Unsupervised domain
adaptation is mainly divided into two categories: closed set
domain adaptation and open set domain adaptation. Most
existing methods focus on the closed set domain adaptation
where the source and target domains share exactly the same
classes. These methods mainly attempt to align the feature
distributions between the source and target domains. For ex-
ample, reducing the Maximum Mean Discrepancy (MMD)
(Gretton et al. 2007) between domains, or, learning an ad-
versarial domain classifier (Ganin and Lempitsky 2015;
Tzeng et al. 2017) to produce features that are indistinguish-
able between the source and target domains. In open set
domain adaptation (Busto and Gall 2017), there may ex-
ist samples of unknown class in the target domain. In this
situation, the traditional distribution matching approaches
may not be suitable. Because the samples of unknown class
should not be aligned with the source domain. To address
this problem, recent methods (Baktashmotlagh et al. 2019;
Busto and Gall 2017; Saito et al. 2018) aim to detect and
reject unknown class samples during distribution alignment.
Saito et al. (Saito et al. 2018) employ adversarial training
to build an unknown class decision boundary and separate
the unknown target samples from known ones. Baktashmot-
lagh et al. (Baktashmotlagh et al. 2019) propose a frame-
work that disentangles the data into shared and private repre-
sentations. The unknown class samples are detected through
estimating whether the data can be reconstructed by the pri-



vate representation. Although many works have been pro-
posed for multi-source domain adaptation (Mansour, Mohri,
and Rostamizadeh 2009; Li, Carlson, and others 2018;
Zhao et al. 2018), there is only one work studies on multi-
target domain adaptation (Gholami et al. 2018). In this pa-
per, we consider a more challenging setting, multi-target
open set domain adaptation, where we not only need to align
the distributions between all domains, but also detect and re-
ject samples of unknown class from the target domains.

Person re-identification. Recent methods have
made great achievement in fully-supervised person
re-identification (re-ID) (Li, Zhu, and Gong 2018b;
Sun et al. 2018), benefiting from the rich-annotated
data. However, labeling person re-ID data across
disjoint cameras is a time-consuming and labor de-
manding process. To overcome this problem, re-
cent works focus on studies of unsupervised learn-
ing (Chen, Zhu, and Gong 2018; Yang et al. 2017;
2014), semi-supervised learning (Li, Zhu, and Gong 2018a;
Liu, Wang, and Lu 2017; Ye et al. 2017) and unsupervised
domain adaptation (Fan et al. 2018; Wang et al. 2018;
Zhong et al. 2018). Although SMP (Liu, Wang, and Lu
2017) and DGM (Ye et al. 2017) claim that they are unsu-
pervised methods, they are in fact semi-supervised methods
and only can be implemented in video-based person re-ID.
Since they need to assign at least one tracklet for each
identity. TAUDL (Li, Zhu, and Gong 2018a) proposes
an unsupervised method for video-based person re-ID.
However, it is a semi-supervised method for image-based
person re-ID. Because TAUDL assigns all person images
per ID per camera to a unique label. OVL can also be termed
as a semi-supervised problem where samples of unknown
identity may exist in the unlabeled samples. However, this
work attempts to solve OVL in view of domain adaptation.
For unsupervised domain adaptation in person re-ID, the
identities from the source and target domains are completely
different. Thus, it is improper to directly align the distri-
butions of domains in the space of identity. To solve this
problem, recent methods mainly try to align the source and
target domains in the pixel-level space (Deng et al. 2018;
Wei et al. 2018) or attribute-level space (Lin et al. 2018;
Wang et al. 2018). Compared to the above unsupervised
domain adaptation methods, in OVL, the target domains
may contain samples of known/unknown identities that are
shared/unshared by the labeled source domain. Therefore,
we can address the problem of OVL by aligning feature
distributions of domains in the identity space, but should
notice and reject the unknown identity samples from known
ones.

3 Method
3.1 Problem Definition of One-View Learning

In one-view learning (OVL), we are provided with a train-
ing dataset collected from C' camera views. The training data
includes labeled and unlabeled samples. The labeled data is
only collected from one camera view whereas the unlabeled
data is captured from other C' — 1 camera views. We re-
gard labeled training data { X, Y5} as source view/domain,
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which includes N, person images. The number of identities
in the source view is M. We define these identities as known
identities. Since the unlabeled data is drawn from C'—1 cam-
era views, we divide it into C' — 1 target views/domains. For
each target view X, . belonging to camera c, we are pro-
vided with V; . unlabeled person images. The goal of OVL
is to learn a model using samples of the source and target
views, so that the model could extract discriminative rep-
resentation on the testing set. In testing, person images are
draw from all C camera views.

