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Abstract

Deep network compression has been achieved notable
progress via knowledge distillation, where a teacher-student
learning manner is adopted by using predetermined loss. Re-
cently, more focuses have been transferred to employ the ad-
versarial training to minimize the discrepancy between dis-
tributions of output from two networks. However, they al-
ways emphasize on result-oriented learning while neglecting
the scheme of process-oriented learning, leading to the loss
of rich information contained in the whole network pipeline.
Whereas in other (non GAN-based) process-oriented meth-
ods, the knowledge have usually been transferred in a re-
dundant manner. Observing that, the small network can not
perfectly mimic a large one due to the huge gap of net-
work scale, we propose a knowledge transfer method, in-
volving effective intermediate supervision, under the adver-
sarial training framework to learn the student network. Dif-
ferent from the other intermediate supervision methods, we
design the knowledge representation in a compact form by in-
troducing a task-driven attention mechanism. Meanwhile, to
improve the representation capability of the attention-based
method, a hierarchical structure is utilized so that powerful
but highly squeezed knowledge is realized and the knowl-
edge from teacher network could accommodate the size of
student network. Extensive experimental results on three typi-
cal benchmark datasets, i.e., CIFAR-10, CIFAR-100, and Im-
ageNet, demonstrate that our method achieves highly superior
performances against state-of-the-art methods.

Introduction

Deep neural networks (DNNs) greatly enhance the develop-
ment of artificial intelligence via dominant performance in
diverse perception missions. Due to the fact that the highly
computational consumption problem in modern DNNs usu-
ally restricts their direct implementation on embedded sys-
tems, there is a trend in expediting the development of net-
work compression. The network compression can accel-
erate neural networks for real-time applications on edge-
computing devices in the following aspects: low-rank de-
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Figure 1: The overview of proposed Hierarchical Knowl-
edge Squeezed Adversarial Network Compression (HK-
SANC) via intermediate supervision.

composition (Denton et al. 2014; Yang et al. 2015), net-
work pruning (Han, Mao, and Dally 2015; Belagiannis and
Zisserman 2017), quantization (Courbariaux et al. 2016;
Rastegari et al. 2016), knowledge distillation (KD) (Hinton,
Vinyals, and Dean 2015), and compact network design (Ian-
dola et al. 2016; Zhang et al. 2018).

Among the above categories, KD is somewhat different
due to the utilization of information from the pre-trained
teacher network. (Hinton, Vinyals, and Dean 2015) forced
the output of student network to match the soft targets pro-
duced by a teacher network via KL divergence. In recent
years, many researchers resort to process-oriented meth-
ods, and many kinds of knowledge representation algorithms
have been proposed (Zagoruyko and Komodakis 2016; Yim
et al. 2017). Empirically, the loss learned by adversarial
training usually has advantages over the predetermined one
in the student-teacher strategy, (Belagiannis, Farshad, and
Galasso 2018) and (Xu, Hsu, and Huang 2018) proposed the
GAN-based distillation approaches by introducing the dis-
criminator to match the output distribution between teacher
and student.

Motivations: 1) To inherit the information from teacher
network, the aforementioned GAN-based methods usually
focus on result-oriented learning. While reasonably effec-
tive, rich information encoded in the intermediate layers
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of teacher network might be ignored. As for the process-
oriented methods, the knowledge is always represented as
feature- or heat-maps.

We acknowledge that the small network cannot mimic a
large one perfectly due to the large difference in the num-
ber of layers and the large gap in representation capability
between large and small networks. To reduce this gap, we
would better squeeze the redundancy knowledge contained
in the teacher network into a compact form to accommo-
date the size of student network. Therefore, we propose the
knowledge-squeeze method, a task-driven attention mech-
anism in this paper. It can convert the knowledge in the
form of 3D feature map into a vector in an elegant man-
ner. Moreover, by incorporating the intermediate supervi-
sion, the squeezed knowledge can be effectively injected
into the student network.