OVL is a problem of multi-target open set domain adap-
tation which has the following two properties: 1) Training
samples are draw from one labeled source view and C' — 1
unlabeled target views. 2) A person would not always ap-
pear under all cameras. Therefore, there may contain sam-
ples of unknown identity in the target views. The unknown
identity indicates the persons that are absent from the source
view. Based on these two properties, this work aims to ad-
dress two difficulties that are hard for traditional domain
adaptation methods. First, instead of directly reducing the
distribution gap between the source view and the global tar-
get view, we should also consider the distribution gap be-
tween each pair of target views. This is because we need to
compare the similarities between samples from all C' views
during testing. Second, the target views may contain sam-
ples of unknown identity that should not be aligned with the
source view. Thus, we need to detect unknown identity sam-
ples from the target views and reject them during adapting.
Next, we will introduce our approach to address the above
difficulties for OVL.

3.2 Overview of The Framework

The framework of our method is shown in Fig 3. The input of
the network is the samples of the labeled source view and un-
labeled target views. Our network is comprised of four mod-
ules: a feature generator (), two identity classifiers (F7 ;
and FT7 o), and a multi-view classifier (o). The generator
is composed of several residual blocks (He et al. 2016). The
module of classifier has two fully convolutional (FC) lay-
ers. The output is M + 1-dimensional for identity classifier
and C'-dimensional for multi-view classifier. The outputs of
classifiers are obtained by softmax activation function. The
first M dimensions of the output for identity classifier are
the predicted probabilities of known identities while the last
dimension represents the predicted probability of unknown
identity. We initialize F7 ; and Iy o differently to create two
different identity classifiers. During training, we introduce
three learning strategies to optimize the network, i.e. super-
vised learning, adversarial multi-view learning and adver-
sarial unknown rejection learning. The supervised learning
is implemented on the labeled source view. It aims to learn
basic discriminative feature generator and identity classi-
fiers using the identity label of the source data. The adver-
sarial multi-view learning (AMVL) is proposed to reduce
the gap between all views by training the multi-view clas-
sifier with adversarial learning. The adversarial unknown
rejection learning (AURL) is introduced to reject unknown
identity samples during adapting process. The two identity
classifiers attempt to make a decision boundary of unknown
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Figure 3: The framework of the proposed method. Left: The network of the proposed method. Given the samples of the
labeled source view and unlabeled target views, we forward them into the network. The network has four modules: a feature
generator (G), two identity classifiers (F7; and F72), and a multi-view classifier (F). Right: The loss and optimization of
the proposed method. During training, we jointly perform supervised learning, adversarial multi-view learning and adversarial
unknown rejection learning to optimize the network. L., and L;,; indicate the cross-entropy loss and triplet loss for labeled
source samples, respectively. £,; represents the view classification loss for source and target samples. L, denotes the unknown

rejection loss of target samples.

identity by enforcing the target samples near to the unknown
boundary. By contrast, the generator tries to push the target
samples away from the boundary depending on the proba-
bility of the unknown identity. Next, we will introduce the
optimization of the proposed method in detail.

3.3 Supervised Learning on Source View

Given the labeled source samples, we are able to train the
network in a supervised way. As shown in Fig 3(a), we
adopt classification loss and triplet loss (Hermans, Beyer,
and Leibe 2017) to perform the supervised learning on the
source view:

£sl = L’ce,l(FLl(G(xs))) + Ece,2(FI,2(G(xS))) (D
+ Etm’(G(IS))a

where L. 1 and L. o denote the cross-entropy losses with
respect to £y and Fy, respectively. L. ; is formulated as:

Leej = —logp;(ys|zs), )

where p;(ys|z,) is the probability of identity label for the
input x, predicted by the classifier Fr ;. The triplet loss is
explained as,

Etri = [m + D(xwxs,p) - D(xwxs,n)}v (3)

where z, , and x ,, represent the positive sample and nega-
tive sample of the input = in the training batch. m is a mar-
gin parameter and D(-) is the Euclidean distance between
two features obtained by the generator G. We empirically
set m to 0.3 in this paper.