2) In the above mentioned task-driven attention mecha-
nism, the squeezed knowledge can be achieved with a global
descriptor vector as input. However, due to the semantic gap,
the feature maps of shallow layer cannot directly match the
global descriptor on semantic level, resulting in a low ef-
fectiveness of the squeezed knowledge of shallow layer for
knowledge transfer. To overcome this, we need to gradually
transfer high-level semantic information from deep to shal-
low. Therefore, we introduce hierarchical connections be-
tween high-level squeezed knowledge and low-level atten-
tion blocks in an attention mechanism.

The major contribution of this paper is a Hierarchical
Knowledge Squeezed Adversarial Network Compression
(HKSANC) via intermediate supervision, shown in Figure 1.
Specifically, (i) A novel knowledge transfer method, which
involves an effective intermediate supervision, is proposed
based on the adversarial training framework. A task-driven
attention mechanism is introduced to achieve the highly
compact knowledge representation, which can accommo-
date the small size of student network. (ii) To improve the
representation capability of low-level attention block, a hier-
archical connection structure is introduced in the attention-
based method so that the highly squeezed knowledge could
be extracted. (iii) We conduct an extensive evaluation of our
method on several benchmark datasets, where the experi-
mental results demonstrate that our method achieves highly
competitive performance compared with some other knowl-
edge transfer approaches, while maintaining smaller accu-
racy degradation.

Related Work

Network Compression: We briefly review the following
five kinds of approach for deep network compression. (1)
Low rank decomposition: In this case, the main idea is
to construct low rank basis of filters to effectively reduce
the weight tensor. Related approaches have also been ex-
plored by the principle of finding a low-rank approxima-
tion for the convolutional layers (Rigamonti et al. 2013;
Lebedev et al. 2014; Yang et al. 2015). (2) Network prun-
ing: Removing network connections not only reduces the
model size but also prevents over-fitting. Parameter sharing
has also contributed to reduce the network parameters with

repetitive patterns (Schmidhuber 1992; Belagiannis and Zis-
serman 2017). (3) Quantization: The main goal of quantiza-
tion are reducing the size of memory requirement and ac-
celerates the inference by using weights with lower preci-
sion representations (Soudry, Hubara, and Meir 2014; Cour-
bariaux, Bengio, and David 2015; Rastegari et al. 2016). (4)
Compact network design: Many researchers resort to derive
more efficient network architectures, such as ResNets (He et
al. 2016a), SqueezeNet (Iandola et al. 2016) and ShuffleNet
(Zhang et al. 2018), to shrink the number of the parame-
ters while maintaining the performance. (5) Distillation: The
proposed method belongs to this category, which will be dis-
cussed in detail in the next paragraph.

Knowledge Distillation: Knowledge distillation (Ba and
Caruana 2014) is used to transfer knowledge from teacher
network to student network by the output before the soft-
max function (logits) or after it (soft targets), which has been
popularized by (Hinton, Vinyals, and Dean 2015). As it is
hard for student network with small capacity to mimic the
outputs of teacher network, several researches (Belagiannis,
Farshad, and Galasso 2018; Xu, Hsu, and Huang 2018) fo-
cused on using adversarial networks to replace the manually
designed metric such as L1/L2 loss or KL divergence.

Attention-based Knowledge Transfer: Early work on
attention based tracking was motivated by human atten-
tion mechanism theories (Rensink 2000), and was accom-
plished via Restricted Boltzmann Machines. It was exploited
in many computer-vision-related tasks. In transfer learning,
attention transfer facilitates the fast optimization and im-
proves the performance of a small student network via the
attention map (Zagoruyko and Komodakis 2016) or the flow
of solution procedure (FSP) matrix (Yim et al. 2017). Atten-
tion transfer is also introduced in machine reading compre-
hension (Hu et al. 2018).

The above transfer methods emphasize on how to repre-
sent the intermediate information more effectively, while ne-
glecting to construct a compact form of knowledge for trans-
fer, which is more important in compression since we have
acknowledged that the capability of the small network is far
below the deep one. Different from them, we propose to
squeeze the intermediate knowledge by using a task-driven
attention (Jetley et al. 2018), such that the highly compact
knowledge from teacher network could accommodate the
size of student network.

Method

The Architecture of HKSANC

As illustrated in Figure 2, our method consists of the teacher,
student and discriminator networks. We denote the teacher
network (require pre-train) as T , and the student network
as S. Both the teacher and student network are built by
a backbone-subnetwork (e.g., VGG, ResNet) Netb and an
attention-subnetwork Neta. The Netb is a standard CNN
pipeline with N (N = 3 in Figure 2) replicated blocks,
where we can obtain N corresponding intermediate features
LT/S = {L1

T/S , L
2
T/S , . . . , L

N
T/S}.

In attention-subnetwork, the attention block produce the
squeezed knowledge vector (g̃a,iT/S , i = 1, . . . , N ) corre-
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Figure 2: The architecture of our proposed HKSANC. The sub-figure in the left is the paradigm of our teacher-student strategy.
The sub-figure in the bottom right corner of the dotted line is the description of hierarchical connection structure of attention
block. This is an example where the teacher is ResNet-164 and the student is ResNet-20, and C is the category number (best
viewed in color).

sponding to the i-th block. Another output of the attention
block is the vectors that send to the low-level attention block.
As shown in the bottom right corner of Figure 2, for a cer-
tain attention estimator, the squeezed knowledge vectors ob-
tained from higher-level are connected with it in a hierar-
chical manner, which is beneficial to produce effective rep-
resentation. As a result, the low-level attention estimator not
only takes the global descriptor vector, but also the squeezed
knowledge vectors from high-level as inputs. The detailed
structure of the task-driven attention estimator is presented
in Figure 3. Firstly, the input vectors are concatenated. Then
the channel alignment convolution is introduced to achieve
the feature vector ĝb,iT/S as the channel number of input might
differ from that of Li

T/S . Next, the element-wise sum be-

tween ĝb,iT/S and Li
T/S is conducted along the dimension-

ality of channel, so that the L̂i
T/S is obtained. Finally, the

squeezed knowledge descriptor g̃a,iT/S for the i-th block can
be gained by the following equation:

M = softmax(Ŵ ∗ L̂i
T/S) (1)

g̃a,iT/S = average pooling(M � L̂i
T/S) (2)

where the Ŵ , a C×1×1 convolution kernel, is used to com-
pute the attention score M , and ∗ denotes the convolutional
operator, and � is the element-wise product.

With the help of attention estimator, the knowledge con-
tained in each backbone block of the teacher network, which
in the form of 3D feature map could be converted into the
compact form of a vector by integrating the task-specific
information and reducing the redundancy, such that the so-
called knowledge squeeze can be realized.

As for the discriminator, it aims to distinguish where

a ig a igT / SM

a N
T S Nga NT S Ng

b
T / Sg i

T / SL

i
T / SL

a
T i
i
Sg aT iSg b i

T / Sg

Figure 3: The structure of designed task-driven attention
estimator for i-th block, where the backbone intermediate
feature Li

T/S , the global descriptor gbT/S and the squeezed

knowledge vectors g̃a,kT/S(k = i + 1, ..., N) are taken as in-

put to produce the squeezed knowledge descriptor g̃a,iT/S .

the input vectors come from (teacher or student). The dis-
criminator is composed of three sequentially stacked fully-
connected layers. The number of nodes in all hidden layers is
the dimension of the input. We use backbone logits (denoted
by lbT/S) as the input of the discriminator in our experiments.

Overall Loss Function

To train our network, we define a loss function in Eqn. (3)
including three components, i.e., the adversarial loss Ladv ,
the backbone loss Lb, and the intermediate loss Lis:

L = λ1Lb + λ2Ladv + λ3Lis (3)

where λ1, λ2, λ3 are trade-off factors. During the process
of knowledge transfer, the backbone loss Lb is utilized to
directly match the output of two networks, while the ad-
versarial loss Ladv is employed to minimize the discrep-
ancy between distributions of logits from the two networks.
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Both of them are served for result-oriented learning. On
the contrary, the intermediate loss Lis could facilitate the
process-oriented learning via intermediate supervision. Con-
sequently, both process-oriented and result-oriented learning
can complement each other. We found that the result is in-
sensitive to the scope (from 0.1 to 10.0) of trade-off factors
in the experiments, thus the weight of each loss is set to be
equal for simplify, i.e., λ1 = λ2 = λ3 = 1.