3.4 Adversarial Multi-View Learning

Due to the distribution divergences between the source and
target views, the network trained on the source view may
fail to extract discriminative feature for the target views. As
discussed in the first difficulty of Sec. 3.1, it is important to
reduce the distribution gap between each pair of views. To

achieve this goal, we propose adversarial multi-view learn-
ing (AMVL) to align the feature distributions between all
views. As shown in Fig 3(b), we propose to utilize the cross-
entropy loss on the output of the multi-view classifier F:

£vi = _IOgQ(C‘x)> (4)

where ¢(c|x) is the probability of camera view label for in-
put source/target sample x obtained by the multi-view classi-
fier Fo. Then, we apply the adversarial training to optimize
the generator and the multi-view classifier. The training ob-
ject of L,; is,

mgx rrlélcn L. 5)

The multi-view classifier attempts to correctly predict the
camera view label of the input sample whereas the generator
tries to cheat the multi-view classifier. In this way, the gen-
erator is encouraged to produce the feature that is indistin-
guishable by the multi-view classifier. Thereby, the feature
distributions of all views could be aligned and the generator
is able to produce view-invariant features.

3.5 Adversarial Unknown Rejection Learning

As mentioned in the second difficulty of Sec. 3.1, the target
views may include samples of unknown identity that are not
shared by the source view. The samples of unknown identity
should not be aligned with the source view and thus should
be rejected during adapting process. Inspired by (Saito et al.
2018), we propose to construct a decision boundary for the
unknown identity. The decision boundary of the unknown
identity is utilized to detect and reject the samples of un-
known identity. We first try to build a decision boundary for
unknown identity by enforcing the target samples near to
the decision boundary with the identity classifiers. Then, we
train the feature generator to cheat the classifiers. The fea-
ture generator has two choices, pushing the target samples
from the decision boundary to the side of unknown identity
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Figure 4: Examples of adversarial unknown rejection learn-
ing. (a) The identify classifiers try to push the target samples
to near the unknown boundary. (b) The generator tries to dis-
tinguish unknown target samples from known ones.

or known identity. Specifically, we train to classify the target
samples to unknown identity using F7 ; and classify the tar-
get samples to known identity using F7 . The loss function
is formulated as,

(6)

where py (M +1|x¢) and po (M +1|x;) represent the M +1th
dimension of the output obtained by F7 ; and F7 », respec-
tively. We utilize adversarial training to optimize this object,

Lun = —log p1 (M +1|z;) —log(1—po (M +1|z;)),

max min Ly,.
G Fra,Froz

(N

Since we use exactly the same source samples to train F7 ;
and FT o, these two identity classifiers would converge to
similar parameters. In this way, the outputs of the Iy ; and
Fp 2 would be approximately equal. We replace p1 (M +
1]ay) and po(M + 1lxy) by p*(M + 1|x¢) to help us un-
derstand the optimization of AURL. The object of Eq. 6 can
be reformulated as,

Loyn = —logp*(M+1|z:)—log(1—p*(M+1|z)). (8)
As shown in Fig. 4, the minimization of L, is p*(M +
1]a¢) = 0.5. Therefore, the classifiers try to push the value
of p*(M + 1|z;) to 0.5. On the contrary, the generator tries
to maximize L,,,, and thus encouraging the value of p* (M +
1]2;) far from 0.5. In this way, the generator has two options:
pushing the target sample as unknown identity if p*(M +
1|a¢) is larger than 0.5, and vice versa.

3.6 Overall Optimization

Taking into account the supervised learning, adversar-
ial multi-view learning and adversarial unknown rejection
learning, the overall objectives of the proposed method are:

min Ly,
G,F11,F1 2 9)
max min  Ay;i Ly + Aunl
G FIY17FIV27FC v v un un s

where \,; and A, are hyper-parameters that control the im-
portance of AMVL and AURL, respectively. We utilize the
gradient reverse layer (Ganin and Lempitsky 2015) to effi-
ciently implement the adversarial training in one step.
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4 Experiment
4.1 Dataset and Implement Details

Dataset. We evaluate the proposed method on three large-
scale person re-ID benchmarks: Market-1501 (Zheng et
al. 2015), DukeMTMC-reID (Ristani et al. 2016; Zheng,
Zheng, and Yang 2017) and MSMT17 (Wei et al. 2018).
Performance is evaluated by the cumulative matching char-
acteristic (CMC) and mean Average Precision (mAP).