Backbone Loss: Backbone loss is a result-oriented con-
straint which makes the student mimic the teacher by mini-
mizing the L2 loss between backbone logits from the teacher
and student networks:

Lb = ‖lbS(x)− lbT (x)‖22 (4)
Adversarial Loss: In the proposed model, a GAN based

approach is introduced to transfer knowledge from teacher to
student. The teacher and student networks convert an image
sample x to the logits lbT (x) and lbS(x) respectively, where
the student is considered as a generator in vanilla GAN.
While the discriminator aims to distinguish whether the in-
put comes from teacher or student. As our goal is to fool the
discriminator in predicting the same output for teacher and
student networks, the objective can be written as:

Lo
adv = min

lb
S

max
D

Elb
T
(x)∼pT

[log(D(lbT (x)))]+

Elb
S
(x)∼pS

[log(1−D(lbS(x)))] (5)
where pT and pS correspond to logits distribution of the
teacher and student network, respectively.

In order to get more valuable gradient for student, the reg-
ularization and category-level supervision are introduced to
further improve the discriminator. We utilize three regular-
izers to prolong the minimax game between the student and
discriminator as follows:

Lreg = −μ

(
|ωD|+ ‖ωD‖22 − Elb

S
(x)∼pS

[log(D(lbS(x)))]

)
(6)

where ωD is the parameters of discriminator, and μ controls
the contribution of regularizer in optimization, the negative
sign denotes that the loss term is updated in the maximiza-
tion step. The first two terms force the weights of discrim-
inator to grow slowly, the last term is referred to as the ad-
versarial sample regularization, and the above loss terms are
originally designed in (Xu, Hsu, and Huang 2018). It uti-
lizes the additional student samples (labeled as teacher) to
confuse the discriminator such that the capability of discrim-
inator can be restricted to some extent.

Note that the adversarial loss defined in Eqn. (5) only fo-
cus on matching the logits on distribution-level, while miss-
ing the category information might result in the incorrect
association between logits and labels. Consequently, the dis-
criminator is further modified to simultaneously predict the
“teacher/student” and the class labels. On this occasion, the
output of discriminator is a 1+C dimensional vector (the
first element represents “teacher/student”, while the remain-
ing denote the category by using one-hot encoding), and the
category regularizer for the discriminator can be written as:

LC
adv = min

lb
S

max
D

Elb
T
(x)∼pT

[log(P (l(x)|CT (x)))]

+Elb
S
(x)∼pS

[log(P (l(x)|CS(x)))] (7)

where l(x) means the label of the sample x, CT/S(x) cor-
responds to D(lbT/S(x))[1:], where the [:] denotes the vec-
tor slice in python. As the discriminator has to learn with
the extended outputs to jointly predict “teacher/student“ and
category, the adversarial learning becomes more stable.

To sum up, the final loss for adversarial training can be
formulated as:

Ladv = Lo
adv + Lreg + LC

adv (8)

Intermediate Loss: The loss of intermediate supervision
is an effective term to inject the squeezed knowledge, i.e.,
g̃a,iT , (i = 1, . . . , N), into the student network. Due to the
highly compact form of squeezed knowledge, it can be given
by the L2 distance:

Lis = ‖g̃aS(x)− g̃aT (x)‖22 (9)

where g̃aT/S(x) is the concatenation of g̃a,iT/S(i = 1, ..., N).
It is noteworthy that other loss function, such as L1 loss and
cross-entropy loss, can also be applied. Besides, we find that
L2 loss outperforms others empirically in our experiments.

Optimization

The optimization procedure of the proposed HKSANC con-
tains two stages. First, the teacher is trained from scratch
by using labeled data. The attention-subnetwork with addi-
tional auxiliary layers (i.e., one fully-connected layer and a
softmax output layer) and backbone-subnetwork are trained
simultaneously by optimizing the two cross-entropy losses,
while the auxiliary layers are removed during the process
of transfer learning. Second, fixing the teacher network, the
student and discriminator are updated under the framework
of adversarial training, where the number of steps inside
each component is simply set to 1 in our experiments. Both
student and discriminator are randomly initialized. We use
Stochastic Gradient Descent (SGD) with momentum as the
optimizer, and set the momentum as 0.9, weight decay as
1e− 4. The learning rate, initialized as 1e− 1 and 1e− 3
for student and discriminator separately, is multiplied by 0.1
at three specific epochs during the training process. As for
the regularization, having been examined the different val-
ues for weight factor μ in our experiments, we conclude that
setting μ to 1 is a good compromise for all evaluations em-
pirically. For all experiments, we train on the standard train-
ing set and test on the validation set. Besides, data augmen-
tation (random cropping and horizontal flipping) and nor-
malization (subtracted and divided sequentially by mean and
standard deviation of the training images) is applied to all the
training images.

Experiments

Experimental Setting

Datasets: We consider three image classification datasets:
CIFAR-10, CIFAR-100, and ImageNet ILSVRC 2012. Both
CIFAR-10 and CIFAR-100 contain 50K training images
and 10K validation images, respectively. The ImageNet
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ILSVRC 2012 contains more than 1 million training images
from 1000 object categories and 20K validation images with
each category including 20 images. The image size of CI-
FARs and ImageNet is 32× 32 and 224× 224, separately.

Evaluation Measures: We evaluate different models
from the following two aspects: 1) the testing error of stu-
dent network; 2) the convergence stability (S) for training
procedure. As for the former, the Top-1 error is calculated
for all datasets, while the Top-5 error is additionally adopted
for ImageNet. The testing error in ablation study is the av-
erage of twenty runs. The convergence stability is computed
by the concussion range of the testing error:

S = Var(Err) (10)

where Var denotes the variance calculation, Err is [errmax
1 −

errmin
1 , ..., errmax

E − errmin
E ], errmax

e and errmin
e denote the

maximum and the minimum error rate over twenty runs on
e-th epoch (e = 1, . . . , E), respectively.

Competitors: Since our proposed method is closely re-
lated with the knowledge transfer based on attention mech-
anism and the adversarial training, the following works
should be included in our experiments. As for knowledge
transfer, four representative knowledge transfer methods
need to be analyzed: the attention map computed by the
statistics of feature values across the channel dimension
(Zagoruyko and Komodakis 2016), the FSP matrix gener-
ated by the inner product of two features (Yim et al. 2017),
minimizing the maximum mean discrepancy to match the
distributions of neuron selectivity patterns from two net-
works (Huang and Wang 2017), and the method that for-
mulates knowledge transfer as maximizing the mutual infor-
mation (Ahn et al. 2019). These four approaches produce
the transferred knowledge in a heuristic manner, while our
model achieves a more compact one via the way of task-
driven learning. For fair comparison, we adopt their repre-
sentation of transferred knowledge into our framework.

As for adversarial training, two recently representative
methods, i.e., adversarial network compression (ANC, Be-
lagiannis, Farshad, and Galasso 2018) and training student
network with conditional adversarial networks (TSCAN,
Xu, Hsu, and Huang 2018), are included. We implement the
above two GAN based approaches on our own. Note that the
backbone network in TSCAN, i.e., wide residual networks
(WRN), is replaced by the ResNet, and the cross-entropy
loss as well as the KD loss for student update are removed
for fair comparison.

Finally, for the purpose of comprehensive comparison, we
introduce four additional knowledge distillation methods:
mimic learning with L2 loss (L2-Ba, Ba and Caruana 2014),
distillation with soft targets via KL divergence (KD, Hin-
ton, Vinyals, and Dean 2015), knowledge transfer with FSP
matrix (FSP, Yim et al. 2017), and Fitnets (Romero et
al. 2014). Four quantization methods: weights binarization
during training process except parameters update (Binary-
Connect, Courbariaux et al. 2016), reducing the precision of
the network weights to ternary values (Quantization, Zhu et
al. 2016), binaryzation of the filters (BWN) and the addi-
tional input (XNOR) (Rastegari et al. 2016).