Network. In this paper, we utilize ResNet-50 (He et
al. 2016) (without classifier layers) initialized on the Ima-
geNet (Deng et al. 2009) as the backbone of the generator.
The classifier module is composed of two fully convolu-
tional (FC) layers. The first FC layer is 1024-dimensional.
The second FC layer is the classification layer which is
M+1-dimensional for identity classifier and C-dimensional
for multi-view classifier. We resize the input image to 256
%x128. The random flipping and random cropping are ap-
plied for data augmentation during training. We initialize the
learning rate to 0.01 for the generator and 0.1 for the clas-
sifiers. The learning rate is divided by 10 after 40 epochs.
The batch size is set to 64 for both source and target views.
The SGD optimizer is used to train the network in total of 60
epochs. In default, we set \,,; = 0.2 and \,,, = 0.1. In test-
ing, we extract the L2-normalized output of generator as the
image feature. The similarities between query and gallery
images are calculated through Euclidean distance. Note that,
the testing samples are drawn from all views.

Fully-supervised learning uses fully-labeled data to train
the network with the supervised learning loss. Namely, the
identities of training samples in all camera views are avail-
able. Baseline uses only the labeled source view data to train
the network with the supervised learning loss.

4.2 Parameter Analysis

We first analyze the sensitivities of the weights of adversar-
ial multi-view learning and adversarial unknown rejection
learning. We vary the value of one weight and keep another
fixed. To avoid over-adjusting the parameters, we only eval-
uate the weights on one labeled source view. Specifically,
we use the 3th view and 2th view as the source views for
Market-1501 and DukeMTMC-relD, respectively.

Weight of adversarial multi-view learning. The evalu-
ation of different values of \,; is shown in Table 1. When
Avi = 0, the model is trained without L,;. After inject-
ing adversarial multi-view learning into the system, the per-
formance is consistently improved when \,; is in range
[0.1,0.5]. Assigning a large value to \,; will decrease the
performance. The best results are obtained when \,; = 0.2.

Weight of adversarial unknown rejection learning. In
Table 2, we evaluate the impact of \,,,. When \,,, = 0, our
method reduces to the model trained with supervised learn-
ing and adversarial multi-view learning. It can be seen that,
when adding adversarial unknown rejection learning into the
system (A, > 0), the rank-1 accuracy and mAP improve
with the increase of \,,, and achieve best results when A,
is around 0.1.

In the following experiments, we set £,; = 0.2 and
Lyn = 0.1 for all settings.
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Figure 5: Results of training the model using different source views on Market-1501 and DukeMTMC-relD.

Table 1: Evaluation with different values of \,; on Market-
1501 and DukeMTMC-reID. We fix A, to 0.1.

A Market-1501 DukeMTMC-relD

v | Rank- mAP Rank- mAP

1 1

0.0 72.2 47.6 52.0 31.3
0.1 75.1 49.6 58.1 35.6
0.2 78.1 53.7 58.5 35.7
0.5 74.4 48.4 57.1 349
1.0 73.5 46.9 50.8 29.7

Table 2: Evaluation with different values of \,,,, on Market-
1501 and DukeMTMC-reID. We fix \,; to 0.2.

A Market-1501 DukeMTMC-relD

“? | Rank- mAP | Rank- mAP

1 1
0.0 70.3 42.3 53.0 30.9
0.01 72.7 46.3 54.6 31.3
0.05 76.4 52.6 57.3 35.5
0.1 78.1 53.7 58.5 35.7
0.5 73.0 47.3 54.3 31.9
4.3 Evaluation

We conduct detailed evaluations of our method on Market-
1501 and DukeMTMC-relD in Fig. 5 and Table 3.

Performance of the baseline. We first evaluate the re-
sults of baseline in OVL. As shown in Fig. 5 and Table 3,
the results of baseline are largely lower than that of fully-
supervised learning. This is because that the baseline only
uses limited labeled data from one view to train the model.
Without learning with samples of other views, the model
would be significantly suffered from the variations caused
by unseen camera views.

Performance of the proposed method. We then evaluate
the effectiveness of the proposed method in Fig 5 and Ta-
ble 3. It is clear that our method consistently improves the
results of baseline by a large margin in all settings. Specif-
ically, our approach improves the average rank-1 accuracy
of all source views by 25.9% for Market-1501 and 24.5%
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Table 3: Ablation study of our approach on Market-1501 and
DukeMTMC-reID. Average: Average results on all source
views. Max: The best results over all source views. The best
results are achieved by 3th view for Market-1501 and 2th
view_for DukeMTMC-relD.