Implementation Details: For CIFAR-10 and CIFAR-
100, we set the pre-trained teacher as ResNet-164, the stu-
dent as ResNet-20∗, where preact block (He et al. 2016b)
is employed since it is currently the standard architecture
for recognition. We select the minibatch size as 64 and to-
tal train epoch as 600 with the learning rate multiplied by
0.1 at epoch 240 and epoch 480. We adjust the teacher net-
work to ResNet-152 like ANC and TSCAN since the pre-
trained model is available, the student network is changed to
ResNet-50/18, the mini-batch size is set to 128, and the total
epoch is 120 for ImageNet dataset, where the learning rate is
divided by 10 at epoch 30, 60 and 90. Our implementation is
based on Pytorch, with 1 and 4 NVIDIA GTX 1080ti GPU
for CIFAR-10/100 and ImageNet, separately.

Ablation Study

Comparison of Connection Methods of Attention Block:
In our proposed model, the squeezed knowledge is achieved
by task-driven attention mechanism with hierarchical con-
nection structure, which is different from the original atten-
tion method (Jetley et al. 2018), whose attention estimators
merely take the global descriptor vector as input (the method
would be presented if the pink and orange lines are removed
in the bottom right corner of Figure 2). To proof that the
squeezed knowledge achieved with the hierarchical structure
is more effective, we apply the two methods in knowledge
distillation and observe the classification error of student on
the two benchmark datasets. The result is shown in Table 1.
Lb and Lis denote the backbone loss and intermediate loss
respectively. The only difference between original and our
method is the connection structure of attention block. Obvi-
ously, the method with hierarchical structure performs better
than the one without the architecture, which demonstrates
that the squeezed knowledge achieved by using the hierar-
chical connection structure is more valuable for knowledge
transfer.

Loss composition Error [%]
CIFAR-10 CIFAR-100

Lb + Lis[original] 7.55 31.97
Lb + Lis [our] 7.51 31.86

Table 1: The comparison of connection methods of attention
block. The same backbone loss Lb is employed.

Comparison of Knowledge Transfer Methods: We aim
to demonstrate that the task-driven attention mechanism is
a more effective way to squeeze the knowledge transferred
from teacher to student than the methods of the attention
map (AT, Zagoruyko and Komodakis 2016), FSP matrices
(FSP, Yim et al. 2017), matching the distribution of neuron
selectivity patterns (NST, Huang and Wang 2017) and the
mutual information maximization (VID, Ahn et al. 2019). To
do so, we compare these five types of intermediate knowl-
edge transfer methods.

∗Note that the teacher and student networks do not restrict to one
certain type, any other network, such as WRN, can be used in the
same way.
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As illustrated in Table 2, it demonstrates that the back-
bone loss Lb, combining with intermediate loss Lis with
any form of transferred knowledge (appointed in bracket in
the first column in Table 2), could facilitate the training of
student network, especially our squeezed transferred knowl-
edge, which outperforms other representations by a signifi-
cant margin. It indicates that, by integrating the task-driven
attention scheme, our squeezed knowledge is a more suitable
representation to be adapted into the small scale network.

Loss composition Error [%]
CIFAR-10 CIFAR-100

Lb 8.19 32.60
Lb + Lis [AT] 7.97 32.31
Lb + Lis [VID] 8.02 32.51
Lb + Lis [FSP] 8.03 32.45
Lb + Lis [NST] 8.07 32.36
Lb + Lis[ours] 7.51 31.86

Table 2: The evaluation of different knowledge transfer
methods. The same backbone loss Lb is applied. The effect
of different intermediate losses Lis and ours is studied.

Loss Functions for Discriminator: Since the proposed
HKSANC is built upon the adversarial training framework,
it is necessary for us to find the reasonable combination of
loss functions for the discriminator. As it is shown in Table
3, generally speaking, any adversarial loss can improve the
performance of student network. Specifically, by comparing
the difference between the line 1 and 2, and the difference
between the line 1 and 3, either category regularizer LC

adv or
discriminator regularizer Lreg could boost the performance
slightly. However, their joint constraint (see the last row in
Table 3) will lead to a remarkable improvement, which in-
dicates that both LC

adv and Lreg play critical roles in our
adversarial training model.

Loss composition Error [%]
CIFAR-10 CIFAR-100

Lb + Lis 7.51 31.86
Lb + Lis + Lo

adv + Lreg 7.44 31.55
Lb + Lis + Lo

adv + LC
adv 7.36 31.65

Lb + Lis + Ladv 7.29 31.35

Table 3: The evaluation of different components of adversar-
ial loss. The same backbone loss Lb and intermediate loss
Lis are employed.

Benefits of Intermediate Supervision: We look into the
effect of enabling and disabling different loss components
of HKSANC model, as shown in Table 4. We can see that
even merely using backbone loss Lb could be able to obtain
a better effect than student network without any knowledge
transfer (directly supervised learning by using sample-label
pair). Moreover, both Ladv and Lis could improve the per-
formance of student network.

Interestingly, utilizing Lis get better result than Ladv . We
give the explanation as follows: Recall the subsection of

Figure 4: The training procedure of four different models
on CIFAR-10, where the X-axis denotes training epochs and
the Y-axis denotes testing error.

loss function, both Lb and Ladv give service to the result-
oriented learning, which is naturally without the guidance
from intermediate supervision (see line 4 in Table 4). As a
result, significant improvement can not be acquired by incor-
porating another result-oriented loss function. On the con-
trary, further improvement can be realized by adding the in-
termediate loss Lis to Lb (see line 3 in Table 4), which is an
evidence that both of them can complement each other. Fur-
thermore, the final approach combining all of the loss com-
ponents preforms the best, this is attributed to the advantage
of the adversarial training.

Loss composition Error [%]
CIFAR-10 CIFAR-100

supervised learning 8.58 33.36
Lb 8.19 32.60
Lb + Lis 7.51 31.86
Lb + Ladv 7.72 32.17
Lb + Ladv + Lis 7.29 31.35

Table 4: The effect of loss components in HKSANC.

Intuitively, the benefit of combining different losses will
be presented in the training procedure, e.g., the training
curve. Figure 4 represents the test error of different models
over time on CIFAR-10 (the result on CIFAR-100 is pre-
sented in supplemental material). Our model (Lb + Ladv +
Lis, the red line in Figure 4) has a relatively lower testing
error during the training process, especially after epoch 240,
see the zoom-in windows in the upper right.

Moreover, we select the last 100 epochs to calculate the
convergence stability of different models, which is illus-
trated in Table 5. By comparing the first two lines and last
two lines respectively, the convergence stability becomes
more apparent after integrating the loss function of interme-
diate supervision with squeezed knowledge, which further
indicates that the intermediate loss could improve the stabil-
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ity of transfer learning.

Model Stability
CIFAR-10 CIFAR-100

Lb 2.46e− 3 5.12e− 3
Lb + Lis 2.18e− 3 4.51e− 3
Lb + Ladv 3.02e− 3 6.41e− 3
Lb + Ladv + Lis 2.36e− 3 5.80e− 3

Table 5: Convergence Stability. The variance of testing error
concussion range on CIFAR-10 and CIFAR-100 through last
100 epochs are shown.

Comparison with State-of-the-art

We first compare our model with several cutting edge com-
pression approaches, including six distillation algorithms
and four quantization ones. Eight of them, i.e., six distil-
lations and two quantization approaches, are available for
CIFAR-10 and CIFAR-100 datasets, other unavailable meth-
ods, whose results are not provided by their authors, are
omitted in the reported table. Similar way is adopted in the
experiment for ImageNet dataset.