Market-1501 Duke
Methods R-1  mAP | R-I mAP
Fully-Supervised Learning | 87.4  69.2 | 75.1 57.7
- Baseline 419 178 | 276 12.7
£l g Ours w/o Ly, 59.5 303 | 434 215
S5 |Ouswol, |67 354|460 256
. Z | Ourswlo L, | 620 319 | 480 251
.g Ours 67.8 40.1 | 521 293
g % Baseline 498 241 | 339 158
O | = | Ours 781 53.7 | 585 35.7

Table 4: Comparison of traditional distribution matching
methods and AMVL. Results averaged on all source views
are reported. V1: Align the source view with the global tar-
get view; V2: Adapt the source view to each target view with
C — 1 domain classifiers.

Market-1501 DukeMTMC-reID
Method Rank-1 mAP | Rank-1 mAP
Baseline 41.9 17.8 27.6 12.7
Basel.+DANN (V1) 52.4 24.7 32.7 15.8
Basel.+ADDA (V1) 53.4 26.6 33.2 16.5
Basel.+DANN (V2) 55.2 28.1 39.2 19.3
Basel.+ADDA (V2) 55.6 28.8 40.5 21.2
Basel.+AMVL 62.0 31.9 48.0 25.1

for DukeMTMC-reID. The best results are achieved when
using 3rh view and 2th view as the source views for Market-
1501 and for DukeMTMC-relD, respectively. Our method
achieves 78.1% in rank-1 accuracy with 2,707 labeled sam-
ples of 694 identities when tested on Market-1501. This
is 9.3% lower than fully-supervised learning which uses
12,936 labeled samples of 751 identities.

Ablation experiment on the proposed method. We fur-
ther investigate the importance of the components in our
method. First, as shown in Table 3, the triplet loss L;; in
supervised learning is effective to improve the performance



Table 5: Comparison with state-of-the-art domain adaptation methods and semi-supervised methods. *: Domain adaptation
methods benefited from extra labelled auxiliary training data. T: Reproduced by this paper with the setting of one-view learning.

Method Reference Market-1501 DukeMTMC-RelD MSMTI17
Rank- | mAP Rank- | mAP Rank- | mAP
1 1 1
CAMEL" (Yu, Wu, and Zheng 2017) || ICCV 2017 54.5 26.3 - - - -
PUL* (Fan et al. 2018) TOMM 2018 44.7 20.1 30.4 16.4 - -
PTGAN* (Wei et al. 2018) CVPR 2018 38.6 - 27.4 - 11.8 33
SPGAN* (Deng et al. 2018) CVPR 2018 51.5 22.8 41.1 22.3 - -
SPGAN+LMP* (Deng et al. 2018) CVPR 2018 57.7 26.7 46.4 26.2 - -
TJ-AIDL* (Wang et al. 2018) CVPR 2018 58.2 26.5 443 23.0 - -
HHL* (Zhong et al. 2018) ECCV 2018 62.2 31.4 46.9 27.2 - -
DAS* (Bak, Carr, and Lalonde 2018) || ECCV 2018 65.7 - - - - -
TAUDL (Li, Zhu, and Gong 2018a) ECCV 2018 63.7 41.2 61.7 43.5 28.4 12.5
EUGT (Wu et al. 2018) CVPR 2018 69.8 44.7 37.8 18.7 11.9 3.0
CamStyle (Zhong et al. 2019) TIP 2019 67.0 38.6 54.9 30.8 - -
Ours AAAI 2020 78.1 53.7 58.5 35.7 339 11.3

in OVL. For example, when removing triplet loss L;,.; from
our model, the average rank-1 accuracy drops from 67.8% to
59.5% for Market-1501. A similar phenomenon is observed
on DukeMTMC-relD.

Next, we validate the effectiveness of the adversar-
ial multi-view learning (AMVL). As reported in Table 3,
AMVL is indispensable to reduce the gap between dif-
ferent views. For example, without AMVL, the results of
our method drop by 8.3% for Market-1501 and 8.7% for
DukeMTMC-relD in average rank-1 accuracy, respectively.
In addition, we compare AMVL with two popular distri-
bution matching methods in domain adaptation, i.e. DANN
(Ganin and Lempitsky 2015) and ADDA (Tzeng et al. 2017).
We implement them in two ways: 1) align the source view
with the global target view, and 2) adapt the source view to
each target view with C' — 1 domain classifiers. These two
ways only focus on reducing the distribution gap between
the source view and the target view while ignoring the dis-
tribution gap between each pair of target views. As shown
in Table 4, AMVL clearly outperforms DANN and ADDA.
This demonstrates the importance of aligning the feature dis-
tribution between target views.