Model Param Error [%]
CIFAR-10 CIFAR-100

Teacher RN-164 2.6M 6.57 27.76
Student RN-20 0.27M 8.58 33.36
FSP 0.27M 11.30 36.67
L2-Ba 0.27M 9.07 32.79
KD 0.27M 8.88 33.34
FitNets 2.5M 8.39 35.04
Quantization 0.27M 8.87 −
Binary-Connect 15.20M 8.27 −
ANC 0.27M 8.08 32.45
TSCAN 0.27M 7.93 32.57
HKSANC 0.27M 7.29 31.35

Table 6: Comparison with state-of-the-art methods on
CIFAR-10 and CIFAR-100. The teacher and student net-
works are RN-164 and RN-20 respectively. (RN denotes
ResNet.)

As shown in the Table 6, the deep teacher preforms much
better than the shallow student network with supervised
learning (line 2 in Table 6), and the error rate of small net-
work learned by using distillation models is bounded by
the teacher’s performance, as expected. Both distillation and
quantization approaches obtain relatively good performance
with a small model size. Specifically, two GAN based com-
petitors (ANC and TSCAN) achieve desirable results which
outperform the supervised learning for student with 0.5%
and 0.65%, respectively. Obviously, the proposed HKSANC
further boost the capability of student network. More notice-
able improvements can be seen on CIFAR-100 dataset. To
sum up, we can see that our method acquires the lowest error
with the same or less number of parameters, which demon-
strates that our model benefits from effective representation
of transferred knowledge and intermediate supervision.

Model Param Error [%]
Top-1 Top-5

Teacher RN-152 58.21M 27.63 5.90
Student RN-50 37.49M 30.30 10.61
Student RN-18 13.95M 43.33 20.11
XNOR (RN-18) 13.95M 48.80 26.80
BWN (RN-18) 13.95M 39.20 17.00
L2-Ba (RN-18) 13.95M 33.28 11.86
ANC (RN-18) 13.95M 32.89 11.72
TSCAN (RN-18) 13.95M 32.72 11.49
HKSANC(RN-18) 13.95M 31.34 10.85

L2-Ba (RN-50) 37.49M 27.99 9.46
ANC (RN-50) 37.49M 27.48 8.75
TSCAN (RN-50) 37.49M 27.39 8.53
HKSANC (RN-50) 37.49M 26.72 7.97

Table 7: Comparison with state-of-the-art methods on Ima-
geNet. The teacher network is RN-152, and the student net-
works are RN-50 and RN-18. (RN denotes ResNet.)

More adequate evidence is provided by the comparison
on large-scale dataset, i.e., ImageNet. Two widely used net-
works, ResNet-50 and ResNet-18, are employed as the stu-
dent network, and the comparison results are presented in
Table 7. By analyzing the results in the first group (line 1
to 3), we can deduce that ResNet-152 might contain redun-
dancy since the difference between ResNet-152 and ResNet-
50 is only 2.67%. In that case, the ANC, TSCAN, and our
method could obtain desirable results which even beat the
teacher network, as the ResNet-50 is a more concise archi-
tecture trained by the three distillation methods.

When the size of student network becomes smaller
(ResNet-18), the error of the proposed method increases
nearly 4.6% (from 26.72% to 31.34%), where our assump-
tion that, “the small network can not perfectly mimic a large
on especially when there exists significant difference in the
number of layer.”, can be confirmed. Nevertheless, the pro-
posed method obtains the performance gain w.r.t the second
best (TSCAN, see the last two lines in the second group of
Table 7) better than that in the case of ResNet-50. This indi-
cates that, the transferred knowledge in our model is much
more suitable for injecting into the small scale network.

Conclusion

In this paper, a novel knowledge transfer method involving
intermediate supervision is proposed via the framework of
adversarial training for distillation. To inherit the informa-
tion from teacher to student effectively, the task-driven at-
tention mechanism is designed to squeeze the knowledge in
a compact form for intermediate supervision. Moreover, the
hierarchical connection structure is introduced in the atten-
tion mechanism to achieve more powerful knowledge rep-
resentation. Extensive evaluation of our HKSANC is con-
ducted on three challenging image classification datasets,
where a clear outperformance over contemporary state-of-
the-art methods is achieved. Additionally, the experimen-
tal results demonstrate that, the proposed attention transfer
method could further facilitate the convergence stability via
the intermediate supervision.
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