Finally, we evaluate the effect of adversarial unknown re-
jection learning (AURL). In Table 3, we observe consistent
improvement when adding AURL into the system. For ex-
ample, when only injecting AURL into the baseline, “Ours
wlo L,;” improves the average rank-1 accuracy by 19.8%
for Market-1501 and by 18.4% for DukeMTMC-reID. This
indicates that AURL helps to align the target views with the
source view. Moreover, when given a model trained with
AMVL (“Ours w/o L,,,”"), AURL mainly focuses on avoid-
ing aligning target samples of unknown identity with the
source view. This helps us to further improve the results of
the system. For instance, when tested on Market-1501, the
baseline trained with AMVL and AURL (“Ours”) achieves
67.8% in average rank-1 accuracy, improving the average
rank-1 accuracy of “Ours w/o L,,,” by 5.8%.

4.4 Comparison with State-of-the-art Methods

In Table 5, we compare with 10 state-of-the-art meth-
ods including 7 unsupervised domain adaptation methods
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(CAMEL (Yu, Wu, and Zheng 2017), PUL (Fan et al. 2018),
PTGAN (Wei et al. 2018), SPGAN (Deng et al. 2018), TJ-
AIDL (Wang et al. 2018), HHL (Zhong et al. 2018), DAS
(Bak, Carr, and Lalonde 2018)) and 3 semi-supervised meth-
ods (TAUDL (Li, Zhu, and Gong 2018a), EUG (Wu et al.
2018), CamStyle (Zhong et al. 2019)). Results are evaluated
on Market-1501, DukeMTMC-relD and MSMT17. The un-
supervised domain adaptation methods aim to transfer the
knowledge (identity/attribute) from extra labelled auxiliary
training dataset to an unlabeled target dataset. In general, the
extra auxiliary dataset and the target dataset are draw from
different distributions. The semi-supervised methods aim to
leverage limited labeled samples and a large number of un-
labeled samples to learn a discriminative model. Although
TAUDL claims that it is an unsupervised method, it actually
is a semi-supervised method when implemented on image-
based datasets. Because TAUDL assigns all person images
per ID per camera to a unique label in a camera-independent
manner. Instead of using camera-independent labeled sam-
ples in all camera views, one-view learning (OVL) only re-
quires labeled samples from one camera view. We reproduce
EUG in the setting of OVL. For OVL, we use the 3th view,
2th view and 1th view as the source views for Market-1501,
DukeMTMC-reID and MSMT17, respectively.

As shown in Table 5, our approach outperforms all do-
main adaptation methods by a large margin. For example,
our approach surpasses HHL by 15.9% for Market-1501 and
by 11.6% for DukeMTMC-reID in rank-1 accuracy. It is
worth noting that our approach does not require any extra la-
belled auxiliary training data as compared to HHL. Instead,
our approach only uses limited labeled data of one camera
view which can be easily obtained. When using the same
training samples (OVL), our approach clearly outperforms
CamStyle and EUG on all datasets. The main reason of the
inferior of EUG is that EUG gradually predicts pseudo label
for unlabeled data but ignores the existing of unknown iden-
tity samples. Assigning known identities to unknown iden-
tity samples is unreasonable and would undoubtedly harm
the performance of the model. For example, when tested
on DukeMTMC-reID and MSMT17, EUG fails to produce
competitive results. Because the source view includes much



less identities than the overall dataset. Compared to Cam-
Style which requires to learn a lot of complicated style-
transferred models, our method is easy to implement and
produces higher results than that of CamStyle. Our approach
is significantly superior to TAUDL on Market-1501 and
achieves competitive results with TAUDL on MSMT17. Al-
though our approach obtains lower results than TAUDL on
DukeMTMC-relD, the labeled samples used in our approach
are much less than that used in TAUDL.

5 Conclusion

In this paper, we consider a novel setting, one-view learn-
ing (OVL), for person re-identification (re-ID). OVL is an
important and practical problem in balancing the annota-
tion cost and accuracy for person re-ID. This work compre-
hensively investigates the properties and difficulties of OVL
and proposes an effective framework to address these dif-
ficulties. Specifically, we introduce adversarial multi-view
learning (AMVL) and adversarial unknown rejection learn-
ing (AURL) to reduce the distribution gap between all views
and reject unknown identity samples during adapting. Ex-
periments on three datasets demonstrate the effectiveness
of the proposed method and show that our approach could
achieve state of the art compared with the advanced unsu-
pervised domain adaptation and semi-supervised methods.
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